1
|
Broniatowski M, Wydro P. Interactions of Brominated Flame Retardants with Membrane Models of Dehalogenating Bacteria: Langmuir Monolayer and Grazing Incidence X-ray Diffraction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10600-10614. [PMID: 38721840 PMCID: PMC11112749 DOI: 10.1021/acs.langmuir.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department
of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| | - Paweł Wydro
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
2
|
Taktikakis P, Côté M, Subramaniam N, Kroeger K, Youssef H, Badia A, DeWolf C. Understanding the Retention of Vaping Additives in the Lungs: Model Lung Surfactant Membrane Perturbation by Vitamin E and Vitamin E Acetate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5651-5662. [PMID: 38437623 DOI: 10.1021/acs.langmuir.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Deviations from the normal physicochemical and functional properties of pulmonary surfactants are associated with the incidence of lung injury and other respiratory disorders. This study aims to evaluate the alteration of the 2D molecular organization and morphology of pulmonary surfactant model membranes by the electronic cigarette additives α-tocopherol (vitamin E) and α-tocopherol acetate (vitamin E acetate), which have been associated with lung injury, termed e-cigarette or vaping-use-associated lung injury (EVALI). The model membranes used contained a 7:3 molar ratio of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to which α-tocopherol and α-tocopherol acetate were added to form mixtures of up to 20 mol % additive. The properties of the neat tocopherol additives and DPPC/POPG (7:3) mixtures with increasing molar proportions of additive were evaluated by surface pressure-area isotherms, excess area calculations, Brewster angle microscopy, grazing incidence X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The addition of either additive alters the essential phase balance of the model pulmonary surfactant membrane by generating a greater proportion of the fluid phase. Despite this net fluidization, both tocopherol additives have space-filling effects on the liquid-expanded and condensed phases, yielding negative excess areas in the liquid-expanded phase and reduced tilt angles in the condensed phase. Both tocopherol additives alter the stability of the fluid phase, pushing the eventual collapse of this phase to higher surface pressures than the model membrane in the absence of an additive.
Collapse
Affiliation(s)
- Panagiota Taktikakis
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Mathieu Côté
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Nivetha Subramaniam
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Kailen Kroeger
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Antonella Badia
- Département de chimie and Institut Courtois, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| |
Collapse
|
3
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
4
|
Kowalska M, Broniatowski M, Mach M, Płachta Ł, Wydro P. The effect of the polyethylene glycol chain length of a lipopolymer (DSPE-PEGn) on the properties of DPPC monolayers and bilayers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Hoffmann M, Drescher S, Schwieger C, Hinderberger D. Influence of a single ether bond on assembly, orientation, and miscibility of phosphocholine lipids at the air-water interface. Phys Chem Chem Phys 2021; 23:5325-5339. [PMID: 33634294 DOI: 10.1039/d0cp06520j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does a small change in the structure of a phospholipid affect its supramolecular assembly? In aqueous suspensions, the substitution of one ester linkage in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) by an ether linkage alters its phase behaviour completely. To unravel the effect of replacing a phospholipid's ester linkage by an ether linkage in lipid monolayers, we characterized pure monolayers of the model lipid DPPC and its sn-2 ether analogue PHPC (1-palmitoyl-2-O-hexadecyl-sn-glycero-3-phosphocholine) as well as mixtures of both by measurements of surface pressure-molecular area (π-Amol) isotherms. In addition, we used infrared reflection absorption spectroscopy (IRRAS) to study lipid condensation, lipid chain orientation, headgroup hydration, and lipid miscibility in all samples. Mixed monolayers consisting of DPPC and PHPC were studied further using epifluorescence microscopy. Our results indicate a strong influence of the sn-2 ether linkage on headgroup hydration and ordering effects in the regions of the apolar chains and the headgroups. Both effects could originate from changes in glycerol conformation. Furthermore, we observed a second plateau in the π-Amol isotherms of DPPC/PHPC mixtures and analysis of the mixed π-Amol isotherms reveals a non-ideal mixing behaviour of both lipids which may be caused by conformational differences in their headgroups.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany. and Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany and Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany. and Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Drescher S, Meister A, Hause G, Neuhaus F, Balog S, Brezesinski G, Zumbuehl A. Tuning the Thickness of a Biomembrane by Stapling Diamidophospholipids with Bolalipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8610-8616. [PMID: 32609528 DOI: 10.1021/acs.langmuir.0c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In a biological membrane, proteins require specific lipids of distinctive length and chain saturation surrounding them. The active tuning of the membrane thickness therefore opens new possibilities in the study and manipulation of membrane proteins. Here, we introduce the concept of stapling phospholipids to different degrees of interdigitation depth by mixing 1,3-diamidophospholipids with single-chain bolalipids. The mixed membranes were studied by calorimetric assays, electron microscopy, X-ray, and infrared measurements to provide a complete biophysical characterization of membrane stapling. The matching between the diamidophospholipids and the bolalipids can be so strong as to completely induce a new phase that is more stable than the gel phase of the individual components.
