1
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG. Thyroid hormones states and brain development interactions. Int J Dev Neurosci 2008; 26:147-209. [PMID: 18031969 DOI: 10.1016/j.ijdevneu.2007.09.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 12/20/2022] Open
Abstract
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
Collapse
Affiliation(s)
- Osama M Ahmed
- Zoology Department, Faculty of Science, Beni Suef University, Egypt.
| | | | | | | | | |
Collapse
|
3
|
Calzà L, Fernandez M, Giuliani A, D'Intino G, Pirondi S, Sivilia S, Paradisi M, Desordi N, Giardino L. Thyroid hormone and remyelination in adult central nervous system: a lesson from an inflammatory-demyelinating disease. ACTA ACUST UNITED AC 2005; 48:339-46. [PMID: 15850672 DOI: 10.1016/j.brainresrev.2004.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 01/20/2023]
Abstract
Re-myelination in the adult CNS has been demonstrated in different experimental models of demyelinating diseases. However, there is no clear evidence that re-myelination is effective in multiple sclerosis (MS), the most diffuse demyelinating disease. Moreover, chronic disabilities in MS are believed to be due to remyelination failure and consequent neuron damage and degeneration. Due to the presence of numerous oligodendrocyte precursors inside demyelination plaques, reasons for remyelination failure are unknown. In this paper, we reviewed data from embryonic development and in vitro studies supporting the primary role of thyroid hormone in oligodendrocyte maturation. We also reviewed personal data on the possibility of promoting myelination in chronic experimental allergic encephalomyelitis (EAE), a widely used experimental model of MS, by recruiting progenitors and channeling them into oligodendroglial lineage through the administration of thyroid hormone.
Collapse
Affiliation(s)
- Laura Calzà
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alva-Sánchez C, Ortiz-Butrón R, Pacheco-Rosado J. Kainic acid does not affect CA3 hippocampal region pyramidal cells in hypothyroid rats. Brain Res Bull 2004; 63:167-71. [PMID: 15130707 DOI: 10.1016/j.brainresbull.2004.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 01/21/2004] [Accepted: 02/06/2004] [Indexed: 12/28/2022]
Abstract
Thyroid hormones exert a crucial role on trophic events of the central nervous system during development, adulthood, and ageing. The deficiency of thyroid hormones could also produce a deficiency in neurotransmission in the hippocampal region. Kainic acid (KA) has become an important tool for studying functions related to excitatory amino acid transmission in mammals. Its neurotoxic effects on the pyramidal neurons of the CA3 hippocampal region are well known. We have examined the neurotoxicity of KA on these cells in hypothyroid rats. The hypothyroid state was induced by administration of methimazole. After 4 weeks of treatment, KA was administered once intraperitoneally at doses of 0, 1, 2.5, and 5mg/kg to the hypothyroid group, and 0 and 5mg/kg to the euthyroid group. In the euthyroid group, KA reduced the neuronal density in the CA3 hippocampal region, and in the hypothyroid rats with no administration of KA, the neuronal density of the CA3 hippocampal region is reduced also. Administering KA in hypothyroid rats did not reduce the number of CA3 pyramidal cells.
