1
|
Cummings KJ, Leiter JC, Trachtenberg FL, Okaty BW, Darnall RA, Haas EA, Harper RM, Nattie EE, Krous HF, Mena OJ, Richerson GB, Dymecki SM, Kinney HC, Haynes RL. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part II. Age-associated alterations in serotonin receptor binding profiles within medullary nuclei supporting cardiorespiratory homeostasis. J Neuropathol Exp Neurol 2024; 83:144-160. [PMID: 38323418 PMCID: PMC10880067 DOI: 10.1093/jnen/nlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | - Benjamin W Okaty
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Darnall
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisabeth A Haas
- Department of Research, Rady’s Children’s Hospital, San Diego, California, USA
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eugene E Nattie
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Henry F Krous
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Departments of Pathology and Pediatrics, Rady Children’s Hospital, San Diego, California, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - George B Richerson
- Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah C Kinney
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robin L Haynes
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhang XY, Wang JJ, Zhu JN. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. CEREBELLUM & ATAXIAS 2016; 3:9. [PMID: 27144010 PMCID: PMC4853849 DOI: 10.1186/s40673-016-0047-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Fastigial nucleus (FN) is the phylogenetically oldest nucleus in the cerebellum, a classical subcortical motor coordinator. As one of the ultimate integration stations and outputs of the spinocerebellum, the FN holds a key position in the axial, proximal and ocular motor control by projecting to the medial descending systems and eye movement related nuclei. Furthermore, through topographic connections with extensive nonmotor systems, including visceral related nuclei in the brainstem, hypothalamus, as well as the limbic system, FN has also been implicated in regulation of various nonsomatic functions, such as feeding, cardiovascular and respiratory, defecation and micturition, immune, as well as emotional activities. In clinic, FN lesion or dysfunction results in motor deficits including spinocerebellar ataxias, and nonmotor symptoms. In this review, we summarize the cytoarchitecture, anatomic afferent and efferent connections, as well as the motor and nonmotor functions of the FN and the related diseases and disorders. We suggest that by bridging the motor and nonmotor systems, the cerebellar FN may help to integrate somatic motor and nonsomatic functions and consequently contribute to generate a coordinated response to internal and external environments.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
3
|
Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH. Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 2012. [PMID: 23198805 DOI: 10.3171/2012.10.jns111836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Primary pontine hemorrhage (PPH) represents approximately 7% of all intracerebral hemorrhages (ICHs) and is a clinical condition of which little is known. The aim of this study was to characterize the early brain injury, neurobehavioral outcome, and long-term histopathology in a novel preclinical rat model of PPH. METHODS The authors stereotactically infused collagenase (Type VII) into the ventral pontine tegmentum of the rats, in accordance with the most commonly affected clinical region. Measures of cerebrovascular permeability (brain water content, hemoglobin assay, Evans blue, collagen Type IV, ZO-1, and MMP-2 and MMP-9) and neurological deficit were quantified at 24 hours postinfusion (Experiment 1). Functional outcome was measured over a 30-day period using a vertebrobasilar scale (the modified Voetsch score), open field, wire suspension, beam balance, and inclined-plane tests (Experiment 2). Neurocognitive ability was determined at Week 3 using the rotarod (motor learning), T-maze (working memory), and water maze (spatial learning and memory) (Experiment 3), followed by histopathological analysis 1 week later (Experiment 4). RESULTS Stereotactic collagenase infusion caused dose-dependent elevations in hematoma volume, brain edema, neurological deficit, and blood-brain barrier rupture, while physiological variables remained stable. Functional outcomes mostly normalized by Week 3, whereas neurocognitive deficits paralleled the cystic cavitary lesion at 30 days. Obstructive hydrocephalus did not develop despite a clinically relevant 30-day mortality rate (approximately 54%). CONCLUSIONS These results suggest that the model can mimic several translational aspects of pontine hemorrhage in humans and can be used in the evaluation of potential preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology and Pharmacology, of Science and Technology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Posterior circulation stroke: animal models and mechanism of disease. J Biomed Biotechnol 2012; 2012:587590. [PMID: 22665986 PMCID: PMC3361739 DOI: 10.1155/2012/587590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 02/08/2023] Open
Abstract
Posterior circulation stroke refers to the vascular occlusion or bleeding, arising from the vertebrobasilar vasculature of the brain. Clinical studies show that individuals who experience posterior circulation stroke will develop significant brain injury, neurologic dysfunction, or death. Yet the therapeutic needs of this patient subpopulation remain largely unknown. Thus understanding the causative factors and the pathogenesis of brain damage is important, if posterior circulation stroke is to be prevented or treated. Appropriate animal models are necessary to achieve this understanding. This paper critically integrates the neurovascular and pathophysiological features gleaned from posterior circulation stroke animal models into clinical correlations.
Collapse
|
5
|
Abstract
Abstract
Collapse
|
6
|
Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci 2008; 138:9-23. [PMID: 18083639 PMCID: PMC2291393 DOI: 10.1016/j.autneu.2007.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 10/29/2007] [Accepted: 11/01/2007] [Indexed: 12/16/2022]
Abstract
Spinal cord stimulation (SCS) is a widely used clinical technique to treat ischemic pain in peripheral, cardiac and cerebral vascular diseases. The use of this treatment advanced rapidly during the late 80's and 90's, particularly in Europe. Although the clinical benefits of SCS are clear and the success rate remains high, the mechanisms are not yet completely understood. SCS at lumbar spinal segments (L2-L3) produces vasodilation in the lower limbs and feet which is mediated by antidromic activation of sensory fibers and decreased sympathetic outflow. SCS at thoracic spinal segments (T1-T2) induces several benefits including pain relief, reduction in both frequency and severity of angina attacks, and reduced short-acting nitrate intake. The benefits to the heart are not likely due to an increase, or redistribution of local blood flow, rather, they are associated with SCS-induced myocardial protection and normalization of the intrinsic cardiac nervous system. At somewhat lower cervical levels (C3-C6), SCS induces increased blood flow in the upper extremities. SCS at the upper cervical spinal segments (C1-C2) increased cerebral blood flow, which is associated with a decrease in sympathetic activity, an increase in vasomotor center activity and a release of neurohumoral factors. This review will summarize the basic science studies that have contributed to our understanding about mechanisms through which SCS produces beneficial effects when used in the treatment of vascular diseases. Furthermore, this review will particularly focus on the antidromic mechanisms of SCS-induced vasodilation in the lower limbs and feet.