Collapse
Affiliation(s)
- Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, MLU Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Frederik Neuhaus
- National Centre of Competence in Research in Chemical Biology, 1211 Geneva, Switzerland
| | - Sandor Balog
- Adolphe-Merkle-Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Andreas Zumbuehl
- National Centre of Competence in Research in Chemical Biology, 1211 Geneva, Switzerland
- Acthera Therapeutics Ltd. Peter Merian-Str. 45, 4052 Basel, Switzerland
| |
Collapse
|
7
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
8
|
Zumbuehl A. Artificial Phospholipids and Their Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10223-10232. [PMID: 30278137 DOI: 10.1021/acs.langmuir.8b02601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phospholipids are at the heart and origin of life on this planet. The possibilities in terms of phospholipid self-assembly and biological functions seem limitless. Nonetheless, nature exploits only a small fraction of the available chemical space of phospholipids. Using chemical synthesis, artificial phospholipid structures become accessible, and the study of their biophysics may reveal unprecedented properties. In this article, the recent advances by our work group in the field of chemical lipidology are summarized. The family of diamidophospholipids is discussed in detail from monolayer characterization to the formation of faceted vesicles, culminating in the template-free self-assembly of phospholipid cubes and the possible applications of vesicle origami in modern personalized medicine.
Collapse
Affiliation(s)
- Andreas Zumbuehl
- Department of Chemistry , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
| |
Collapse
|
9
|
Stefaniu C, Latza VM, Gutowski O, Fontaine P, Brezesinski G, Schneck E. Headgroup-Ordered Monolayers of Uncharged Glycolipids Exhibit Selective Interactions with Ions. J Phys Chem Lett 2019; 10:1684-1690. [PMID: 30908061 PMCID: PMC6727371 DOI: 10.1021/acs.jpclett.8b03865] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Selective interactions of ions with charge-neutral saccharides can have far-reaching consequences in biological and wet-technological contexts but have so far been observed only indirectly. Here, we directly quantify by total-reflection X-ray fluorescence the preferential accumulation of ions near uncharged saccharide surfaces in the form of glycolipid Langmuir monolayers at air/water interfaces exhibiting different levels of structural ordering. Selective interactions with ions from the aqueous subphase are observed for monolayers featuring crystalline ordering of the saccharide headgroups, as determined by grazing-incidence X-ray diffraction. The attracted ion species depend on the structural motifs displayed by the ordered saccharide layer. Our results may constitute a basis to understand the salt-specific swelling of wood materials and various phenomena in membrane biophysics.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Victoria M. Latza
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Olof Gutowski
- Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | | | - Gerald Brezesinski
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emanuel Schneck
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- E-mail: . Phone: +49-331567-9404. Fax: +49-331567-9402
| |
Collapse
|
10
|
Ziblat R, Weaver JC, Arriaga LR, Chong S, Weitz DA. Determining the lipid specificity of insoluble protein transmembrane domains. LAB ON A CHIP 2018; 18:3561-3569. [PMID: 30406786 DOI: 10.1039/c8lc00311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While the specificity of protein-lipid interactions is a key feature in the function of biological membranes, studying the specifics of these interactions is challenging because most membrane proteins are insoluble in water due to the hydrophobic nature of their transmembrane domains (TMDs). Here, we introduce a method that overcomes this solubility limitation and identifies the affinity profile of protein TMDs to specific lipid formulations. Using 5 human TMDs as a sample group, our results demonstrate that TMDs are highly selective and that these specific lipid-TMD interactions can involve either a single lipid, or the combination of multiple lipid species.
Collapse
Affiliation(s)
- R Ziblat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - J C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - L R Arriaga
- Department of Physical Chemistry, Universidad Complutense, Madrid, 28040, Spain
| | - S Chong
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA02138, USA
| |
Collapse
|
11
|
Neuhaus F, Mueller D, Tanasescu R, Stefaniu C, Zaffalon PL, Balog S, Ishikawa T, Reiter R, Brezesinski G, Zumbuehl A. Against the rules: pressure induced transition from high to reduced order. SOFT MATTER 2018; 14:3978-3986. [PMID: 29736539 DOI: 10.1039/c8sm00212f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Envisioning the next generation of drug delivery nanocontainers requires more in-depth information on the fundamental physical forces at play in bilayer membranes. In order to achieve this, we combine chemical synthesis with physical-chemical analytical methods and probe the relationship between a molecular structure and its biophysical properties. With the aim of increasing the number of hydrogen bond donors compared to natural phospholipids, a phospholipid compound bearing urea moieties has been synthesized. The new molecules form interdigitated bilayers in aqueous dispersions and self-assemble at soft interfaces in thin layers with distinctive structural order. At lower temperatures, endothermic and exothermic transitions are observed during compression. The LC1 phase is dominated by an intermolecular hydrogen bond network of the urea moieties leading to a very high chain tilt of 52°. During compression and at higher temperatures, presumably this hydrogen bond network is broken allowing a much lower chain tilt of 35°. The extremely different monolayer thicknesses violate the two-dimensional Clausius-Clapeyron equation.
