1
|
Tang X, Huang P, Li Y, Lan J, Yang Z, Xu M, Yi W, Lu L, Wang L, Xu N. Age-Related Changes in the Plasticity of Neural Networks Assessed by Transcranial Magnetic Stimulation With Electromyography: A Systematic Review and Meta-Analysis. Front Cell Neurosci 2019; 13:469. [PMID: 31708744 PMCID: PMC6822534 DOI: 10.3389/fncel.2019.00469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
Objective: The excitability of cerebral cortical cells, neural pathway, and neural networks, as well as their plasticity, are key to our exploration of age-related changes in brain structure and function. The combination of transcranial magnetic stimulation (TMS) with electromyography (EMG) can be applied to the primary motor cortex; it activates the underlying neural group and passes through the corticospinal pathway, which can be quantified using EMG. This meta-analysis aimed to analyze changes in cortical excitability and plasticity in healthy elderly individuals vs. young individuals through TMS-EMG. Methods: The Cochrane Library, Medline, and EMBASE databases were searched to identify eligible trials published from database inception to June 3, 2019. The Cochrane Risk of Bias Tool and improved Jadad scale were used to assess the methodological quality. A meta-analysis of the comparative effects was conducted using the Review Manager 5.3 software and Stata 14.0 software. Results: The pooled results revealed that the resting motor threshold values in the elderly group were markedly higher than those reported in the young group (mean difference [MD]: −2.35; 95% confidence interval [CI]: −3.69 to −1.02]; p < (0.00001). The motor evoked potential amplitude significantly reduced in the elderly group vs. the young group (MD: 0.18; 95% CI: 0.09–0.27; p < 0.0001). Moreover, there was significantly longer motor evoked potential latency in the elderly group (MD: −1.07; 95% CI: −1.77 to −0.37]; p =(0.003). There was no significant difference observed in the active motor threshold between the elderly and young groups (MD: −1.52; 95% CI: −3.47 to −0.42]; p =(0.13). Meanwhile, only two studies reported the absence of adverse events. Conclusion: We found that the excitability of the cerebral cortex declined in elderly individuals vs. young individuals. The findings of the present analysis should be considered with caution owing to the methodological limitations in the included trials. Additional high-quality studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Xiaorong Tang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peidong Huang
- Acupuncture and Massage Rehabilitation Institute, Yunnan University of Chinese Medicine, Kunming, China
| | - Yitong Li
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanchao Lan
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhonghua Yang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mindong Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- Clinical Research Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Wang
- Clinical Research Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Payán-Gómez C, Rodríguez D, Amador-Muñoz D, Ramírez-Clavijo S. Integrative Analysis of Global Gene Expression Identifies Opposite Patterns of Reactive Astrogliosis in Aged Human Prefrontal Cortex. Brain Sci 2018; 8:brainsci8120227. [PMID: 30572619 PMCID: PMC6317157 DOI: 10.3390/brainsci8120227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the brain regions with more prominent changes in human aging. The molecular processes related to the cognitive decline and mood changes during aging are not completely understood. To improve our knowledge, we integrated transcriptomic data of four studies of human PFC from elderly people (58–80 years old) compared with younger people (20–40 years old) using a meta-analytic approximation combined with molecular signature analysis. We identified 1817 differentially expressed genes, 561 up-regulated and 1256 down-regulated. Pathway analysis revealed down-regulation of synaptic genes with conservation of gene expression of other neuronal regions. Additionally, we identified up-regulation of markers of astrogliosis with transcriptomic signature compatible with A1 neurotoxic astrocytes and A2 neuroprotective astrocytes. Response to interferon is related to A1 astrocytes and the A2 phenotype is mediated in aging by activation of sonic hedgehog (SHH) pathway and up-regulation of metallothioneins I and genes of the family ERM (ezrin, radixin, and moesin). The main conclusions of our study are the confirmation of a global dysfunction of the synapses in the aged PFC and the evidence of opposite phenotypes of astrogliosis in the aging brain, which we report for the first time in the present article.
Collapse
Affiliation(s)
- César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Diego Rodríguez
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Sandra Ramírez-Clavijo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| |
Collapse
|
3
|
Morterá P, Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat 2012; 6:45. [PMID: 23112765 PMCID: PMC3481355 DOI: 10.3389/fnana.2012.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023] Open
Abstract
Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuronal cells in different brain areas, we find that a major increase in number of neurons occurs during adolescence, between 1 and 2-3 months of age, followed by a significant trend of widespread and progressive neuronal loss that begins as early as 3 months of age, when neuronal numbers are maximal in all structures, until decreases in numbers of neurons become evident at 12 or 22 months of age. Our findings indicate that age-related decline in the brain begins as soon as the end of adolescence, a novel finding has important clinical and social implications for public health and welfare.