Collapse
Affiliation(s)
- Mingyuan Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, United States.
| | | | | |
Collapse
|
7
|
Rector DM, Richard CA, Harper RM. Cerebellar fastigial nuclei activity during blood pressure challenges. J Appl Physiol (1985) 2006; 101:549-55. [PMID: 16690795 DOI: 10.1152/japplphysiol.00044.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellar fastigial nuclei (FN) assist in regulating compensatory responses to large blood pressure changes and show structural injury and functional impairment to cardiovascular challenges in syndromes with sleep-disordered breathing. The patterned time course of FN responses to elevation or lowering of blood pressure and location of responsive regions within the nuclei are unclear. We evaluated FN neural activity in six anesthetized rats using optical imaging procedures during elevation and lowering of arterial pressure by phenylephrine and nitroprusside, respectively. Hypertension diminished optical correlates of FN neural activity, while measures of activity increased to hypotension, with peak neural responses occurring 5-10 s later than peak blood pressure changes. Blood pressure responses were followed by heart rate changes, and peak respiratory rates developed even later, in close temporal proximity to FN activity patterns. Although overall topographical response trends were similar, regional patterns of altered neural activity appeared to both hypertension and hypotension. The extent of neural change was greater during recovery from hypertension than for hypotension at high-dose levels. Blood pressure levels saturated with increasing phenylephrine doses, while FN activity continued to decline. No saturation appeared in heart or respiratory rate trends. The findings suggest that the FN compensate for large blood pressure changes by sympathoexcitatory and inhibitory processes, which accompany late-developing somatic or respiratory adjustments.
Collapse
Affiliation(s)
- D M Rector
- Dept. of Neurobiology, Univ. of California at Los Angeles, Los Angeles, CA 90095-1763, USA
| | | | | |
Collapse
|
8
|
Abstract
Mapping with local lesions, electrical or chemical stimulation, or recording evoked field potentials or unit spikes revealed localized representations of cardiovascular functions in the cerebellum. In this review, which is based on literatures in the field (including our own publications), I propose that the cerebellum contains five distinct modules (cerebellar corticonuclear microcomplexes) dedicated to cardiovascular control. First, a discrete rostral portion of the fastigial nucleus and the overlying medial portion of the anterior vermis (lobules I, II and III) conjointly form a module that controls the baroreflex. Second, anterior vermis also forms a microcomplex with the parabrachial nucleus. Third, a discrete caudal portion of the fastigial nucleus and the overlying medial portion of the posterior vermis (lobules VII and VIII) form another module controlling the vestibulosympathetic reflex. Fourth, the medial portion of the uvula may form a module with the nucleus tractus solitarius and parabrachial nucleus. Fifth, the lateral edge of the nodulus and the uvula, together with the parabrachial nucleus and vestibular nuclei, forms a cardiovascular microcomplex that controls the magnitude and/or timing of sympathetic nerve responses and stability of the mean arterial blood pressure during changes of head position and body posture. The lateral nodulus-uvula appears to be an integrative cardiovascular control center involving both the baroreflex and the vestibulosympathetic reflex.
Collapse
Affiliation(s)
- Naoko Nisimaru
- Department of Physiology, Faculty of Medicine, University of Oita, Oita 879-5593, Japan.
| |
Collapse
|
9
|
Henderson LA, Macey PM, Richard CA, Runquist ML, Harper RM. Functional magnetic resonance imaging during hypotension in the developing animal. J Appl Physiol (1985) 2004; 97:2248-57. [PMID: 15220298 DOI: 10.1152/japplphysiol.00297.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypotension in adult animals recruits brain sites extending from cerebellar cortex to the midbrain and forebrain, suggesting a range of motor and endocrine reactions to maintain perfusion. We hypothesized that comparable neural actions during development rely more extensively on localized medullary processes. We used functional MRI to assess neural responses during sodium nitroprusside challenges in 14 isoflurane-anesthetized kittens, aged 14-25 days, and seven adult cats. Baseline arterial pressure increased with age in kittens, and basal heart rates were higher. The magnitude of depressor responses increased with age, while baroreceptor reflex sensitivity initially increased over those of adults. In contrast to a decline in adult cats, functional MRI signal intensity increased significantly in dorsal and ventrolateral medullary regions and the midline raphe in the kittens during the hypotensive challenges. In addition, significant signal intensity differences emerged in cerebellar cortex and deep nuclei, dorsolateral pons, midbrain tectum, hippocampus, thalamus, and insular cortex. The altered neural responses in medullary baroreceptor reflex sites may have resulted from disinhibitory or facilitatory influences from cerebellar and more rostral structures as a result of inadequately developed myelination or other neural processes. A comparable immaturity of blood pressure control mechanisms in humans would have significant clinical implications.