Collapse
Affiliation(s)
- Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Neuhaus F, Mueller D, Tanasescu R, Balog S, Ishikawa T, Brezesinski G, Zumbuehl A. Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Template-Free Self-Assembly. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Frederik Neuhaus
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
- National Centres of Competence in Research in Chemical Biology (Geneva) and Bio-inspired Materials; Fribourg Switzerland
| | - Dennis Mueller
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Radu Tanasescu
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute; University of Fribourg; Chemin du Verdiers 4 1700 Fribourg Switzerland
| | - Takashi Ishikawa
- Paul Scherrer Institute (PSI); OFLB/010 5232 Villigen PSI Switzerland
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces; Research Campus Potsdam-Golm 14476 Potsdam Germany
| | - Andreas Zumbuehl
- Department of Chemistry; University of Fribourg; Chemin du Musée 9 1700 Fribourg Switzerland
- National Centres of Competence in Research in Chemical Biology (Geneva) and Bio-inspired Materials; Fribourg Switzerland
| |
Collapse
|
13
|
Neuhaus F, Mueller D, Tanasescu R, Balog S, Ishikawa T, Brezesinski G, Zumbuehl A. Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Template-Free Self-Assembly. Angew Chem Int Ed Engl 2017; 56:6515-6518. [PMID: 28444913 DOI: 10.1002/anie.201701634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Indexed: 11/08/2022]
Abstract
Phospholipid liposomes are archetypical self-assembled structures. To minimize the surface tension, the vesicles typically are spherical. Deciphering the bilayer code, the basic physical interactions between phospholipids would allow these molecules to be utilized as building blocks for novel, non-spherical structures. A 1,2-diamidophospholipid is presented that self-assembles into a cuboid structure. Owing to intermolecular hydrogen bonding, the bilayer membranes form an exceptionally tight subgel packing, leading to a maximization of flat structural elements and a minimization of any edges. These conditions are optimized in the geometrical structure of a cube. Surprisingly, the lateral surface pressure in the membrane is only one third of the value typically assumed for a bilayer membrane, questioning a long-standing rule-of-thumb.
Collapse
Affiliation(s)
- Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.,National Centres of Competence in Research in Chemical Biology (Geneva) and Bio-inspired Materials, Fribourg, Switzerland
| | - Dennis Mueller
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Radu Tanasescu
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin du Verdiers 4, 1700, Fribourg, Switzerland
| | - Takashi Ishikawa
- Paul Scherrer Institute (PSI), OFLB/010, 5232, Villigen PSI, Switzerland
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Research Campus Potsdam-Golm, 14476, Potsdam, Germany
| | - Andreas Zumbuehl
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.,National Centres of Competence in Research in Chemical Biology (Geneva) and Bio-inspired Materials, Fribourg, Switzerland
| |
Collapse
|
14
|
Eftaiha AF, Wanasundara SN, Paige MF, Bowles RK. Exploring the Impact of Tail Polarity on the Phase Behavior of Single Component and Mixed Lipid Monolayers Using a MARTINI Coarse-Grained Force Field. J Phys Chem B 2016; 120:7641-51. [DOI: 10.1021/acs.jpcb.6b03970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ala’a F. Eftaiha
- Department
of Chemistry, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Surajith N. Wanasundara
- Department
of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Matthew F. Paige
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Richard K. Bowles
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
15
|
Interactions of lauryl gallate with phospholipid components of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1821-32. [PMID: 27117642 DOI: 10.1016/j.bbamem.2016.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022]
Abstract
The effect of different amounts of lauryl gallate (LG) on properties of the model membranes of phosphatidylcholines (PC), differing in the presence of double bonds in the hydrocarbon chains, and phosphatidylglycerol (PG) was described in terms of phase behaviour of mixtures, interactions between both components, monolayers stability and their organization. The Langmuir monolayer technique was used to monitor the surface thermodynamics (i.e. the excess area and excess Gibbs energy of mixing) on the basis of surface pressure-area per molecule (π-A) isotherms. Simultaneously, morphology of the studied monolayers was visualized by the Brewster angle microscopy (BAM). This allowed evaluating the kind and magnitude of interactions which influence on the phase behaviour and structural properties of the monolayers. The obtained results can be helpful to reveal the mechanism of phospholipid antioxidant protection and important pharmacological (antimicrobial) role of lauryl gallate for production of effective therapeutic substances.