Collapse
Affiliation(s)
- Priscilla Morterá
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional São Paulo, Brazil
| | | |
Collapse
|
4
|
De Bartolo P, Gelfo F, Burello L, De Giorgio A, Petrosini L, Granato A. Plastic changes in striatal fast-spiking interneurons following hemicerebellectomy and environmental enrichment. THE CEREBELLUM 2012; 10:624-32. [PMID: 21509479 DOI: 10.1007/s12311-011-0275-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent findings suggest marked interconnections between the cerebellum and striatum, thus challenging the classical view of their segregated operation in motor control. Therefore, this study was aimed at further investigating this issue by analyzing the effects of hemicerebellectomy (HCb) on density and dendritic length of striatal fast-spiking interneurons (FSi). First, we analyzed the plastic rearrangements of striatal FSi morphology in hemicerebellectomized animals reared in standard conditions. Then, since environmental enrichment (EE) induces structural changes in experimental models of brain disease, we evaluated FSi morphology in lesioned animals exposed to an enriched environment after HCb. Although HCb did not affect FSi density, it progressively shrank dendritic branching of striatal FSi of both sides. These plastic changes, already evident 15 days after the cerebellar ablation, became very marked 30 days after the lesion. Such a relevant effect was completely abolished by postoperative enrichment. EE not only counteracted shrinkage of FSi dendritic arborization but also provoked a progressive increase in dendritic length which surpassed that of the controls as the enrichment period lengthened. These data confirm that the cerebellum and striatum are more interconnected than previously retained. Furthermore, cerebellar damage likely evokes a striatal response through cortical mediation. The EE probably modifies HCb-induced plastic changes in the striatum by increasing the efficiency of the cortical circuitry. This is the first study describing the morphological rearrangement of striatal FSi following a cerebellar lesion; it provides the basis for further studies aimed at investigating the mechanisms underlying cerebello-striatal "talking."
Collapse
Affiliation(s)
- Paola De Bartolo
- IRCCS S. Lucia Foundation, via del Fosso di Fiorano 64, 00164, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Fathi D, Ueki Y, Mima T, Koganemaru S, Nagamine T, Tawfik A, Fukuyama H. Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. Clin Neurophysiol 2010; 121:90-3. [DOI: 10.1016/j.clinph.2009.07.048] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 11/30/2022]
|
6
|
Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L. On whether the environmental enrichment may provide cognitive and brain reserves. ACTA ACUST UNITED AC 2009; 61:221-39. [DOI: 10.1016/j.brainresrev.2009.07.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
|
7
|
Enright LE, Zhang S, Murphy TH. Fine mapping of the spatial relationship between acute ischemia and dendritic structure indicates selective vulnerability of layer V neuron dendritic tufts within single neurons in vivo. J Cereb Blood Flow Metab 2007; 27:1185-200. [PMID: 17164811 DOI: 10.1038/sj.jcbfm.9600428] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have evaluated the spatial relationship between clotted vasculature and the structural integrity of layer V cortical neurons in YFP (yellow fluorescent protein)-H transgenic mice 2 to 10 h after photothrombotic stroke. Fortuitously, ischemic zones could be finely mapped about dysmorphic YFP labeled axons and dendrites using histology since Texas-red dextran used to assess blood flow in vivo was trapped within fixed clotted vessels. Ischemic damage to layer V neurons located at the border of ischemia was contained within apical tuft spiny dendritic structures and did not propagate to spines on the more proximal region of the apical dendrite. The lateral spread of dendritic damage decayed sharply with distance from the edge of ischemia (50% reduction in beaded dendrites within approximately 100 microm) and increased with time up to 6 h after stroke but not thereafter. Axonal damage also increased with time but extended further laterally than dendritic damage, up to 500 microm from the stroke core. Apoptotic and necrotic cell death cascades were activated 6 h after stroke; however, only within 300 microm of the ischemic core. These data suggest that the axonal and dendritic circuitry of neurons located 300 microm outside of an ischemic zone can be relatively free of damage or commitment to cell death suggesting that they may be in an ideal position to contribute to functional recovery. Given that ischemic damage may have a larger effect on circuitry involving superficial dendrites and projecting axons, it is conceivable that surviving peri-infarct neurons may have unique structural and functional properties.
Collapse
Affiliation(s)
- Lauren E Enright
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
8
|
Abstract
Dendrites are a major determinant of how neurons integrate and process incoming information, and thus, they play a vital role in the functional properties of neural circuits. During the past 30 years, it has become clear that the functional organization of the adult neocortex (and other parts of the brain) is dynamic and can change in response to experimental manipulations that affect cortical activity patterns. A variety of changes in the cortical microcircuit, including changes in synaptic function, neuronal membrane properties, and axonal trajectories, are associated with these functional changes. In this review, the authors discuss changes in the structure of dendrites in the adult neocortex, the sorts of experimental manipulations that induce these changes, and some possible molecular mechanisms that may underlie the changes.
Collapse
Affiliation(s)
- Peter W Hickmott
- Department of Psychology, Interdepartmental Neuroscience Program, University of California at Riverside, 92521, USA.
| | | |
Collapse
|
9
|
Garrett JE, Kim I, Wilson RE, Wellman CL. Effect of N-methyl-d-aspartate receptor blockade on plasticity of frontal cortex after cholinergic deafferentation in rat. Neuroscience 2006; 140:57-66. [PMID: 16529871 DOI: 10.1016/j.neuroscience.2006.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 01/16/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Cholinergic projections from the nucleus basalis play a critical role in cortical plasticity. For instance, cholinergic deafferentation increases dendritic spine density and expression of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in frontal cortex. Acetylcholine modulates glutamatergic activity in cortex, and the N-methyl-d-aspartate subtype of glutamate receptor plays a role in many forms of synaptic plasticity. To assess whether N-methyl-d-aspartate receptors mediate the increase in GluR1 and spine density resulting from cholinergic deafferentation, we examined the effect of N-methyl-d-aspartate receptor blockade on nucleus basalis lesion-induced upregulation of GluR1 and dendritic spines. Rats received unilateral sham or 192 IgG saporin lesions of the nucleus basalis. Half of the rats in each group were treated with the N-methyl-d-aspartate antagonist MK-801 or phosphate-buffered saline. Two weeks later, brains were processed for either immunohistochemical staining of the GluR1 subunit or Golgi histology. In layer II-III of frontal cortex, neuronal GluR1 expression was assessed using an unbiased stereological technique, and spine density was assessed on basilar branches of pyramidal neurons. GluR1 expression was increased after nucleus basalis lesion, but this increase was prevented with MK-801. Similarly, nucleus basalis-lesioned animals had significantly higher spine densities, and this effect was also prevented by treatment with MK-801. Thus, N-methyl-d-aspartate receptor blockade prevented both GluR1 and spine density upregulation following cholinergic deafferentation, suggesting that these effects are N-methyl-d-aspartate receptor-mediated.