Collapse
Affiliation(s)
- Luke A Henderson
- Dept. of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
1. Stimulation of the rostral-ventromedial pole of the cerebellar fastigial nucleus exerts powerful effects on systemic and cerebral circulation. 2. Excitation of fibers passing through the fastigial nucleus evokes sympathoactivation and increases in arterial pressure. 3. Increase in cerebral blood flow evoked by excitation of fibers passing through the FN is mediated by intrinsic brain mechanisms independently of metabolism. 4. Excitation of the fastigial nucleus neurons in contrast decreases arterial pressure and cerebral blood flow. The latter probably is secondary to the suppression of brain metabolism. 5. Excitation of the fastigial nucleus neurons significantly decreases damaging effects of focal and global ischemia on the brain. 6. The fastigial nucleus-evoked neuroprotection can be conditioned: 1-h stimulation protects the brain for up to 3 weeks. 7. Other brain structures such as subthalamic cerebrovasodilator area and dorsal periaqueductal gray matter also produce long-lasting brain salvage when stimulated. 8. More than one mechanism may account for neurogenic neuroprotection. 9. Early neuroprotection, which develops immediately after the stimulation, involves opening of potassium channels. 10. Delayed long-lasting neuroprotection may involve changes in genes expression resulting in suppression of inflammatory reaction and apoptotic cascade. 11. It is conceivable that intrinsic neuroprotective system exists within the brain, which renders the brain more tolerant to adverse stimuli when activated. 12. Knowledge of the mechanisms of neurogenic neuroprotection will allow developing new neuroprotective approaches.
Collapse
Affiliation(s)
- Eugene V Golanov
- Department of Neurosurgery, University of Mississippi Mediacl Center, 2500 North State Street, Jackson, Mississippi 39216, USA.
| | | |
Collapse
|
11
|
Glickstein SB, Ilch CP, Reis DJ, Golanov EV. Stimulation of the subthalamic vasodilator area and fastigial nucleus independently protects the brain against focal ischemia. Brain Res 2001; 912:47-59. [PMID: 11520492 DOI: 10.1016/s0006-8993(01)02602-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether stimulation of the functionally discrete subthalamic region, subthalamic cerebrovasodilator area (SVA), which increases cerebral blood flow (CBF) when excited, would, like stimulation of cerebellar fastigial nucleus (FN), produce central neurogenic neuroprotection. A 1-h electrical stimulation of SVA or FN reduced infarctions triggered by permanent occlusion of middle cerebral artery (MCA) by 48-55% in Sprague-Dawley rats and by 59% in Fisher rats. The salvaging effect of SVA stimulation, similar to FN, was long lasting and reduced the volume of infarctions placed 72 h or 10 days later by 58 and 26%, respectively, in Fisher rats. Bilateral lesioning of FN neurons by the microinjection of ibotenic acid 5 days before SVA stimulation did not affect SVA-evoked neuroprotection. Bilateral lesions of SVA neurons administered 5 days before FN stimulation had no effect on FN-induced neuroprotection but reversed the stimulus-locked increase in CBF accompanying FN stimulation. This study demonstrates that (1) excitation of neurons and/or fibers projecting through the SVA reduces ischemic infarctions as substantially as excitation of FN neurons; (2) the effects are long-lasting and not attributable to increases in cerebral blood flow, changes in blood gases or brain temperature, or rat strain; (3) the neuroprotective effects of SVA and FN stimulation are mutually independent and (4) FN-evoked cerebrovasodilation is mediated by SVA neurons. The SVA and FN are part of a neuronal system in CNS, which is distributed and, when excited, acts to protect the brain from ischemic injury.
Collapse
Affiliation(s)
- S B Glickstein
- Department of Psychiatry, Columbia Presbyterian Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, Box #42, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
Stanzani S, Russo A, Pellitteri R, Storaci G, Cataudella T. Branching projections of catecholaminergic ventrolateral reticular neurons to the fastigial nucleus and superior colliculus in the rat: triple labelling procedure. Neurosci Lett 2001; 307:135-8. [PMID: 11438382 DOI: 10.1016/s0304-3940(01)01899-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we employed triple fluorescent-labelling to reveal the distribution of the catecholaminergic neurons within rostral ventrolateral reticular nucleus which supply branching collateral input to the superior colliculus (SC) and to the cerebellar fastigial nucleus (FN). The catecholaminergic identity of the neurons was revealed by immunocytochemical detection of the biosynthetic enzyme, tyrosine hydroxylase. The projections were defined by injections of two retrograde tracers: rhodamine and fluoro gold in the SC and FN, respectively.
Collapse
Affiliation(s)
- S Stanzani
- Department of Physiological Sciences; University of Catania, Viale A. Doria, 6-95125, Catania, Italy
| | | | | | | | | |
Collapse
|
13
|
Golanov EV, Ruggiero DA, Reis DJ. A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat. J Physiol 2000; 529 Pt 2:413-29. [PMID: 11101651 PMCID: PMC2270200 DOI: 10.1111/j.1469-7793.2000.00413.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We sought to identify the medullary relay area mediating the elevations of regional cerebral blood flow (rCBF) and synchronization of the electroencephalogram (EEG) in the rat cerebral cortex elicited by hypoxic excitation of reticulospinal sympathoexcitatory neurons of the rostral ventrolateral medulla (RVLM ). In anaesthetized spinalized rats electrical stimulation of RVLM elevated rCBF (laser-Doppler flowmetry) by 31 +/- 6 %, reduced cerebrovascular resistance (CVR) by 26 +/- 8 %, and synchronized the EEG, increasing the power of the 5-6 Hz band by 98 +/- 25 %. Stimulation of a contiguous caudal region, the medullary cerebral vasodilator area (MCVA), had comparable effects which, like responses of RVLM, were replicated by microinjection of L-glutamate (5 nmol, 20 nl). Microinjection of NaCN (300 pmol in 20 nl) elevated rCBF (17 +/- 5 %) and synchronized the EEG from RVLM, but not MCVA, while nicotine (1.2 nmol in 40 nl) increased rCBF by 13 +/- 5 % and synchronized the EEG from MCVA. In intact rats nicotine lowered arterial pressure only from MCVA (101 +/- 3 to 52 +/- 9 mmHg). Bilateral electrolytic lesions of MCVA significantly reduced, by over 59 %, elevations in rCBF and, by 78 %, changes in EEG evoked from RVLM. Bilateral electrolytic lesions of RVLM did not affect responses from MCVA. Anterograde tracing with BDA demonstrated that RVLM and MCVA are interconnected. The MCVA is a nicotine-sensitive region of the medulla that relays signals elicited by excitation of oxygen-sensitive reticulospinal neurons in RVLM to reflexively elevate rCBF and slow the EEG as part of the oxygen-conserving (diving) reflex initiated in these neurons by hypoxia or ischaemia.