Collapse
|
16
|
Characteristics of the influence of auxins on physicochemical properties of membrane phospholipids in monolayers at the air/aqueous solution interface. Colloids Surf B Biointerfaces 2015; 136:1131-8. [DOI: 10.1016/j.colsurfb.2015.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022]
|
17
|
Miñones J, Muñoz M, Miñones Trillo J, Haro I, Busquets MA, Alsina MA. Miscibility and Langmuir Studies of the Interaction of E2 (279-298) Peptide Sequence of Hepatitis G Virus/GB Virus-C with Dipalmitoylphosphatidyl Choline and Dimiristoylphosphatidyl Choline Phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10161-10172. [PMID: 26161460 DOI: 10.1021/acs.langmuir.5b00712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mixed monolayers of E2(279-298), a synthetic peptide belonging to the structural protein E2 of the GB virus C (GBV-C), formerly know as hepatitis G virus (HGV), and the phospholipids dipalmitoylphosphatidyl choline (DPPC) and dimiristoylphosphatidyl choline (DMPC),which differ in acyl chains length, were obtained at the A/W interface (monolayers of extension) in order to provide new insights on E2/phospholipids interaction. Analysis of the surface pressure-area isotherms, Brewster angle microscopy images, relative thickness, and mean areas per molecule has allowed us to establish the conditions under which the mixed components of the monolayer are miscible or immiscible and know how the level of the E2/phospholipid interaction varies with the composition of the mixed films, the surface pressure, and the hydrocarbon chains length of the phospholipids. The steric hindrance caused by the penetration of the polymer strands into the more or less ordered hydrocarbon chains of the phospholipids was suggested to explain the differences in the peptide interaction with the phospholipids studied. Therefore, the novelty of results obtained with the Langmuir film balance technique, supplemented with BAM images allow us to achieve a deeper understanding of the interaction.
Collapse
Affiliation(s)
- J Miñones
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela , Campus Sur, 15782 Santiago de Compostela, Spain
| | - M Muñoz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Institut de Nanociència i Nanotecnologia (IN2UB) Associated Unit to the CSIC , Avenida Joan XXIII s/n 08028 Barcelona, Spain
| | - J Miñones Trillo
- Department of Physical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela , Campus Sur, 15782 Santiago de Compostela, Spain
| | - I Haro
- Unit of Synthesis & Biomedical Applications of Peptides IQAC-CSIC, Jordi Girona 18-26 08034 Barcelona, Spain
| | - M A Busquets
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Institut de Nanociència i Nanotecnologia (IN2UB) Associated Unit to the CSIC , Avenida Joan XXIII s/n 08028 Barcelona, Spain
| | - M A Alsina
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Institut de Nanociència i Nanotecnologia (IN2UB) Associated Unit to the CSIC , Avenida Joan XXIII s/n 08028 Barcelona, Spain
| |
Collapse
|
18
|
Ortmann T, Ahrens H, Lawrenz F, Gröning A, Nestler P, Günther JU, Helm CA. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6768-6779. [PMID: 24892967 DOI: 10.1021/la5001478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.
Collapse
Affiliation(s)
- Thomas Ortmann
- Institut für Physik, Ernst-Moritz-Arndt Universität , Felix-Hausdorff-Straße 6, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Peikert M, Chen X, Chi L, Brezesinski G, Janich S, Würthwein EU, Schäfer HJ. Phase behavior and molecular packing of octadecyl phenols and their methyl ethers at the air/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5780-9. [PMID: 24401011 DOI: 10.1021/la404340h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noncovalent molecular interactions, such as hydrogen bonding and van der Waals forces, play an important role in self-assembling to supramolecular structures. To study these forces, we chose monolayers at the air/water interface to limit the possible arrangements of the interacting molecules. Furthermore, monolayers provide useful tools to understand and study interactions between molecules in a controlled and fundamental way. The phase behavior and molecular packing of the phenols 1-(4-hydroxyphenyl)-octadecane (5a), 1-(3,4-dihydroxyphenyl)-octadecane (6), and 1-(2,3,4-trihydroxyphenyl)-octadecane (3) and their methyl ethers in monolayers at the air/water interface have been examined by π/A isotherms, Brewster angle microscopy (BAM), grazing incidence X-ray diffraction (GIXD) measurements, and density functional theory (DFT) calculations. The phenols are synthesized by Friedel-Crafts acylation of methoxybenzenes, hydrogenation of the resulting aryl ketones, and cleavage of the aryl methyl ethers. In the π/A isotherms and in BAM, the phenols show patches of the solid condensed phase at large molecular areas and the monolayers collapse at high pressures. Furthermore, the dimensions of the unit cell obtained by GIXD measurements are compatible with an arrangement of the phenyl rings that allows one aryl ring to interact with four adjacent phenyl rings in an edge-to-face arrangement, which leads to a significant binding energy. The experimental data are in good agreement with DFT calculations of 2D crystalline benzene and p-cresol arrangements. The enhanced monolayer stability of phenol 5a can be explained by hydrogen bonds of the hydroxyl group with water and van der Waals forces between the alkyl chains and aryl-aryl interactions.