Collapse
Affiliation(s)
- J E Garrett
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
10
|
Cardoso A, Paula-Barbosa MM, Lukoyanov NV. Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: relation to cholinergic depletion and recovery after nerve growth factor treatment. Neuroscience 2005; 137:937-48. [PMID: 16325343 DOI: 10.1016/j.neuroscience.2005.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/05/2005] [Accepted: 10/18/2005] [Indexed: 01/25/2023]
Abstract
Synthesis of neuropeptide Y in the neocortex and activity of the basalocortical cholinergic system are both reduced in the aging brain. We hypothesized that, by stimulating the activity of the basal forebrain cholinergic neurons, nerve growth factor might also be capable of restoring the synthesis of neuropeptide Y in cortical neurons. Old male and female rats were intraventricularly infused with nerve growth factor for 14 days and their brains were analyzed in order to quantify the densities of neuropeptide Y-immunoreactive neurons and of fiber varicosities stained for vesicular acetylcholine transporter protein in layers II/III, V and VI of the primary somatosensory barrel-field cortex. The areal densities of neuropeptide Y neurons and of vesicular acetylcholine transporter protein varicosities in all cortical laminae were found to be dramatically decreased in old rats when compared with young rats. However, infusions of nerve growth factor, known to exert a powerful trophic effect upon cortically projecting cholinergic neurons, have led to considerable recovery of vesicular acetylcholine transporter protein-positive terminal fields, which was paralleled by complete restoration of function in neuropeptide Y-producing neurons. With respect to the gender differences, although the density of cortical neuropeptide Y neurons was found to be significantly higher in young females than in young males and the opposite was true for vesicular acetylcholine transporter protein-positive varicosities, the general pattern of age- and treatment-related changes in these neurochemical markers was similar in both sexes. Overall, the age- and treatment-related variations in the density of cortical neuropeptide Y cells were found to correlate with those observed in the density of vesicular acetylcholine transporter protein varicosities. These results lend support to the idea that there is a causal relationship between age-related changes in cortical cholinergic and neuropeptide Y-ergic neurotransmitter systems.
Collapse
Affiliation(s)
- A Cardoso
- Department of Anatomy, Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
11
|
Popović M, Caballero-Bleda M, Popović N, Puelles L, van Groen T, Witter MP. Verapamil prevents, in a dose-dependent way, the loss of ChAT-immunoreactive neurons in the cerebral cortex following lesions of the rat nucleus basalis magnocellularis. Exp Brain Res 2005; 170:368-75. [PMID: 16328269 DOI: 10.1007/s00221-005-0219-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/01/2005] [Indexed: 12/23/2022]
Abstract
In the present study we analysed the neuroprotective effect of the L-type voltage-dependent calcium channel antagonist verapamil on cholineacetyltransferase (ChAT)-immunoreactive neurons in the cerebral cortex of rats with bilateral electrolytic lesions of the nucleus basalis magnocellularis (NBM). Treatment with verapamil (1.0, 2.5, 5.0 and 10.0 mg/kg/12 h i.p.) started 24 h after NBM lesions and lasted 8 days. Animals were sacrificed on day 21 after NBM-lesions. The bilateral NBM-lesions produced significant loss of ChAT-immunoreactive neurons in frontal, parietal and temporal cortex. Although the number of ChAT-positive neurons was significantly higher in NBM-lesioned animals treated with verapamil at a dose of 2.5, 5.0 and 10.0 mg/kg than in saline treated ones, the most significant effect was obtained at a dose of 5 mg/kg. This is, to our knowledge, the first report showing an inverted U-shape mode of neuroprotective action of the calcium antagonist verapamil, at morphological level in this particular model of brain damage. The demonstrated beneficial effect of verapamil treatment suggests that the regulation of calcium homeostasis during the early period after NBM lesions might be a possible treatment to prevent neurodegenerative processes in the rat cerebral cortex.