Collapse
Affiliation(s)
- E V Golanov
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA.
| | | | | |
Collapse
|
14
|
Golanov EV, Christensen JR, Reis DJ. The medullary cerebrovascular vasodilator area mediates cerebrovascular vasodilation and electroencephalogram synchronization elicited from cerebellar fastigial nucleus in Sprague-Dawley rats. Neurosci Lett 2000; 288:183-6. [PMID: 10889338 DOI: 10.1016/s0304-3940(00)01228-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether the medullary cerebrovasodilator area (MCVA), a region of ventral medulla mediating elevations of regional cerebral blood flow (rCBF) and electroencephalogram (EEG) synchronization elicited in cerebral cortex from stimulation of reticulospinal neurons of rostral ventrolateral medulla (RVLM), also mediates comparable responses from the cerebellar fastigial nucleus (FN). In spinalized rats, electrical stimulation of MCVA, RVLM or FN elevated rCBF and synchronized the EEG. The FN-evoked responses were significantly attenuated or blocked by bilateral lesions of MCVA. The MCVA is a novel region of medullary reticular formation mediating actions of medullary and cerebellar centers on rCBF and EEG to link visceral centers of brainstem and cerebral cortex.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 411 East 69th Street, KB 410, NY 10021, USA.
| | | | | |
Collapse
|
15
|
Intrinsic neurons of fastigial nucleus mediate neurogenic neuroprotection against excitotoxic and ischemic neuronal injury in rat. J Neurosci 1999. [PMID: 10234042 DOI: 10.1523/jneurosci.19-10-04142.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrical stimulation of the cerebellar fastigial nucleus (FN) elevates regional cerebral blood flow (rCBF) and arterial pressure (AP) and provides long-lasting protection against focal and global ischemic infarctions. We investigated which neuronal element in FN, perikarya or axons, mediates this central neurogenic neuroprotection and whether it also protects against excitotoxicity. In anesthetized rats, the FN was stimulated for 1 hr, and ibotenic acid (IBO) was microinjected unilaterally into the striatum. In unstimulated controls, the excitotoxic lesions averaged approximately 40 mm3. Stimulation of FN, but not dentate nucleus (DN), significantly reduced lesion volumes up to 80% when IBO was injected 15 min, 72 hr, or 10 d, but not 30 d, thereafter. In other rats, intrinsic neurons of FN or DN were destroyed by pretreatment with IBO. Five days later, the FN was stimulated, and 72 hr later, IBO was microinjected into the striatum. Lesions of FN, but not DN, abolished neuroprotection but not the elevations of rCBF and AP elicited from FN stimulation. Excitotoxic lesions of FN, but not DN, also abolished the 37% reduction in focal ischemic infarctions produced by middle cerebral artery occlusion. Excitation of intrinsic FN neurons provides long-lasting, substantial, and reversible protection of central neurons from excitotoxicity, as well as focal ischemia, whereas axons in the nucleus, probably collaterals of ramified brainstem neurons, mediate the elevations in rCBF, which do not contribute to neuroprotection. Long-lived protection against a range of injuries is an unrecognized function of FN neurons transmitted over pathways distinct from those regulating rCBF.
Collapse
|
16
|
Golanov EV, Reis DJ. Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression. Brain Res 1999; 818:304-15. [PMID: 10082816 DOI: 10.1016/s0006-8993(98)01169-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rat, electrical stimulation of the cerebellar fastigial nucleus (FN) for 1 h reduces the volume of focal ischemic infarctions produced by occluding the middle cerebral artery (MCAO), even 10 days later. The mechanism by which this 'central neurogenic neuroprotection' salvages ischemic brain is not known but does not result from changes in cerebral perfusion. MCAO also triggers periodic periinfarction depolarizing waves (PIDs) in the ischemic penumbra, the territory of salvage. These may contribute to neuronal death and promote infarct expansion. Conceivably, FN stimulation, which can otherwise modify cortical excitability, may alter the development of PIDs. We investigated in anesthetized rats whether FN stimulation modifies PIDs expression and, if so, the threshold for evoking cortical spreading depression (CSD), a process sharing characteristics with PIDs and an index of cortical excitability. Stimulation of FN immediately or 72 h before MCAO decreased infarction volumes by approximately 45% (p<0.01), increased PID latency >10-fold, and decreased the number of PIDs by >50% (p<0.001). In normal rats, stimulation of FN increased the threshold current for eliciting CSD by 175% and slowed its propagation velocity by 35% (p<0.01 for each) immediately, but not 72 h, after FN stimulation. We conclude: FN stimulation elicits long-lasting suppression of PIDs in parallel with neuroprotection. However, PIDs suppression over time is unlikely to result from a major increase in cortical tolerance to depolarization and probably is not the principal mechanism of salvage.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Cornell University Medical College, 411 East 69th Street, New York, NY 10021, USA.
| | | |
Collapse
|
17
|
Levy EI, Clyde B, McLaughlin MR, Jannetta PJ. Microvascular decompression of the left lateral medulla oblongata for severe refractory neurogenic hypertension. Neurosurgery 1998; 43:1-6; discussion 6-9. [PMID: 9657182 DOI: 10.1097/00006123-199807000-00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To demonstrate that microvascular decompression of the left medulla oblongata is a safe and effective modality for treating elevated blood pressure in patients with severe medically refractory "essential" hypertension (HTN). METHODS Twelve patients with medically intractable HTN with or without autonomic dysreflexia underwent microvascular decompression of the left rostral ventrolateral medulla oblongata. Causes such as pheochromocytoma, carcinoid syndrome, and renal disease were ruled out before surgery. Indications for surgery included systolic blood pressures greater than 180 mm Hg refractory to three or more medications, severe blood pressure lability, or medically resistant HTN at systolic pressures greater than 160 mm Hg associated with autonomic dysreflexia and/or magnetic resonance images demonstrating left medullary compression. The median age and follow-up duration were 51 years and 4.1 years, respectively. RESULTS Ten of 12 patients experienced reductions in systolic blood pressure greater than 20 mm Hg. Of these 10 patients, pressure reductions were temporary (6 mo) in two. Seven of eight patients experienced improvement in blood pressure lability and/or autonomic dysreflexia, with five patients showing sustained improvements. CONCLUSION Microvascular decompression of the left rostral ventrolateral medulla oblongata may be an effective treatment modality for patients suffering from severe HTN and/or autonomic dysreflexia refractory to medical management.