Collapse
Affiliation(s)
- Miroslawa Peikert
- Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität, Correns-Str. 40, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Stefaniu C, Brezesinski G. Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface. Adv Colloid Interface Sci 2014; 207:265-79. [PMID: 24507806 DOI: 10.1016/j.cis.2014.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The use of highly brilliant synchrotron light sources in the middle of the 1980s for X-ray diffraction has revolutionized the research of condensed monolayers. Since then, monolayers gained popularity as convenient quasi two-dimensional model systems widely used in biophysics and material science. This review focuses on structures observed in one-component phospholipid monolayers used as simplified two-dimensional models of biological membranes. In a monolayer system the phase transitions can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction. Competing interactions between the different parts of the molecule are responsible for the different monolayer structures. These forces can be modified by chemical variations of the hydrophobic chain region, of the hydrophilic head group region or of the interfacial region between chains and head groups. Modifications of monolayer structures triggered by changes of the chemical structure of double-chain phospholipids are highlighted in this paper.
Collapse
|
21
|
Stefaniu C, Vilotijevic I, Brezesinski G, Seeberger PH, Varón Silva D. A comparative structural study in monolayers of GPI fragments and their binary mixtures. Phys Chem Chem Phys 2014; 16:9259-65. [PMID: 24714927 DOI: 10.1039/c4cp00567h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- C Stefaniu
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
22
|
Dynarowicz-Łątka P, Wnętrzak A, Broniatowski M, Flasiński M. Miscibility and phase separation in mixed erucylphosphocholine–DPPC monolayers. Colloids Surf B Biointerfaces 2013; 107:43-52. [DOI: 10.1016/j.colsurfb.2013.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/12/2023]
|
23
|
Christoforou M, Leontidis E, Brezesinski G. Effects of Sodium Salts of Lyotropic Anions on Low-Temperature, Ordered Lipid Monolayers. J Phys Chem B 2012. [DOI: 10.1021/jp307004e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Christoforou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| | - E. Leontidis
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| | - G. Brezesinski
- Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam-Golm, Germany
| |
Collapse
|
24
|
Flasiński M, Broniatowski M, Wydro P, Hąc-Wydro K, Dynarowicz-Łątka P. Behavior of platelet activating factor in membrane-mimicking environment. Langmuir monolayer study complemented with grazing incidence X-ray diffraction and Brewster angle microscopy. J Phys Chem B 2012; 116:10842-55. [PMID: 22834697 DOI: 10.1021/jp302907e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) belonging to the class of single-chained ether phospholipids is widely known from its essential biological activities. There is a growing body of evidence that some significant aspects of PAF actions are connected with its capability to direct intercalation into biomembranes' environment. Although this mechanism is of great importance in the perspective of understanding PAF implications in various physiological processes, in the literature, there is a lack of studies devoted to this subject. It is still unknown which is the exact influence of membrane composition, molecular organization, and its other properties on the PAF impact on cells and tissues. Unfortunately, the biological studies carried out on cell cultures do not provide satisfactory results, mainly because of the complexity of natural systems. In order to obtain insight into the behavior of PAF in a lipid environment at the molecular level, the application of appropriate model systems is required. Among them, Langmuir monolayers are very often applied as a simple but very efficient platform for studies of the interactions between membrane lipids. In the present paper, special attention is focused on the issue concerning the interactions between PAF and two representatives of membrane components occurring mainly in the outer leaflet of natural bilayers, namely, cholesterol and DPPC. The application of Langmuir monolayers enabled us to construct the effective model mimicking the exogenous incorporation of PAF into membrane environment. On the basis of the obtained results, a thorough discussion was carried out and the conclusions derived from the traditional thermodynamic analysis were confronted with microscopic analysis of surface domains and the GIXD results. The selection of experimental techniques enables us to obtain information regarding the miscibility and interactions in the binary mixed films as well as the molecular organization of film-forming molecules on water surface. The experiments revealed that the addition of the investigated single-chained ether phospholipid into both cholesterol and DPPC monolayers causes a considerable decrease of monolayer condensation. On the basis of thermodynamic analysis, it was found that PAF mixes and consequently interacts strongly with cholesterol, whereas its interactions with DPPC are thermodynamically unfavorable. Differences between the PAF influence on cholesterol and DPPC monolayer found its corroboration in the results obtained with the GIXD technique. Namely, the monolayer of DPPC can incorporate more PAF than the model membrane containing cholesterol. The obtained results indicate that short chained sn-2 ether phospholipid is able to modify model membrane properties in a concentration-dependent way.
Collapse
Affiliation(s)
- Michał Flasiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | |
Collapse
|
25
|
Heberle FA, Pan J, Standaert RF, Drazba P, Kučerka N, Katsaras J. Model-based approaches for the determination of lipid bilayer structure from small-angle neutron and X-ray scattering data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:875-90. [PMID: 22588484 DOI: 10.1007/s00249-012-0817-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Kučerka et al. (Biophys J 95:2356-2367, 2008; J Phys Chem B 116:232-239, 2012). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent to these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of naturally disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structure parameters, including the much-sought-after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.
Collapse
Affiliation(s)
- Frederick A Heberle
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2135-48. [PMID: 22583835 DOI: 10.1016/j.bbamem.2012.05.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.