Collapse
Affiliation(s)
- Miroljub Popović
- Departamento de Anatomía Humana y Psicobiología, Facultad de Medicina, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Kim I, Wilson RE, Wellman CL. Aging and cholinergic deafferentation alter GluR1 expression in rat frontal cortex. Neurobiol Aging 2005; 26:1073-81. [PMID: 15748787 DOI: 10.1016/j.neurobiolaging.2004.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 08/13/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. Cholinergic afferents from the NBM modulate glutamatergic transmission in neocortex, and glutamate is known to be involved in dendritic plasticity. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed the effect of cholinergic deafferentation on expression of the AMPA receptor subunit GluR1 in frontal cortex of young adult and aging rats. Young adult, middle-aged, and aged rats received sham or 192 IgG-saporin lesions of the NBM, and an unbiased stereological technique was used to estimate the total number of intensely GluR1-immunopositive neurons in layer II-III of frontal cortex. While the number of GluR1-positive neurons was increased in both middle-aged and aged rats, lesions markedly increased the number of intensely GluR1-immunopositive neurons in frontal cortex of young adult rats only. This age-related difference in lesion-induced expression of AMPA receptor subunit protein could underlie the age-related differences in dendritic plasticity after NBM lesions.
Collapse
Affiliation(s)
- Irene Kim
- Department of Psychology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
13
|
Morphological correlates of injury-induced reorganization in primate somatosensory cortex. BMC Neurosci 2004; 5:43. [PMID: 15533258 PMCID: PMC529444 DOI: 10.1186/1471-2202-5-43] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 11/08/2004] [Indexed: 11/23/2022] Open
Abstract
Background Topographic reorganization of central maps following peripheral nerve injury has been well characterized. Despite extensive documentation of these physiological changes, the underlying anatomical correlates have yet to be fully explored. In this study, we used Golgi impregnation and light microscopy to assess dendritic morphology following denervation of the glabrous hand surface in adult primates. Results After survival durations that permit complete physiologically-defined reorganization, we find a systematic change in the dendritic arborization pattern of both layer II/III pyramidal and layer IV spiny stellate cells in the contralateral hand region of area 3b, compared to unaffected cortical areas. In general, our analyses indicate a progressive expansion of distal regions of the dendritic arbor with no appreciable changes proximally. This pattern of distal dendritic elaboration occurs for both basilar and apical dendrites. Conclusions These observations are consistent with the notion that latent inputs gain expression in reorganized cortex after nerve injury via their influence through contacts with more distally located termination sites.
Collapse
|
14
|
Works SJ, Wilson RE, Wellman CL. Age-dependent effect of cholinergic lesion on dendritic morphology in rat frontal cortex. Neurobiol Aging 2004; 25:963-74. [PMID: 15212850 DOI: 10.1016/j.neurobiolaging.2003.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 07/01/2003] [Accepted: 08/26/2003] [Indexed: 11/23/2022]
Abstract
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: 3 months after surgery, excitotoxic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats relative to young adults. To determine whether the differential effect of the lesion was due specifically to loss of cholinergic input from the NBM, we assessed dendritic morphology in frontal cortex after specific cholinergic depletion in young adult, middle-aged, and aged male rats. Rats received unilateral sham or 192-IgG-saporin lesions of the NBM. Two weeks after surgery, brains were stained using a Golgi-Cox procedure. Dendritic morphology was quantified in pyramidal neurons in layers II-III of frontal cortex. Although lesions altered apical dendrites at all ages, these effects were most pronounced in aged rats. In addition, lesions produced marked atrophy of basilar dendrites in middle-aged and aged rats only. Thus, the differential dendritic atrophy resulting from NBM lesions in aged rats occurs within 2 weeks after lesion, and results specifically from loss of cholinergic innervation.
Collapse
Affiliation(s)
- Sarah J Works
- Department of Psychology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
15
|
Fargo KN, Sengelaub DR. Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion. J Comp Neurol 2004; 469:96-106. [PMID: 14689475 DOI: 10.1002/cne.10991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dendritic morphology is reactive to many kinds of injuries, including axotomy and deafferentation. In this study, we examined the response of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), an androgen-dependent population of motoneurons in the lumbar spinal cord of the rat, to partial motoneuron depletion. We depleted SNB motoneurons on one side only of the spinal cord by unilateral intramuscular injection of a retrogradely transported form of saporin, and examined the morphology of contralateral SNB motoneurons. Motoneuron morphology was assessed in normal control males, gonadally intact saporin-treated males, and saporin-treated males who had been castrated 6 weeks previously and given testosterone replacement beginning at the time of saporin injection. Untreated castrated males served as an additional control group. Four weeks after saporin treatment, SNB motoneurons contralateral to the saporin injection were retrogradely labeled with horseradish peroxidase conjugated to the cholera toxin B subunit and reconstructed in three dimensions. In gonadally intact males, unilateral motoneuron depletion caused regressive changes in contralateral SNB motoneurons: Soma size and dendritic length were both decreased. However, testosterone manipulation (i.e., castration followed by testosterone replacement) completely prevented the dendritic retraction. These data suggest a therapeutic role for testosterone in preventing, or accelerating recovery from, dendritic atrophy induced by motoneuron injury.