Collapse
Affiliation(s)
- Claudia Alva-Sánchez
- Departamento de Fisiología Mauricio Russek, Escuela Nacional de Ciencias Biológicas, I.P.N., Carpio y Plan de Ayala, México, D.F. 11340, Mexico
| | | | | |
Collapse
|
5
|
Lee PR, Brady D, Koenig JI. Thyroid hormone regulation of N-methyl-D-aspartic acid receptor subunit mRNA expression in adult brain. J Neuroendocrinol 2003; 15:87-92. [PMID: 12535174 DOI: 10.1046/j.1365-2826.2003.00959.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thyroid hormone is an essential modulator of brain development, but little is known about its actions in the adult brain. Hypothyroidism is associated with gene expression changes in both central and peripheral nervous tissue. Functional consequences of adult-onset hypothyroidism include an inability to produce long-term potentiation in rat hippocampus and impaired learning and memory in both rats and man. Long-term potentiation is a form of learning that is dependent on functional N-methyl-d-aspartic acid (NMDA)-preferring ionotropic glutamate receptors. This work examines the expression of ionotropic glutamate receptor subunit mRNA following surgical thyroidectomy with or without thyroid hormone replacement. In situ hybridization histochemistry was used to determine the mRNA levels of the NMDA receptor subunits NR1, NR2A, NR2B, the AMPA receptor subunit GluR1, and the kainate receptor subunit KA2. Reducing circulating concentrations of thyroid hormone by surgical removal of the thyroid gland 2 weeks before sacrifice decreased the expression of NR1 mRNA exclusively in the hippocampus. Conversely, hyperthyroidism selectively reduced NR2B mRNA expression in the dorsal hippocampus. Altering thyroid hormone status had no effect on the expression of KA2 or GluR1 subunit mRNA. The regulation of expression of NR1 and NR2B mRNA by thyroid hormone is a novel mechanism for explaining the relationship between thyroid hormone and cognitive function.
Collapse
Affiliation(s)
- P R Lee
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, USA.
| | | | | |
Collapse
|
6
|
Ortiz-Butron R, Pacheco-Rosado J, Hernández-Garcia A, Briones-Velasco M, Rocha L. Mild thyroid hormones deficiency modifies benzodiazepine and mu-opioid receptor binding in rats. Neuropharmacology 2003; 44:111-6. [PMID: 12559128 DOI: 10.1016/s0028-3908(02)00372-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of a mild hypothyroidism condition on benzodiazepine (BDZ) and mu opioid receptor levels was investigated. Female Wistar rats were randomly divided into two groups: 1) hypothyroid rats (n=7), which received methimazole (60 mg/kg per day) in drinking water for four weeks, and 2) euthyroid rats (n=8), which drank only tap water. Animals were sacrificed and their brains were used for autoradiography experiments. When compared to the euthyroid group, the hypothyroid group presented reduced benzodiazepine receptor binding in medial amygdala (24%) and high mu-receptor levels in frontal (25%), sensorimotor (65%) and temporal (29%) cortices, basolateral amygdala (50%) and ventroposterior thalamic nucleus (49%). The present data suggest that alterations in BDZ and mu-receptor binding could be associated with the higher excitability observed in animals with triiodothyronine (T(3)) deficiency.
Collapse
Affiliation(s)
- R Ortiz-Butron
- Departamento de Fisiología Mauricio Russek, Escuela Nacional de Ciencias Biológicas, I.P.N., Carpio y Plan de Ayala, Mexico, D.F., C.P. 11340.
| | | | | | | | | |
Collapse
|
7
|
Giardino L, Giuliani A, Bettelli C, Calzà L. Thyroid hormone and retinoids affect motoneuron phenotype and reaction after axotomy in the spinal cord of adult rats. Brain Res 2002; 925:122-32. [PMID: 11792360 DOI: 10.1016/s0006-8993(01)03266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motoneuron phenotype in the spinal cord is regulated by an intrinsic genetic program, extrinsic environmental signals and target-derived molecules. Axonal lesions trigger a phenotype switch to foster repair phenomena and axonal re-growth. We have investigated the influence of the long-term treatment with thyroid hormone and all trans retinol palmitate (RA) on motoneuron phenotype and spinal cord reaction to axotomy in adult male rats. Neurochemical markers, investigated by in situ hybridization and immunocytochemistry, included choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP) and neurotrophin low affinity receptor p75. Treatment was administered for 56 days and then mid-thigh sciatic axotomy was performed on a number of animals from each experimental groups; the rats were examined 9 days after surgery. The results indicate that: (1) Number and size of ChAT-immunoreactive neurons in the lumbar tract of the spinal cord was reduced in hypothyroid compared to control rats, whereas steady-state level of ChAT mRNA in labelled motoneurons failed to be modified by hypo and hyperthyroidism, but was increased by RA administration; (2) none of the administered treatments did alter CGRP mRNA level, whereas all of them influenced the axotomy-induced changes of motoneuron phenotype; (3) in hyperthyroid rats ChAT mRNA level of lumbar motoneurons not reduced homolateral to lesion while the number of ChAT-IR profiles was pronouncedly reduced; (4) up-regulation of p75 induced by peripheral nerve lesion was reduced in RA-treated rats. These data indicate that the motoneuron phenotype is regulated by transcription factors, which also play a role in phenotype switch regulation after axotomy.