Collapse
Affiliation(s)
- E I Levy
- Department of Neurological Surgery, The University of Pittsburgh Medical Center, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
18
|
Chida K, Miyagawa M, Kawamura H, Takasu T. Effects of chemical stimulation of the rostral ventrolateral medulla on cerebral and renal microcirculation in spontaneously hypertensive rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 70:51-5. [PMID: 9686903 DOI: 10.1016/s0165-1838(98)00030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated whether microcirculatory responses elicited by excitation of intrinsic neurons in the rostral ventrolateral medulla (RVLM) are altered in spontaneously hypertensive rats (SHR). SHR and Wistar-Kyoto rats (WKY) were anesthetized with chloralose, paralyzed with tubocurarine, and artificially ventilated. Cerebral and renal blood flows (CBF and RBF) were simultaneously measured using laser-Doppler flowmetry. Chemical stimulation of the RVLM neurons by microinjection of L-glutamate increased arterial pressure (AP) and heart rate in both SHR and WKY. Stimulation of the RVLM neurons also elicited stimulus-locked increase in CBF and decrease in RBF in both groups. The % changes in CBF and RBF were dose-dependent as stimulus intensity was increased and did not differ significantly between the SHR and WKY groups. Cerebral and renal vascular resistance (CVR and RVR) levels were calculated from changes in CBF or RBF and those in mean AP. The percent reduction in CVR and percent elevation in RVR were dose-dependent and did not differ significantly between the two groups. The data indicate that cerebral and systemic microcirculatory responses elicited by excitation of the RVLM neurons do not differ between SHR and WKY.
Collapse
Affiliation(s)
- K Chida
- Department of Neurology, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
19
|
Abstract
We investigated whether electrical stimulation of the cerebellar fastigial nucleus (FN) can protect pyramidal neurons of the CA1 zone of dorsal hippocampus from delayed neuronal death caused by global ischemia. Stimulation of the FN for 1 h prior to transient 4-vessel occlusion in anesthetized rats salvaged 57% (p < 0.01) of pyramidal neurons from degeneration. This effect could be preconditioned. Sham simulation of FN or stimulation of the rostral ventrolateral medulla (RVL) were without effect (p > 0.5). Excitation of intrinsic neuronal pathways represented in FN can protect central neurons from global as well as focal ischemic degeneration. The brain contains systems designed to protect it from ischemia by mechanisms of central neurogenic neuroprotection acting independently of actions on cerebral blood flow.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
20
|
Reis DJ, Golanov EV, Galea E, Feinstein DL. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia. Ann N Y Acad Sci 1997; 835:168-86. [PMID: 9616772 DOI: 10.1111/j.1749-6632.1997.tb48628.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The brain can protect itself from ischemia and/or hypoxia by two distinct mechanisms which probably involve two separate systems of neurons in the CNS. One, which mediates a reflexive neurogenic neuroprotection, emanates from oxygen-sensitive sympathoexcitatory reticulospinal neurons of the RVLM. These cells, excited within seconds by reduction in blood flow or oxygen, initiate the systemic vascular components of the oxygen conserving (diving) reflex. They profoundly increase rCBF without changing rCGU and, hence, rapidly and efficiently provide the brain with oxygen. Upon cessation of the stimulus the systemic and cerebrovascular adjustments return to normal. The system mediating reflex protection projects via as-yet-undefined projections from RVLM to upper brainstem and/or thalamus to engage a small population of neurons in the cortex which appear to be dedicated to transducing a neuronal signal into vasodilation. It also appears to relay the central neurogenic vasodilation elicited from other brain regions, including excitation of axons innervating the FN. This mode of protection would be initiated under conditions of global ischemia and/or hypoxemia because the signal is detected by medullary neurons. The second neuroprotective system is represented in intrinsic neurons of the cerebellar FN and mediates a conditioned central neurogenic neuroprotection. The response can be initiated by excitation of intrinsic neurons of the FN and does not appear dependent upon RVLM. The pathways and transmitters that mediate the effect are unknown. The neuroprotection afforded by this network is long-lasting, persisting for almost two weeks, and is associated with reduced excitability of cortical neurons and reduced immunoreactivity of cerebral microvessels. This mode of neuroprotection, moreover, is not restricted to focal ischemia, as we have demonstrated that it also protects the brain against global ischemia and excitotoxic cell death. That the brain may have neuronal systems dedicated to protecting itself from injury, at first appearing to be a novel concept, is, upon reflection, not surprising since the brain is not injured in naturalistic behaviors characterized by very low levels of rCBF, diving and hibernation. An understanding of the pathways, transmitters, and molecules engaged in such protection may provide new insights into novel therapies for a range of disorders characterized by neuronal death.