Collapse
Affiliation(s)
- Keith Nolan Fargo
- Department of Psychology and Program in Neural Science, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
16
|
Nieto-Escámez FA, Sánchez-Santed F, de Bruin JPC. Pretraining or previous non-spatial experience improves spatial learning in the Morris water maze of nucleus basalis lesioned rats. Behav Brain Res 2004; 148:55-71. [PMID: 14684248 DOI: 10.1016/s0166-4328(03)00182-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous experiments have shown that infusions of ibotenic acid in the nucleus basalis magnocellularis (NBM) induce a strong impairment in spatial navigation for a hidden platform in the Morris water maze. This effect was initially attributed to a cholinergic deficit, but later studies showed that performance level did not correlate with the degree of cholinergic denervation. Therefore, this impairment is due to a combined cholinergic and non-cholinergic deficit. However, it is not clear in which particular processes the NBM is involved. In this study we have evaluated the origin of behavioural impairment in spatial navigation in the water maze after an ibotenic acid-induced lesion of NBM. In the first experiment, Wistar rats were trained preoperatively in an allocentric navigation task. Postoperatively, they were tested in the same task. All lesioned animals showed a performance level similar to controls. Lesions did not impede the acquisition of new positions in the water maze, nor did affect the ability of animals to remember new platform positions after an intertrial interval of 20s, even if animals had received only allocentric experience with the platform position, or allocentric and path integration information concurrently. Lesions also failed to affect the ability to locate a hidden platform in a new environment. However, hippocampal infusions of scopolamine (5 microg) produced a severe impairment in NBM-damaged animals, without impairing performance of controls. In the second experiment Wistar rats with the same lesion were first trained in a visual-guided task in the water maze, and subsequently evaluated in the spatial task. In both tasks lesioned animals were not different from controls. These results suggest that the NBM played an important role during acquisition phases but not in the execution of spatial navigation. Moreover, the excessive emotional response displayed by lesioned animals is postulated as a relevant cause for the impairment observed in spatial navigation after NBM damage.
Collapse
Affiliation(s)
- Francisco A Nieto-Escámez
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Ctra Sacramento s/n 04120, Almería, Spain
| | | | | |
Collapse
|
17
|
Chen HL, Lein PJ, Wang JY, Gash D, Hoffer BJ, Chiang YH. Expression of bone morphogenetic proteins in the brain during normal aging and in 6-hydroxydopamine-lesioned animals. Brain Res 2004; 994:81-90. [PMID: 14642451 DOI: 10.1016/j.brainres.2003.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone morphogenetic proteins (BMPs), BMP receptors (BMPRs), and endogenous BMP antagonists have been found to be critically important for the development of the central nervous system (CNS) and peripheral organs in mammals. There is also increasing evidence that this system has significant activity in the adult CNS. Accordingly, we studied the regional distribution of endogenous BMP ligand proteins, receptors, and antagonists during aging and after lesion of the midbrain dopamine pathways produced by 6-hydroxydopamine (6-OHDA). We found that there were only small changes in the levels of these molecules as a function of age. Interestingly, levels of BMP 7 and noggin, a BMP antagonist, were uniquely elevated in substantia nigra. Moreover, after lesions of the midbrain dopamine system by 6-hydroxydopamine, there was a marked reduction in levels of all BMP ligands, receptors and antagonists bilaterally in both substantia nigra and hippocampus. There were also differential changes in BMP ligands, receptors, and antagonists in the cortex and striatum after such lesions. Taken together, our results indicate significant expression of BMP-related molecules in the adult and aging brain, and suggest a dynamic and differential regulation of these molecules after perturbations.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, National Defense University, Rm 270, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Harmon KM, Wellman CL. Differential effects of cholinergic lesions on dendritic spines in frontal cortex of young adult and aging rats. Brain Res 2003; 992:60-8. [PMID: 14604773 DOI: 10.1016/j.brainres.2003.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: cholinergic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of middle-aged and aged rats relative to young adults. To more closely examine the interactive effects of age and cholinergic deafferentation on synaptic connectivity in frontal cortex, we assessed the effects of specific cholinergic lesions on spine density of frontal cortical neurons in young adult, middle-aged, and aged rats. Rats received unilateral sham or 192 IgG-saporin lesions of the NBM. Two weeks after surgery, brains were stained using a Golgi-Cox procedure, and spine density was quantified in second-, third-, and fourth-order basilar dendrites of pyramidal neurons in layer II-III of frontal cortex. Spine density was reduced at all branch orders in aged, sham-lesioned rats. In addition, whereas lesions produced a marked increase in spine density on second- and third-order branches in young adult rats, lesions failed to significantly alter spine density in middle-aged and aged rats. Thus, the upregulation of dendritic spines may be a compensatory response to deafferentation, which is lost with advancing age.
Collapse
Affiliation(s)
- Kelley M Harmon
- Department of Psychology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
19
|
Nutan KS, Meti BL. Deficits in operant behavior and alteration of CA1, CA3 hippocampal dendritic arborization due to subicular lesions. J Neurosci Res 2000; 59:806-12. [PMID: 10700018 DOI: 10.1002/(sici)1097-4547(20000315)59:6<806::aid-jnr13>3.0.co;2-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The deficits in operant behavior and the alterations in dendritic arborizations of Cornu Ammonis 1 and Cornu Ammonis 3 (CA1 and CA3) hippocampal areas were investigated in subicular lesioned rats. The subjects were female Wistar rats aged 120 days, and were divided into four groups: one serving as age-matched untrained control, a second group received training and sham lesioning, a third group were only trained, and the fourth group were first trained and then subjected to subicular lesions. The rats were food-deprived 24 hours prior to operant behavior training sessions. Two training sessions for operant behavior with continuous reinforcement of 10 minutes duration per day were done during the shaping session, following which rats were allowed 10 minutes of operant food reward for 10 days. On the eleventh day, only the operant behavior and sham-operated rats were used for subicular lesion and sham surgery, respectively. After 72 hours of surgical recovery, operant behavioral testing was performed daily as before for a further period of 10 days. Later, all groups of rats were killed and the hippocampus was processed for rapid Golgi staining. Our results suggest that subicular lesions produce a significant reduction in operant learning. Further, the Golgi studies revealed a reduction in dendritic branching points and intersections of apical and basal CA1, CA3 neurons in lesioned rats.