Collapse
Affiliation(s)
- Luciana Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
8
|
Langlois MC, Beaudry G, Zekki H, Rouillard C, Lévesque D. Impact of antipsychotic drug administration on the expression of nuclear receptors in the neocortex and striatum of the rat brain. Neuroscience 2002; 106:117-28. [PMID: 11564422 DOI: 10.1016/s0306-4522(01)00248-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have recently shown that the expression of the nerve growth factor-inducible gene B (NGFI-B, or Nur77), a transcription factor belonging to the large ligand-activated nuclear receptor family, is modulated by antipsychotic drugs in the rat forebrain. In the present work, we have investigated the impact of antipsychotic drugs on a series of transcription factors also belonging to the nuclear receptor family. The receptors investigated include retinoid X receptor (RXR), thyroid hormone receptor (TR), retinoic acid receptor (RAR), RAR-related orphan receptor (RZR) and Rev-erb receptor isoforms in addition to the NGFI-B transcript. We have used in situ hybridization to monitor their mRNA levels after acute and chronic antipsychotic drug administration. RZRbeta and NGFI-B mRNA levels are down-regulated after chronic haloperidol or clozapine treatment in the primary somatosensory cortex. The TRbeta1 isoform mainly expressed in the cingulate cortex is modulated only after chronic clozapine treatment, whereas TRalpha isoform mRNAs are modulated by both antipsychotics in the cingulate cortex and nucleus accumbens shell; two brain areas associated with limbic functions. The RXRgamma1 isoform, mostly expressed in the dorsolateral portion of the striatum is modestly affected by antipsychotics. Modulation of the expression of transcription factors belonging to the ligand-activated nuclear receptor family by antipsychotics represents an additional molecular event in the mechanism of action of these drugs. We suggest that modification of the pattern of transcription factor expression may play a role in long-term cellular responses to these drugs.
Collapse
MESH Headings
- Animals
- Antipsychotic Agents/pharmacology
- DNA-Binding Proteins/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Neocortex/cytology
- Neocortex/drug effects
- Neocortex/metabolism
- Neostriatum/cytology
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Protein Isoforms/drug effects
- Protein Isoforms/metabolism
- Proteins/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Melatonin
- Receptors, Retinoic Acid/genetics
- Receptors, Steroid
- Receptors, Thyroid Hormone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
Collapse
Affiliation(s)
- M C Langlois
- Neuroscience Unit, CHUQ Research Center (CHUL), 2705 Laurier Boulevard, Quebec City, QC, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
9
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
10
|
Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:177-265. [PMID: 10333580 DOI: 10.1016/s0074-7696(08)61388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given. The factors discussed are neurotrophins, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors, ciliary neurotrophic factor and related molecules, glial-derived growth factor and related molecules, transforming growth factor-beta and related molecules, neurotransmitters, and hormones. All factors are discussed with respect to their trophic actions, their expression patterns in the brain, and molecular aspects of their receptors and intracellular signaling pathways. It becomes evident that there does not exist "the" trophic factor in the CNS but rather a multitude of them interacting with each other in a complicated network of trophic actions forming and maintaining the adult nervous system.