Collapse
Affiliation(s)
- D J Reis
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York, USA.
| | | | | | | |
Collapse
|
21
|
Reis DJ, Feinstein D, Galea E, Golanov EV. CENTRAL NEUROGENIC NEUROPROTECTION: PROTECTION OF BRAIN FROM FOCAL ISCHEMIA BY CEREBELLAR STIMULATION. Fundam Clin Pharmacol 1997. [DOI: 10.1111/j.1472-8206.1997.tb00873.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
The cerebellum not only modulates the systemic circulation, but also profoundly influences cerebral blood flow (rCBF) and metabolism (rCGU), and initiates long-term protection of the brain from ischemia. Electrical stimulation of the rostral ventral pole of the fastigial nucleus (FN), elevates arterial pressure (AP), releases vasoactive hormones, elicits consummatory behavioral and other autonomic events and site specifically elevates rCBF independently of changes in rCGU. Cerebral vasodilation results from the antidromic excitation of axons of brain stem neurons which innervate cerebellum and, through their collaterals, neurons in the rostral ventrolateral reticular nucleus (RVL). RVL neurons initiate cerebral vasodilation over polysynaptic vasodilator pathways which engage a population of vasodilator neurons in the cerebral cortex. In contrast, intrinsic neurons of FN, when excited, elicit widespread reductions in rCGU and, secondarily, rCBF, along with sympathetic inhibition. Electrical stimulation of FN can reduce the volume of a focal cerebral infarction produced by occlusion of the middle cerebral artery by 50%. This central neurogenic neuroprotection is long lasting (weeks) and is not due to changes in rCBF or rCGU. Rather, it appears to reflect alterations in neuronal excitability and/or downregulation of inflammatory responses in cerebral vessels. The FN, therefore, appears to be involved in widespread autonomic, metabolic, and behavioral control, independent of motor control. The findings imply that the FN receives inputs from neurons, probably widely represented in the central autonomic core, which may provide continuing information processing of autonomic and behavioral states. The cerebellum may also widely modulate the state of cortical reactivity to ischemia, hypoxia, and possibly other neurodegenerative events.
Collapse
Affiliation(s)
- D J Reis
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
23
|
Ruggiero DA, Anwar M, Golanov EV, Reis DJ. The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat. Brain Res 1997; 760:272-6. [PMID: 9237546 DOI: 10.1016/s0006-8993(97)00397-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pedunculopontine-laterodorsal tegmental nuclear complex was identified as a major source of brainstem afferents terminating in the fastigial cerebellar nucleus and/or ventrolateral reticular nucleus (n.Rvl). Collaterals from the pedunculopontine nucleus (Ch5 area) to rostral [vasopressor] regions of the fastigial nucleus and ventral reticular formation were revealed with a combined retrograde tracing technique. The data implicate acetylcholine as a transmitter and raise the hypothesis that the identified afferents may contribute to the autonomic and behavioral responses to midline cerebellar stimulation.
Collapse
Affiliation(s)
- D A Ruggiero
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
24
|
Golanov EV, Yamamoto S, Reis DJ. Electrical stimulation of cerebellar fastigial nucleus fails to rematch blood flow and metabolism in focal ischemic infarctions. Neurosci Lett 1996; 210:181-4. [PMID: 8805125 DOI: 10.1016/0304-3940(96)12682-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electrical stimulation of the cerebellar fastigial nucleus (FN) in rat (1 h) reduces, by 50%, the infarction produced by occlusion of the middle cerebral artery (MCAO). We investigated whether salvage was associated with elevations in regional cerebral blood flow (rCBF) and/or reductions of regional cerebral glucose utilization (rCGU) in the retrievable zone (RZ). rCGU and rCBF were measured autoradiographically 1 h after MCAO. MCAO reduced rCBF to < 15% in the irretrievable zone (IZ) and approximately 50% in the RZ (P < 0.01 for each) while FN stimulation alone globally elevated rCBF by approximately 60% (P < 0.01). rCGU was not changed. After MCAO, FN stimulation failed to increase the reduced rCBF but elevated rCGU globally (to approximately 30%). Reductions of focal ischemic infarctions by stimulating FN cannot be attributed to changes in rCBF and or rCGU.
Collapse
Affiliation(s)
- E V Golanov
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
25
|
Varga K, Lake K, Martin BR, Kunos G. Novel antagonist implicates the CB1 cannabinoid receptor in the hypotensive action of anandamide. Eur J Pharmacol 1995; 278:279-83. [PMID: 7589169 DOI: 10.1016/0014-2999(95)00181-j] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In anaesthetised rats, the endogenous cannabinoid anandamide has potent cardiovascular effects that include a brief pressor effect and a more prolonged depressor response. The depressor response is attenuated after transection of the cervical spinal cord or blockade of alpha-adrenergic receptors by phentolamine, and is dose-dependently inhibited by a selective antagonist of the CB1 cannabinoid receptor. The pressor component is not affected by any of these interventions. This suggests that the depressor response is due to inhibition of sympathetic tone mediated by CB1 receptors, whereas the pressor component is due to a peripheral action that does not involve the same receptors or the sympathetic nervous system.
Collapse
Affiliation(s)
- K Varga
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | | | | | |
Collapse
|
26
|
Chida K, Miyagawa M, Usui W, Kawamura H, Takasu T, Kanmatsuse K. Effects of chemical stimulation of the rostral and caudal ventrolateral medulla on cerebral and renal microcirculation in rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 51:77-84. [PMID: 7722218 DOI: 10.1016/0165-1838(95)80009-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of neurons in the rostral and caudal ventrolateral medulla (RVL and CVL) on cerebral and renal microcirculation in rats. Rats were anesthetized with chloralose, paralyzed with tubocurarine, and artificially ventilated. Cerebral and renal blood flows (CBF and RBF) were measured simultaneously using laser-Doppler flowmetry. Chemical stimulation of the RVL neurons by microinjection of the excitatory amino acid L-glutamate increased arterial pressure (AP), whereas that of the CVL neurons decreased AP. Stimulation of the RVL neurons also elicited a stimulus-locked increase in CBF and a decrease in RBF. The percent change in CBF and RBF was dose-dependent as stimulus intensity was increased. Cerebral and renal vascular resistance (CVR and RVR) levels were calculated from changes in CBF or RBF and changes in mean AP. The percent reduction in CVR and percent elevation in RVR were also dose-dependent. Chemical stimulation of the CVL neurons elicited a stimulus-locked decrease in CBF and an increase in RBF. The percent reduction in CBF and percent elevation in CVR were dose-dependent. The percent reduction in RVR was also dose-dependent, while the percent elevation in RBF was not significant. Blood withdrawal reduced AP by a similar degree to CVL stimulation, but did not significantly decrease CBF. The results suggest that RVL and CVL neurons integrate cerebral and systemic microcirculation.