Collapse
Affiliation(s)
- K S Nutan
- Department of Neurophysiology, Nimhans, Bangalore, India.
| | | |
Collapse
|
20
|
Wellman CL, Pelleymounter MA. Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiol Aging 1999; 20:381-93. [PMID: 10604431 DOI: 10.1016/s0197-4580(99)00025-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To characterize age-related changes in frontal cortical plasticity, we assessed maze learning and frontal cortical pharmacology in young adult, middle-aged, and aged rats. Rats received either ibotenic acid or sham lesions of the nucleus basalis magnocellularis (NBM) and were then trained on a radial maze task. After training, we assessed [3H]desmethylimipramine (DMI), [3H]muscimol, [3H]AMPA, and [3H]QNB binding using quantitative autoradiography. Both middle-aged and aged rats were impaired on the radial maze task. DMI binding was increased in both middle-aged and aged rats, while QNB binding was decreased in aged rats. While lesions impaired maze performance at all ages, middle-aged and aged rats showed more profound lesion-induced deficits. Lesions increased GABA, and AMPA receptor binding in young adult rats only. These lesion-induced changes may reflect a compensatory response that is lost with advancing age.
Collapse
Affiliation(s)
- C L Wellman
- Department of Psychology, Indiana University, Bloomington 47405, USA.
| | | |
Collapse
|
21
|
Bigl V, Schliebs R. Simulation of cortical cholinergic deficits--a novel experimental approach to study pathogenetic aspects of Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:237-47. [PMID: 9850932 DOI: 10.1007/978-3-7091-7508-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cholinergic lesion paradigms have been used to study the role of the cholinergic system in cognitive function, and its implication in cognitive deficits that occur in Alzheimer's disease. In the last few years an increasing number of studies have applied neurotoxins including excitotoxins or cholinotoxins to produce reductions in cortical cholinergic activity. One of the most serious limitations of these lesion paradigms is the fact that the cytotoxins used are far from being selective to cholinergic cells. Recently, a monoclonal antibody to the low-affinity nerve growth factor (NGF) receptor, 192IgG, coupled to a cytotoxin, saporin, has been described as an efficient and selective immunotoxin for the NGF-receptor bearing cholinergic neurons in rat basal forebrain. Here we demonstrate the usefulness of 192IgG-saporin as a powerful tool for producing an animal model with selective and specific basal forebrain cholinergic lesions in rats which can be applied to simulate some neurochemical sequelae of Alzheimer's disease including cholinergic mechanisms in processing of the amyloid precursor protein, and could be of particular value to elaborate and to test therapeutical strategies compensating for the reduced cortical cholinergic input.
Collapse
Affiliation(s)
- V Bigl
- Paul Flechsig Institute for Brain Research, University of Leipzig, Federal Republic of Germany
| | | |
Collapse
|
22
|
Distinctive morphological features of a subset of cortical neurons grown in the presence of basal forebrain neurons in vitro. J Neurosci 1998. [PMID: 9592099 DOI: 10.1523/jneurosci.18-11-04201.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) provide the major subcortical source of cholinergic input to cerebral cortex and play an important role in regulating cortical activity. The present study examined the ability of BFCNs to influence neocortical neuronal growth by examining effects of the presence of BFCNs on certain cortical neurons grown under the controlled conditions of dissociated cell culture. Initial experiments demonstrated distinctive morphological features of a population of neurons (labeled with SMI-32, a monoclonal antibody to nonphosphorylated neurofilament proteins that labels pyramidal neurons in vivo) in cocultures containing basal forebrain (BF) and cortical cells. These neurons (large neurons immunoreactive for SMI-32 [SMI-32(+) neurons]) were characterized as having extensive axons, greater soma size, and more dendritic growth than did most SMI-32(+) neurons in the cultures. Staining for SMI-32 in cocultures in which the cortical neurons were labeled with a fluorescent marker before adding the BF cells indicated that virtually all large SMI-32(+) neurons were of cortical origin. Eliminating BFCNs with the selective cholinergic immunotoxin 192 IgG-saporin resulted in a >80% decrease in the number of large SMI-32(+) neurons, although causing little damage to other cells in the treated cultures; this suggests that survival or maintenance of large SMI-32(+) neurons may depend on ongoing trophic support from BFCNs. Thus, present findings suggest that BFCNs may provide powerful growth- and/or survival-enhancing signals to a subset of cortical neurons.
Collapse
|
23
|
Meyer EM, King MA, Meyers C. Neuroprotective effects of 2,4-dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats. Brain Res 1998; 786:252-4. [PMID: 9555043 DOI: 10.1016/s0006-8993(97)00300-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nicotinic alpha7 agonist dimethoxybenzilidene anabaseine (DMXB) and cholinesterase inhibitor tetrahydroaminoacridine (THA) were investigated in a trans-synaptic model for neocortical atrophy and degeneration following nucleus basalis lesions. Bilateral lesions reduced parietal neuronal density in layers II-V 8 months later. DMXB administered i.p. daily to rats for 3 months attenuated this loss in layers II-V at a 1 mg/kg i.p. dose. A lower, 0.2 mg/kg i.p. dose, was neuroprotective in layer IV only. THA (1 mg/kg i.p.) also protected against neocortical Nissl-staining deficits.