Collapse
Affiliation(s)
- D M Weisenhorn
- Wesley Woods Laboratory for Brain Science, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
11
|
Abstract
It is well known that thyroid hormone plays a crucial role in the development and maturation of the nervous system. However, little is known about the role of thyroid hormone in the adult brain. In this short review we have dwelt on this point, with regard to the role of thyroid hormone on neuropeptide gene expression regulation in the paraventricular nucleus of the hypothalamus and in extrahypothalamic brain areas, on neurotrophin and neurotrophin receptor expression in the hippocampus and basal forebrain in basal conditions, and after neurotoxic challenges. Effects of hypothyroidism are discussed in view of a possible role of thyroid status in brain aging quality.
Collapse
Affiliation(s)
- L Calzà
- Institute of Human Physiology, University of Cagliari, Italy
| | | | | |
Collapse
|
12
|
Masos T, Miskin R. mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:157-69. [PMID: 9221913 DOI: 10.1016/s0169-328x(97)00040-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urokinase-type plasminogen activator (uPA) is an inducible extracellular serine protease implicated in fibrinolysis and in tissue remodeling. Recently, we have localized uPA mRNA strictly in limbic structures and the parietal cortex of the adult mouse brain. Here, we tested whether the systemic treatment of mice with kainic acid (KA), an amino acid inducing limbic seizures, could elevate in the brain mRNAs encoding uPA and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1), a major antifibrinolytic agent. Brain sections encompassing the hippocampus were tested through in situ hybridization using radiolabeled riboprobes specific for the two mRNA species. The results showed that KA greatly enhanced both mRNA species in sites of limbic structures and cortex. However, in the hypothalamus and brain blood vessels only PAI-1 mRNA was elevated. Those were also the only two locations where PAI-1 mRNA was detected in the non-treated control brain, although at a low level. For both mRNAs, KA enhancement was first evident 2-4 h after treatment, and it was most prolonged in the hippocampal area, where prominent hybridization signals persisted for three days. Here, both mRNAs were initially elevated in the hilar region of the dentate gyrus and in the molecular and oriens layers; however, PAI-1 mRNA became evident throughout the area, while uPA mRNA became especially pronounced in the CA3/CA4 subfield. In the cortex both mRNA types were induced, but only uPA mRNA was elevated in the retrosplenial cortex, and also in the subiculum. In the amygdaloid complex, uPA mRNA was restricted to the basolateral nucleus, whereas PAI-1 mRNA was seen throughout the structure, however, excluding this nucleus. These data show that seizure activity enhances the expression of uPA and PAI-1 genes in the brain; the patterns of enhancement suggest that the protease and its inhibitor may act in brain plasticity in synchrony, however, also independently of each other. Furthermore, the results suggest that by elevating PAI-1 mRNA in brain blood vessels, limbic seizures generate a risk for stroke.
Collapse
Affiliation(s)
- T Masos
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
13
|
Calzà L, Giardino L, Aloe L. Thyroid hormone regulates NGF content and p75LNGFR expression in the basal forebrain of adult rats. Exp Neurol 1997; 143:196-206. [PMID: 9056383 DOI: 10.1006/exnr.1996.6361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several lines of data from human and animal studies have suggested a role of thyroid hormone in the regulation of cholinergic neurons in the adult brain. In this study we have investigated the content of nerve growth factor (NGF) and the expression of NGF low affinity receptor (p75(LNGFR)) in the basal forebrain of adult hypothyroid rats. We describe an increase of both NGF and p75(LNGFR) expression in the basal forebrain of adult hypothyroid rats. The administration of colchicine up-regulates p75(LNGFR) expression in both hypo- and control rats, whereas it fails to down-regulate choline acetyl transferase mRNA expression during hypothyroidism. These data offer a possible neurobiological explanation to cognitive defects observed during adult hypothyroidism in humans.