Collapse
Affiliation(s)
- Jianjun Pan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Risović D, Frka S, Kozarac Z. The Structure of Percolating Lipid Monolayers. J Colloid Interface Sci 2012; 373:116-21. [DOI: 10.1016/j.jcis.2011.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
28
|
Monolayer and Brewster angle microscopy study of human serum albumin—Dipalmitoyl phosphatidyl choline mixtures at the air–water interface. Colloids Surf B Biointerfaces 2012; 92:64-73. [DOI: 10.1016/j.colsurfb.2011.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 12/24/2022]
|
29
|
Ghosh SK, Castorph S, Konovalov O, Salditt T, Jahn R, Holt M. Measuring Ca2+-induced structural changes in lipid monolayers: implications for synaptic vesicle exocytosis. Biophys J 2012; 102:1394-402. [PMID: 22455922 DOI: 10.1016/j.bpj.2012.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/04/2011] [Accepted: 01/05/2012] [Indexed: 01/08/2023] Open
Abstract
Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP(2), or addition of physiological levels of Ca(2+). Such structural changes may well modulate vesicle fusion in vivo.
Collapse
Affiliation(s)
- Sajal Kumar Ghosh
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Khattari Z, Langer U, Aliaskarisohi S, Ray A, Fischer T. Effects of soluble surfactants on the Langmuir monolayers compressibility: A comparative study using interfacial isotherms and fluorescence microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Sarangi NK, Patnaik A. Unraveling Tryptophan Modulated 2D DPPC Lattices: An Approach toward Stimuli Responsiveness of the Pulmonary Surfactant. J Phys Chem B 2011; 115:13551-62. [DOI: 10.1021/jp207814g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nirod Kumar Sarangi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Archita Patnaik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
32
|
Leiske DL, Meckes B, Miller CE, Wu C, Walker TW, Lin B, Meron M, Ketelson HA, Toney MF, Fuller GG. Insertion mechanism of a poly(ethylene oxide)-poly(butylene oxide) block copolymer into a DPPC monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11444-11450. [PMID: 21834565 DOI: 10.1021/la2016879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.
Collapse
Affiliation(s)
- Danielle L Leiske
- Chemical Engineering Department, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hąc-Wydro K, Flasiński M, Broniatowski M, Dynarowicz-Łątka P, Majewski J. Properties of β-sitostanol/DPPC monolayers studied with Grazing Incidence X-ray Diffraction (GIXD) and Brewster Angle Microscopy. J Colloid Interface Sci 2011; 364:133-9. [PMID: 21903220 DOI: 10.1016/j.jcis.2011.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Although the influence of structurally modified sterols on artificial membranes has been intensively investigated, studies on the properties of stanols, which are saturated analogs of sterols, are very rare. Therefore, we have performed Grazing Incidence X-ray Diffraction (GIXD) experiments aimed at studying in-plane organization of a plant stanol-β-sitostanol monolayer and its mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC at the air/water interface. The collected GIXD data, resulting in-plane parameters and BAM images provide information on molecular organization and in-plane ordering of the investigated films. It was found that the lateral organization of β-sitostanol/DPPC monolayers depends on their composition. The oblique structure of the in-plane lattice of tilted hydrophobic region of molecules, found for DPPC film, is maintained at 10 mol% of stanol in the system. However, at 30 and 90 mol% of stanol in the mixture, the arrangement of molecules is hexagonal and they are oriented perpendicularly to the interface. With the addition of stanol the extend of the in-plane order of the monolayers decreases. Moreover, in mixtures the ordered domains consist of both monolayer's components. Additionally, β-sitostanol film is of similar in-plane organization as the corresponding sterol monolayer (β-sitosterol) and stanol induces condensing effect on DPPC.
Collapse
Affiliation(s)
- Katarzyna Hąc-Wydro
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | |
Collapse
|
34
|
Pastorino L, Erokhina S, Soumetz FC, Bianchini P, Konovalov O, Diaspro A, Ruggiero C, Erokhin V. Collagen containing microcapsules: Smart containers for disease controlled therapy. J Colloid Interface Sci 2011; 357:56-62. [DOI: 10.1016/j.jcis.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
35
|
Miñones Conde M, Conde O, Trillo JM, Miñones J. Approach to knowledge of the interaction between the constituents of contact lenses and ocular tears: mixed monolayers of poly(methyl methacrylate) and dipalmitoyl phosphatidyl choline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3424-3435. [PMID: 21370907 DOI: 10.1021/la1051172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.