Collapse
Affiliation(s)
- E M Meyer
- Department of Pharmacology and Therapeutics, Box 100267, University Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
24
|
Xerri C. [Post-lesional plasticity of somatosensory cortex maps: a review]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:135-51. [PMID: 9759332 DOI: 10.1016/s0764-4469(97)89813-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- C Xerri
- Laboratoire de neurobiologie des restaurations fonctionnelles, université de Provence et UMR 6562 du CNRS, Marseille, France.
| |
Collapse
|
25
|
Lolova IS, Lolov SR, Itzev DE. Aging and the dendritic morphology of the rat laterodorsal and pedunculopontine tegmental nuclei. Mech Ageing Dev 1997; 97:193-205. [PMID: 9234233 DOI: 10.1016/s0047-6374(97)00062-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The morphological appearance and quantitative parameters characterizing the dendrites of NADPH-diaphorase-stained neurons in the laterodorsal (LDT) and pedunculopontine (PPN) tegmental nuclei of 3-, 12- and 26-month-old rats were studied. All dendritic segments were classified according to the number of terminal and link segments they drain and the vertex analysis was used to quantify the dendritic tree and to determine its configuration. Morphological aberrations of the dendrites as local swelling, nodulation, thinning, shrinkage, folding and even the appearance of stumps were observed with advancing age. The quantitative analysis demonstrated a significant reduction (one-way ANOVA) of the total dendritic length, mean terminal path length, maximal segment length, total segment number and number of terminal segments at the rostral two thirds of the LDT and in the PPN. The mean vertex path length and the mean segment length significantly decreased only at the rostral level of the LDT. Plotting of the segment length against equivalent orders showed a decrease in all generations of the dendritic segments. The vertex ratios remained constant and indicated that the configuration of the dendritic tree remained unchanged during aging. The alterations in the dendrites mainly developed after 12 months of age. The age-related changes in the morphology and quantitative parameters of the dendrites in the rostral two thirds of the LDT and PPN were rather similar, which could be explained by the common anatomical, neurochemical and electrophysiological features. Thus, the present results suggest a mild, but continuous regression of the dendritic tree of the rat LDT and PPN in normal aging.
Collapse
Affiliation(s)
- I S Lolova
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
26
|
Le Jeune H, Cécyre D, Rowe W, Meaney MJ, Quirion R. Ionotropic glutamate receptor subtypes in the aged memory-impaired and unimpaired Long-Evans rat. Neuroscience 1996; 74:349-63. [PMID: 8865188 DOI: 10.1016/0306-4522(96)00213-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The comparative quantitative autoradiographic distribution of ionotropic glutamate receptor subtypes were investigated in young adults (six months) and aged (24-25 months) cognitively impaired and unimpaired male Long-Evans rats. Aged rats were behaviorally characterized as either cognitively impaired or unimpaired based upon their performances in the Morris water maze task compared to the young adult controls. The status of the N-methyl-D-aspartate, [125I]dizocilpine maleate, [3H]kainate and amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA, [3H]AMPA) receptor binding sites were then established in these three subgroups of animals as a function of their cognitive performance in the Morris water maze task. The apparent densities of both N-methyl-D-aspartate/[125I]dizocilpine maleate and kainate binding sites were significantly decreased in various regions of the aged rat brain. Marked losses in [125I]dizocilpine maleate binding sites were observed in outer laminae of the frontal, parietal and temporal cortices, and the stratum radiatum of the CA3 subfield of the hippocampus. Interestingly, losses in [125I]dizocilpine maleate binding sites were generally most evident in the cognitively unimpaired aged subgroup, suggesting a possible inverse relationship between losses of this receptor subtype and cognitive performances in the Morris water maze task. The levels of [3H]kainate binding were most significantly diminished in various cortical and hippocampal areas as well as the striatum and septal nuclei of both groups of aged rats. In contrast, the apparent density of [3H]AMPA binding was increased in most hippocampal subfields and the superficial laminae of the occipital cortex of the cognitively impaired vs young adult rats. Changes in [3H]AMPA labeling failed to reach significance in the unimpaired cohort. Taken together, these results show that while losses in [3H]kainate binding were similar in both subgroups of aged rats, differences were seen with respect to cognitive status for both [125I]dizocilpine maleate/N-methyl-D-aspartate and [3H]AMPA binding sites. Decreases in [125I]dizocilpine maleate binding sites were mostly restricted to cortical areas of cognitively unimpaired rats, while increases in the AMPA binding subtype were seen in the memory-impaired subgroup. It would thus appear that changes in N-methyl-D-aspartate and AMPA receptor subtypes may be more critical than alterations in kainate binding sites for the emergence of the functional deficits seen in the aged cognitively impaired rat.
Collapse
Affiliation(s)
- H Le Jeune
- Douglas Hospital Research Centre, Verdun, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Mirmiran M, van Someren EJ, Swaab DF. Is brain plasticity preserved during aging and in Alzheimer's disease? Behav Brain Res 1996; 78:43-8. [PMID: 8793036 DOI: 10.1016/0166-4328(95)00217-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder believed to involve selective neuronal cell atrophy/loss in certain brain regions. The progress of the disease is accompanied by selective cognitive impairments and behavioral disturbances. The hypothesis has been put forward that by activation of selective brain areas throughout life one might protect or delay the degenerative process. This hypothesis, paraphrased as "a differential level of brain cell activity may account for cell selective loss" or "use it or lose it", further suggests that a certain level of neuronal plasticity persists during aging and even in Alzheimer's disease.