Collapse
Affiliation(s)
- K Chida
- Department of Neurology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Yamamoto S, Golanov EV, Reis DJ. Reductions in focal ischemic infarctions elicited from cerebellar fastigial nucleus do not result from elevations in cerebral blood flow. J Cereb Blood Flow Metab 1993; 13:1020-4. [PMID: 8408310 DOI: 10.1038/jcbfm.1993.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To determine whether the neuroprotection elicited from electrical stimulation of the cerebellar fastigial nucleus (FN) is attributable to the elevation in regional cerebral blood flow (rCBF), we compared the effects in spontaneously hypertensive rats of stimulation of the rostral ventrolateral medulla (RVL) or FN on (a) a focal ischemic lesion produced by middle cerebral artery (MCA) occlusion, and (b) the changes in rCBF, measured by laser-Doppler flowmetry for 1.5 h, over regions corresponding to the ischemic core (parietal cortex), penumbra (occipital cortex), and nonischemic area (contralateral parietal cortex). Stimulation of FN for 1 h following MCA occlusion reduced infarction 24 h later by 52%. Stimulation of RVL was ineffective. Changes in the lesion were confined to the penumbra. FN and RVL stimulation comparably and significantly increased rCBF up to 185% in unlesioned animals. Following MCA occlusion, stimulation of FN or RVL and hypercarbia failed to elevate rCBF in the ischemic area but did so in the nonischemic area, even though in the same animals only FN stimulation reduced infarction 24 h later. We conclude that (a) the neuroprotection elicited from FN is not the result of an increase in rCBF but results from another mechanism, possibly reduction of metabolism in penumbra, and (b) the pathways mediating central neurogenic vasodilation and neuroprotection are, in part, distinct.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021
| | | | | |
Collapse
|
28
|
Nicholas AP, Pieribone VA, Hökfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 1993; 56:1023-39. [PMID: 8284033 DOI: 10.1016/0306-4522(93)90148-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Selective, 35S-labeled, oligonucleotide probes were designed from sequences of the rat beta-1 and beta-2 adrenoceptor messenger RNAs for use in situ hybridization experiments on sections of unfixed rat brain and spinal cord. After hybridized sections were exposed to film or dipped in autoradiographic emulsion, specific and selective labeling patterns characteristic for each receptor messenger RNA and region of the central nervous system were observed. For example, labeling for beta-1 messenger RNA was found in the anterior olfactory nucleus, cerebral cortex, lateral intermediate septal nucleus, reticular thalamic nucleus, oculomotor complex, vestibular nuclei, deep cerebellar nuclei, trapezoid nucleus, abducens nucleus, ventrolateral pontine and medullary reticular formations, the intermediate gray matter of the spinal cord and in the pineal gland, while beta-2 messenger RNA labeling was strongest in the olfactory bulb, piriform cortex, hippocampal formation, thalamic intralaminar nuclei and cerebellar cortex. In some of these regions the beta-1 labeling seemed mainly confined to the cell nucleus. Whether or not this apparently nuclear labeling is specific, i.e. indicates synthesis of beta-1 receptor, remains to be established. However, all labeling patterns described disappeared when excess unlabeled probes were added to their respective radiolabeled probes or when sense probes were employed. Since the in situ method labels only cell bodies that produce the messenger RNA for these two beta receptor subtypes, a comparison between these maps and those of past autoradiographic studies mapping the location of central beta receptors using drugs as radioligands may produce further insights regarding the pre- and postsynaptic localization of these receptors in the various parts of the central nervous system circuitry.
Collapse
Affiliation(s)
- A P Nicholas
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Iadecola C, Faris PL, Hartman BK, Xu X. Localization of NADPH diaphorase in neurons of the rostral ventral medulla: possible role of nitric oxide in central autonomic regulation and oxygen chemoreception. Brain Res 1993; 603:173-9. [PMID: 8453473 DOI: 10.1016/0006-8993(93)91318-m] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We studied whether neurons containing nitric oxide synthase (NOS) are localized to the rostral ventrolateral medulla (RVM) and, if so, whether they are distinct from the adrenergic neurons of the C1 group. NOS-containing neurons and/or C1 neurons were visualized using NADPH diaphorase histochemistry and phenylethanolamine N-methyltransferase (PNMT) immunohistochemistry, respectively. A column of NADPH diaphorase-positive neurons, extending 2 mm in the rostrocaudal plane, was observed lateral to the inferior olive and medial to the C1 neurons. Double labelling studies showed that NADPH diaphorase-positive neurons were not immunoreactive for PNMT, indicating that the two enzymes were localized in the different cells. Furthermore, only a small fraction of NADPH diaphorase neurons were retrogradely labelled after injections of fluorogold into the thoracic cord. We conclude that the RVM contains a well-defined group of neurons endowed with NOS that are distinct from the adrenergic neurons of the C1 group and have only limited monosynaptic projections to the spinal cord. Since the RVM is involved in the control of arterial pressure and in oxygen-conserving reflexes, the findings raise the possibility that nitric oxide participates in central autonomic regulation and oxygen chemoreception.