Collapse
Affiliation(s)
- M Miñones Conde
- Department of Optometry, School of Optics and Optometry, University of Santiago de Compostela, Campus Sur. 15706-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
36
|
Ziblat R, Leiserowitz L, Addadi L. Kristalline Lipiddomänen: Charakterisierung durch Röntgenbeugung und ihre Rolle in der Biologie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Ziblat R, Leiserowitz L, Addadi L. Crystalline lipid domains: characterization by X-ray diffraction and their relation to biology. Angew Chem Int Ed Engl 2011; 50:3620-9. [PMID: 21472900 DOI: 10.1002/anie.201004470] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Indexed: 12/29/2022]
Abstract
Biological membranes comprise thousands of different lipids, differing in their alkyl chains, headgroups, and degree of saturation. It is estimated that 5% of the genes in the human genome are responsible for regulating the lipid composition of cell membranes. Conceivably, the functional explanation for this diversity is found, at least in part, in the propensity of lipids to segregate into distinct domains, which are important for cell function. X-ray diffraction has been used increasingly to characterize the packing and phase behavior of lipids in membranes. Crystalline domains have been studied in synthetic membranes using wide- and small-angle X-ray scattering, and grazing incidence X-ray diffraction. Herein we summarize recent results obtained using the various X-ray methods, discuss the correlation between crystalline domains and liquid ordered domains studied with other techniques, and the relevance of crystalline domains to functional lipid domains in biological membranes.
Collapse
Affiliation(s)
- Roy Ziblat
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
38
|
Molecular organization of the tear fluid lipid layer. Biophys J 2011; 99:2559-67. [PMID: 20959097 DOI: 10.1016/j.bpj.2010.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/28/2010] [Indexed: 02/01/2023] Open
Abstract
The tear fluid protects the corneal epithelium from drying out as well as from invasion by pathogens. It also provides cell nutrients. Similarly to lung surfactant, it is composed of an aqueous phase covered by a lipid layer. Here we describe the molecular organization of the anterior lipid layer of the tear film. Artificial tear fluid lipid layers (ATFLLs) composed of egg yolk phosphatidylcholine (60 mol %), free fatty acids (20 mol %), cholesteryl oleate (10 mol %), and triglycerides (10 mol %) were deposited on the air-water interface and their physico-chemical behavior was compared to egg-yolk phosphatidylcholine monolayers by using Langmuir-film balance techniques, x-ray diffraction, and imaging techniques as well as in silico molecular level simulations. At low surface pressures, ATFLLs were organized at the air-water interface as heterogeneous monomolecular films. Upon compression the ATFLLs collapsed toward the air phase and formed hemispherelike lipid aggregates. This transition was reversible upon relaxation. These results were confirmed by molecular-level simulations of ATFLL, which further provided molecular-scale insight into the molecular distributions inside and dynamics of the tear film. Similar type of behavior is observed in lung surfactant but the folding takes place toward the aqueous phase. The results provide novel information of the function of lipids in the tear fluid.
Collapse
|
39
|
Flasiński M, Broniatowski M, Majewski J, Dynarowicz-Łątka P. X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of β-cyclodextrin with model lipid membranes. J Colloid Interface Sci 2010; 348:511-21. [DOI: 10.1016/j.jcis.2010.04.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/16/2022]
|
40
|
Funari SS, Struth B, Rattay B, Rapp G, Brezesinski G. The influence of hydrophilic spacers on the phase behavior of ether lipids. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2009.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Chen X, Allen HC. Interactions of dimethylsulfoxide with a dipalmitoylphosphatidylcholine monolayer studied by vibrational sum frequency generation. J Phys Chem A 2010; 113:12655-62. [PMID: 19751059 DOI: 10.1021/jp905066w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interactions between phospholipid monolayers and dimethylsulfoxide (DMSO) molecules were investigated by vibrational sum frequency generation (VSFG) spectroscopy in a Langmuir trough system. Both the head and the tail groups of dipalmitoylphosphatidylcholine (DPPC) as well as DMSO were probed to provide a comprehensive understanding of the interactions between DPPC and DMSO molecules. A condensing effect is observed for the DPPC monolayer on a concentrated DMSO subphase (>20 mol %). This effect results in a well-ordered conformation for the DPPC alkyl chains at very large mean molecular areas. Interactions between DMSO and DPPC headgroups were also studied. DMSO-induced dehydration of the DPPC phosphate group is revealed at DMSO concentration above 10 mol %. The average orientation of DMSO with DPPC versus dipalmitoylphosphate sodium salt (DPPA) monolayers was compared. The comparison revealed that DMSO molecules are perturbed and reorient because of the interfacial electric field created by the charged lipid headgroups. The orientation of the DPPC alkyl chains remains nearly unchanged in the liquid condensed phase with the addition of DMSO. This suggests that DMSO molecules are expelled from the condensed monolayer. In addition, implications for the DMSO-induced permeability enhancement of biological membranes from this work are discussed.