Collapse
Affiliation(s)
- M Mirmiran
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands.
| | | | | |
Collapse
|
28
|
Schliebs R, Rossner S, Bigl V. Immunolesion by 192IgG-saporin of rat basal forebrain cholinergic system: a useful tool to produce cortical cholinergic dysfunction. PROGRESS IN BRAIN RESEARCH 1996; 109:253-64. [PMID: 9009714 DOI: 10.1016/s0079-6123(08)62109-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholinergic lesion paradigms have been used to study the role of the cholinergic system in cortical arousal and cognitive function, and its implication in cognitive deficits that occur in Alzheimer's disease. In the last few years an increasing number of studies have applied neurotoxins including excitotoxins or cholinotoxins (e.g. AF64A) by stereotaxic injection into the Nbm to produce reductions in cortical cholinergic activity. One of the most serious limitations of these lesion paradigms is the fact that basal forebrain cholinergic neurons are always intermingled with populations of noncholinergic cells and that the cytotoxins used are far from being selective to cholinergic cells. Excitoxins when infused directly into the Nbm destroy non-specifically cell bodies but spare axons passing the injection site, whereas the specificity of AF64A to destroy cholinergic neurons depends on both the dosage applied and the site of injection. Recently, a monoclonal antibody to the low-affinity nerve growth factor (NGF) receptor, 192IgG, coupled to a cytotoxin, saporin, has been described as an efficient and selective immunotoxin for the NGF-receptor bearing cholinergic neurons in rat basal forebrain. Intraventricular administration of the 192IgG-saporin conjugate appears to induce a nearly complete and specific lesion of neocortical and hippocampal cholinergic afferents. Other neuronal systems in the basal forebrain are spared by the immunotoxin. Electrolytic, ibotenic acid, and cholinergic immunotoxic lesions of cholinergic basal forebrain nuclei resulted in slightly different effects on cortical cholinergic markers: Electrolytic lesion of the Nbm did not change M1-mAChR but resulted in reduced M2-mAChR in frontal and parietal cortices 1 week after lesion. Ibotenic acid lesion of the nucleus basalis did not alter M1-mAChR in any cortical region but led to enhanced M2-mAChR binding in the parietal cortex only. When applying the cholinergic immunotoxin 192IgG-saporin, both M1- and M2-mAChR binding sites were increased in a number of cortical areas 1 week after lesion. This comparison suggests that possibly the destruction of non-cholinergic basal forebrain cells by ibotenic acid and electrolytic lesion, might partly contribute to these different cortical effects. NMDA receptor binding was markedly reduced and AMPA, kainate, and GABAA receptor binding has been significantly increased in cortical regions displaying a reduced activity of AChE and decreased levels of high-affinity choline uptake sites due to immunolesion of the basal forebrain cholinergic system. Equivalent changes in cortical glutamate and GABA receptor subtype levels have been observed 7 days after electrolytic or ibotenic acid lesion of the Nbm. The data suggest that cholinergic immunolesion by 192IgG-saporin exhibits a valuable tool to produce specific cholinergic deficits in rats, which can be used as a model to study the effect of treatment with various drugs for compensating the impaired cortical cholinergic input.
Collapse
Affiliation(s)
- R Schliebs
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Germany
| | | | | |
Collapse
|
29
|
Rossner S, Schliebs R, Bigl V. 192IgG-saporin-induced immunotoxic lesions of cholinergic basal forebrain system differentially affect glutamatergic and GABAergic markers in cortical rat brain regions. Brain Res 1995; 696:165-76. [PMID: 8574666 DOI: 10.1016/0006-8993(95)00844-g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the effect of reduced cortical cholinergic activity on GABAergic and glutamatergic mechanisms in cholinoceptive cortical target regions a novel cholinergic immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor with the cytotoxic protein saporin) was applied, which specifically and selectively destroys cholinergic cells in rat basal forebrain nuclei. To correlate the responses to cholinergic immunolesion in cholinoceptive cortical target regions with cholinergic hypoactivity, quantitative receptor autoradiography to measure NMDA, AMPA and kainate glutamate receptor subtypes, GABAA and benzodiazepine receptors as well as choline uptake sites, and histochemistry to estimate acetylcholinesterase activity were performed in adjacent brain sections. One week after a single intraventricular injection of 4 micrograms of 192IgG-saporin, NMDA receptor binding was markedly reduced in cortical regions displaying a reduced activity of acetylcholinesterase and high-affinity choline uptake sites as a consequence of cholinergic lesion, whereas AMPA and kainate binding sites were significantly increased in these regions. Muscimol binding to GABAA receptors was increased in the caudal portions of frontal and parietal cortices as well as occipital and temporal cortex as compared to the corresponding brain regions from vehicle-injected control rats. Binding levels of benzodiazepine receptors were not affected by the lesion in any of the cortical regions studied. The differential changes in glutamate and GABA receptor subtypes following cholinergic immunolesion might be regarded as the consequence of a cortical reorganization compensating for the reduced cholinergic presynaptic input. The data further suggest that presynaptic cortical cholinergic deficits might affect both glutamatergic and GABAergic functions with different intensity and different directions.
Collapse
Affiliation(s)
- S Rossner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Germany
| | | | | |
Collapse
|