Collapse
Affiliation(s)
- C Iadecola
- Department of Neurology, University of Minnesota Medical School, Minneapolis 55455
| | | | | | | |
Collapse
|
30
|
The role of structures of the ventrolateral medulla in cardiovascular regulation. NEUROPHYSIOLOGY+ 1993. [DOI: 10.1007/bf01052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Underwood MD, Iadecola C, Sved A, Reis DJ. Stimulation of Cl area neurons globally increases regional cerebral blood flow but not metabolism. J Cereb Blood Flow Metab 1992; 12:844-55. [PMID: 1506449 DOI: 10.1038/jcbfm.1992.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined the effects of electrical and chemical stimulation of the Cl area of the rostral ventrolateral medulla (RVL) on regional cerebral blood flow (rCBF) and regional cerebral glucose utilization (rCGU) in anesthetized (chloralose), paralyzed (curare) and ventilated rats. rCBF and rCGU were measured using 14C-iodoantipyrine (IAP) and 14C-deoxyglucose (2-DG), respectively, as indicators, with bilateral regional dissection of 11 brain regions. Electrical stimulation of the RVL elicited increases in arterial pressure (AP), heart rate (HR) and plasma concentration of epinephrine (EPI) and norepinephrine (NE). In addition, stimulation of the RVL, but not the adjacent medial longitudinal fasciculus, with AP maintained, increased rCBF (p less than 0.05, n = 6), but not rCGU, bilaterally and symmetrically (134-169% of control) throughout the brain. Bilateral adrenalectomy abolished the increase in plasma EPI elicited by stimulation of the RVL but did not affect resting rCBF (n = 5) or the elevation in rCBF elicited by RVL stimulation (n = 5). Increases in rCBF elicited by RVL stimulation were also unaffected by acute transection of the superior cervical ganglion (p greater than 0.05). Kainic acid (KA) microinjected into the RVL unilaterally (n = 6) at a dose producing sustained elevation in AP (5 nmol in 100 nl), elicited changes in rCBF similar to those elicited by electrical stimulation. We conclude that neurons within the RVL, possibly those of the adrenergic Cl group, can initiate a global cerebrovasodilation, but not an increase in rCGU, largely through neural pathways intrinsic to the brain. The responses may represent activation of networks in RVL mediating circulatory adjustments to hypoxia.
Collapse
Affiliation(s)
- M D Underwood
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York
| | | | | | | |
Collapse
|
32
|
Maiese K, Pek L, Berger SB, Reis DJ. Reduction in focal cerebral ischemia by agents acting at imidazole receptors. J Cereb Blood Flow Metab 1992; 12:53-63. [PMID: 1345758 DOI: 10.1038/jcbfm.1992.7] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment with the alpha 2-adrenergic antagonist idazoxan (IDA) can provide protection from global cerebral ischemia. However, IDA also recognizes another class of receptors, termed imidazole (IM) receptors, which differ from alpha 2-adrenergic receptors and are responsible for the hypotensive actions of some centrally acting agents such as the oxazole rilmenidine (RIL). We therefore sought to determine whether RIL, an agent highly selective for IM receptors, offered protection from focal cerebral ischemia elicited in rat by ligation of the middle cerebral artery (MCA). We compared the effects of RIL with the effects of IDA and the selective non-IM alpha 2-antagonist SKF 86466 (SKF). In addition, we examined whether the neuroprotective effects of RIL and IDA could be attributed to changes in local CBF (LCBF). The MCA was occluded and animals either received immediate administration of drug while arterial pressure was maintained for 1 h or had local CBF increased to 200% of control for 1 h by hypercapnia or hypertension. RIL elicited a significant dose-dependent preservation of tissue to 33% of control at optimal dose (0.75 mg/kg). IDA (3 mg/kg) significantly reduced the size of ischemic infarction by 22%. In contrast, SKF (15 mg/kg) as well as doubling of LCBF did not preserve ischemic tissue. We conclude that both RIL and IDA can reduce focal ischemic infarction but that the mechanism does not appear secondary to antagonism of alpha 2-adrenergic receptors or elevation of LCBF. Occupation of IM receptors, either in the ischemic zone or at remote brain sites, may be responsible for neuroprotection of RIL and IDA.
Collapse
Affiliation(s)
- K Maiese
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | | | | | |
Collapse
|
33
|
Maeda M, Krieger AJ, Sapru HN. Chemical stimulation of the ventrolateral medullary depressor area decreases ipsilateral cerebral blood flow in anesthetized rats. Brain Res 1991; 543:61-8. [PMID: 1675925 DOI: 10.1016/0006-8993(91)91048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In anesthetized (chloralose and urethane), paralyzed and artificially ventilated rats, the neurons in the ventrolateral medullary depressor area (VLDA) were chemically stimulated by microinjections of L-glutamate (2.5-5 nmole in 100 nl of 0.9% sodium chloride solution) and the cerebral blood flow (CBF) was determined using a combination of labeled microspheres (57Co, 113Sn and 46Sc). Unilateral chemical stimulation of the VLDA (n = 11) produced a significant (P less than 0.05) decrease in CBF of the cerebral cortex ipsilateral to the stimulated VLDA; the CBF was 41 +/- 5 (mean +/- S.E.M.) and 29 +/- 4 ml.min-1.(100 g)-1 before and during the chemical stimulation of VLDA. The decrease in CBF was not due to the decrease in arterial blood pressure (ABP) caused by the chemical stimulation of the VLDA because the CBF during the chemical stimulation of the VLDA was significantly smaller (P less than 0.01) than the CBF during controlled hemorrhagic hypotension (n = 10). In another group of rats (n = 6), moderate hypertension was induced by blood transfusion. Unilateral chemical stimulation of the VLDA in these rats decreased ABP but it remained within normotensive range. A significant (P less than 0.05) decrease in CBF (from 46 +/- 12 to 29 +/- 7 ml.min-1.(100 g)-1) and a significant (P less than 0.01) increase in cerebrovascular resistance (from 2.7 +/- 0.4 to 4.3 +/- 0.6 mmHg per [ml.min-1.(100 g)-1]) was observed in the ipsilateral cerebral cortex of these rats. Chemical stimulation of the VLDA did not affect the reactivity of the cerebral vessels to hypercapnea (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Maeda
- Section of Neurological Surgery, UMDNJ-New Jersey Medical School, Newark 07103
| | | | | |
Collapse
|