Collapse
Affiliation(s)
- Xiangke Chen
- The Ohio State University, Department of Chemistry, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
42
|
Gzyl-Malcher B, Filek M, Brezesinski G. Influence of cadmium and selenate on the interactions between hormones and phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13071-13076. [PMID: 19831406 DOI: 10.1021/la901653y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, the influence of plant hormones, negatively charged indolilo-3-acetic acid (IAA) and positively charged zeatin, on lipid membranes was studied. As models of negatively and positively charged biological membranes, monolayers of 1,2-dimyristoyl-sn-glycero-3-[phospho-l-serine] (DMPS) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP) at the water/air interface were used, respectively. Additionally, the effect of cadmium and selenium ions on the interactions between hormones and lipids was studied. Surface pressure and surface potential measurements, Brewster angle microscopy (BAM), and grazing incidence X-ray diffraction (GIXD) were used for that purpose. Both IAA and zeatin led to an expansion of the lipid monolayer caused by electrostatic interactions between oppositely charged groups: negatively charged polar group of DMPS and positively charged zeatin or positive DPTAP headgroup and negative IAA. The addition of ions to the subphase containing hormones causes competitive interactions of both solutes with oppositely charged lipid polar heads. The largest effect was observed for IAA. While zeatin does not change the domain shape of DMPS, IAA causes the complete disappearance of characteristic DPTAP domains. Addition of SeO(4)(2-) ions causes restoration of DPTAP domains observed on pure water.
Collapse
Affiliation(s)
- Barbara Gzyl-Malcher
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
43
|
Ziblat R, Kjaer K, Leiserowitz L, Addadi L. Structure of Cholesterol/Lipid Ordered Domains in Monolayers and Single Hydrated Bilayers. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Ziblat R, Kjaer K, Leiserowitz L, Addadi L. Structure of Cholesterol/Lipid Ordered Domains in Monolayers and Single Hydrated Bilayers. Angew Chem Int Ed Engl 2009; 48:8958-61. [DOI: 10.1002/anie.200903847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Nakahara H, Dudek A, Nakamura Y, Lee S, Chang CH, Shibata O. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air–water interface by an IRRAS measurement. Colloids Surf B Biointerfaces 2009; 68:61-7. [DOI: 10.1016/j.colsurfb.2008.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/12/2008] [Accepted: 09/14/2008] [Indexed: 11/29/2022]
|
46
|
Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys J 2008; 95:4102-14. [PMID: 18923102 DOI: 10.1529/biophysj.107.123976] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article reports an all-atom molecular dynamics simulation to study a model pulmonary surfactant film interacting with a carbonaceous nanoparticle. The pulmonary surfactant is modeled as a dipalmitoylphosphatidylcholine monolayer with a peptide consisting of the first 25 residues from surfactant protein B. The nanoparticle model with a chemical formula C188H53 was generated using a computational code for combustion conditions. The nanoparticle has a carbon cage structure reminiscent of the buckyballs with open ends. A series of molecular-scale structural and dynamical properties of the surfactant film in the absence and presence of nanoparticle are analyzed, including radial distribution functions, mean-square displacements of lipids and nanoparticle, chain tilt angle, and the surfactant protein B peptide helix tilt angle. The results show that the nanoparticle affects the structure and packing of the lipids and peptide in the film, and it appears that the nanoparticle and peptide repel each other. The ability of the nanoparticle to translocate the surfactant film is one of the most important predictions of this study. The potential of mean force for dragging the particle through the film provides such information. The reported potential of mean force suggests that the nanoparticle can easily penetrate the monolayer but further translocation to the water phase is energetically prohibitive. The implication is that nanoparticles can interact with the lung surfactant, as supported by recent experimental data by Bakshi et al.
Collapse
|
47
|
Erokhina S, Berzina T, Cristofolini L, Erokhin V, Folli C, Konovalov O, Marino IG, Fontana MP. X-ray reflectivity measurements of layer-by-layer films at the solid/liquid interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12093-12096. [PMID: 18823138 DOI: 10.1021/la802060e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this Letter, we present a method for the decoration of layer-by-layer (LbL) structures by heavy metal ions, which allows X-ray reflectivity (XRR) measurements at the solid/water interface. The improved contrast has allowed us to obtain well-structured X-ray reflectivity curves from samples at the liquid/solid interface that can be used for the film structure modeling. The developed technique was also used to follow the formation of complexes between DNA and the LbL multilayer. The XRR data are confirmed by independent null-ellipsometric measurements at the solid/liquid interface on the very same architectures.
Collapse
Affiliation(s)
- Svetlana Erokhina
- Department of Physics and Centro SOFT CNR-INFM, University of Parma, Viale Usberti 7 A, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brezesinski G, Vollhardt D. Model Studies of the Interfacial Ordering of Oleanolic Acid in the Cuticula. Chemphyschem 2008; 9:1670-2. [DOI: 10.1002/cphc.200800329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Chi EY, Ege C, Winans A, Majewski J, Wu G, Kjaer K, Lee KYC. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide. Proteins 2008; 72:1-24. [PMID: 18186465 DOI: 10.1002/prot.21887] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-beta (Abeta) peptide. Electrostatic interactions between Abeta40 and the phospholipid headgroup have been found to control the association and insertion of monomeric Abeta into lipid monolayers, where Abeta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of Abeta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, X-ray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of Abeta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipalmitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of Abeta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on Abeta. Furthermore, incubating Abeta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of Abeta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of Abeta in vivo. Our results implicate that the adsorption of Abeta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD.
Collapse
Affiliation(s)
- Eva Y Chi
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, IL 60307, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Ka Yee C. Lee
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, The University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|