Collapse
Affiliation(s)
- L Calzà
- Pathophysiology Center for the Nervous System, University of Cagliari, Modena, Italy
| | | | | |
Collapse
|
14
|
Piosik PA, van Groenigen M, Baas F. Effect of thyroid hormone deficiency on RC3/neurogranin mRNA expression in the prenatal and adult caprine brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:227-35. [PMID: 9013778 DOI: 10.1016/s0169-328x(96)00126-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thyroid hormone deficiency has profound effects on the brain during development and less marked effects on the adult brain. These effects are considered to be the result of the direct regulation of specific target genes by thyroid hormone. Previous studies have shown that the expression of the neuronal gene RC3, encoding a 78-amino-acid calmodulin-binding protein kinase C substrate, is under the influence of thyroid hormone in vivo. In congenitally hypothyroid foetal goat at term (approximately 150 days of gestation), RC3 mRNA expression was reversibly decreased in the striatum but not in other brain regions. In the present study we investigated the role of thyroid hormone in RC3 mRNA expression at earlier stages of fetal development and in mature goats using in situ hybridization. There was a consistent decrease (35-80%) in the signal for RC3 mRNA per neuron in the striatum of hypothyroid adult and fetal goats of 90, 120 and 150 days of gestation compared to normal goats of the same age. In contrast, no consistent difference was observed in the cerebral cortex at any age studied. These data indicate that in both fetal and adult goats thyroid hormone, at least partly, affects the expression of RC3 mRNA in the striatum and not the cerebral cortex.
Collapse
Affiliation(s)
- P A Piosik
- Department of Neurology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Giardino L, Puglisi-Allegra S, Ceccatelli S. CRH-R1 mRNA expression in two strains of inbred mice and its regulation after repeated restraint stress. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:310-4. [PMID: 8872315 DOI: 10.1016/0169-328x(96)00092-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using in-situ hybridization histochemistry we investigated the distribution of CRH receptor 1 (CRH-R1) mRNA in the cortex of C57BL/6 (C57) and DBA/2 (DBA) strains and its regulation after repeated restraint stress. We show that DBA mice have a higher concentration of CRH-R1 mRNA than C57 mice. Repeated restraint stress produced an increase in CRH-R1 mRNA expression of C57 mice, whereas it was uneffective in DBA mice.
Collapse
Affiliation(s)
- L Giardino
- Institute of Otolaryngology II, University of Milan, Modena, Italy
| | | | | |
Collapse
|
16
|
Calzà L, Giardino L, Ceccatelli S, Hökfelt T. Neurotrophins and their receptors in the adult hypo- and hyperthyroid rat after kainic acid injection: an in situ hybridization study. Eur J Neurosci 1996; 8:1873-81. [PMID: 8921278 DOI: 10.1111/j.1460-9568.1996.tb01331.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thyroid hormone plays a key role in trophic events during development of the central nervous system. In spite of neurological and psychiatric symptoms associated with adult hypothyroidism, the role of thyroid hormone in mature brain function is less clear. In this paper we investigated the effect of thyroid status on kainic acid-induced up-regulation of mRNAs for members of the nerve growth factor family and related receptors in adult male rats by means of in situ hybridization. We found that in hypothyroid rats there is a dramatic attenuation of the kainic acid-induced up-regulation of mRNA levels for nerve growth factor, brain-derived neurotrophic factor and tyrosine kinase trkB in euthyroid rats. A trend to reduced c-fos mRNA up-regulation, which did not reach significance, was also found, whereas the increase in c-jun mRNA after kainic acid was similar in eu-, hypo- and hyperthyroid rats. These data indicate a severe impairment of the regulation of neurotrophin synthesis after excitotoxin administration in the hippocampus during adult hypothyroidism. Possible roles of thyroid hormone in molecular, biochemical and metabolic mechanisms of this defect are discussed.
Collapse
Affiliation(s)
- L Calzà
- Institute of Human Physiology, University of Cagliari, Italy
| | | | | | | |
Collapse
|