1
|
Chen Y, Huang JH, Phong C, Ferrell JE. Viscosity-dependent control of protein synthesis and degradation. Nat Commun 2024; 15:2149. [PMID: 38459041 PMCID: PMC10923802 DOI: 10.1038/s41467-024-46447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
It has been proposed that the concentration of proteins in the cytoplasm maximizes the speed of important biochemical reactions. Here we have used Xenopus egg extracts, which can be diluted or concentrated to yield a range of cytoplasmic protein concentrations, to test the effect of cytoplasmic concentration on mRNA translation and protein degradation. We find that protein synthesis rates are maximal in ~1x cytoplasm, whereas protein degradation continues to rise to a higher optimal concentration of ~1.8x. We show that this difference in optima can be attributed to a greater sensitivity of translation to cytoplasmic viscosity. The different concentration optima could produce a negative feedback homeostatic system, where increasing the cytoplasmic protein concentration above the 1x physiological level increases the viscosity of the cytoplasm, which selectively inhibits translation and drives the system back toward the 1x set point.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Jo-Hsi Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Connie Phong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Chen Y, Huang JH, Phong C, Ferrell JE. Protein homeostasis from diffusion-dependent control of protein synthesis and degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538146. [PMID: 37162886 PMCID: PMC10168264 DOI: 10.1101/2023.04.24.538146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It has been proposed that the concentration of proteins in the cytoplasm maximizes the speed of important biochemical reactions. Here we have used the Xenopus extract system, which can be diluted or concentrated to yield a range of cytoplasmic protein concentrations, to test the effect of cytoplasmic concentration on mRNA translation and protein degradation. We found that protein synthesis rates are maximal in ~1x cytoplasm, whereas protein degradation continues to rise to an optimal concentration of ~1.8x. This can be attributed to the greater sensitivity of translation to cytoplasmic viscosity, perhaps because it involves unusually large macromolecular complexes like polyribosomes. The different concentration optima sets up a negative feedback homeostatic system, where increasing the cytoplasmic protein concentration above the 1x physiological level increases the viscosity of the cytoplasm, which selectively inhibits translation and drives the system back toward the 1x set point.
Collapse
Affiliation(s)
- Yuping Chen
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- These authors contributed equally
- Corresponding authors
| | - Jo-Hsi Huang
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- These authors contributed equally
| | - Connie Phong
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
| | - James E. Ferrell
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- Dept. of Biochemistry, Stanford University School of Medicine, Stanford CA 94305
- Corresponding authors
- Lead contact
| |
Collapse
|
3
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
4
|
Balatsos NA, Havredaki M, Tsiapalis CM. Anticancer Drug Action on Poly(A) Polymerase Activity and Isoforms during Hela and Wish Cell Apoptosis. Int J Biol Markers 2018; 15:171-8. [PMID: 10883892 DOI: 10.1177/172460080001500208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(A) polymerase (PAP; EC 2.7.7.19) catalyzes mRNA polyadenylation. Its activity and isoform levels vary during cell cycle transformation and apoptosis. It has become widely accepted that cell death after DNA damage by anticancer agents is primarily the result of apoptosis and that cells able to evade apoptosis will be resistant to cell killing. The therapeutic agents interferon (IFN), 5-fluorouracil (5-FU) and tamoxifen (Tam) with different mechanisms of action mediate both partial dephosphorylation and inactivation of PAP, detected by immunoblotting analysis and PAP enzyme assay, respectively. We examined the apoptotic tendencies of HeLa and WISH cell lines caused by one of the drugs used, 5-FU. The trend in the cells examined, observed by DAPI and/or DNA fragmentation assay, was found to be accompanied by and reversibly related to PAP activity levels and PAP lower mobility phosphorylated forms of 106 and 100 kDa isoforms. Moreover, a cell type-modulated, differential response of HeLa (chemosensitive cells) versus WISH (drug-resistant diploid cells) has been revealed. This finding yields information on the possible use of PAP as a tumor marker involved in cell commitment and/or induction of apoptosis and may help to improve our understanding of tumor cell sensitivity to anticancer agents.
Collapse
MESH Headings
- Amnion/cytology
- Amnion/drug effects
- Amnion/enzymology
- Amnion/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- DNA Fragmentation
- Drug Resistance, Neoplasm
- Enzyme Induction/drug effects
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells/cytology
- HeLa Cells/drug effects
- HeLa Cells/enzymology
- HeLa Cells/metabolism
- Humans
- Interferon-alpha/pharmacology
- Neoplasm Proteins/analysis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Polynucleotide Adenylyltransferase/analysis
- Polynucleotide Adenylyltransferase/biosynthesis
- Polynucleotide Adenylyltransferase/genetics
- Protein Isoforms/analysis
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- N A Balatsos
- Department of Biochemistry, Papanikolaou Research Center, Saint Savvas Hospital, Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
5
|
Kang Q, Pomerening JR. Punctuated cyclin synthesis drives early embryonic cell cycle oscillations. Mol Biol Cell 2011; 23:284-96. [PMID: 22130797 PMCID: PMC3258173 DOI: 10.1091/mbc.e11-09-0768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclin B activates cyclin-dependent kinase 1 (CDK1) at mitosis, but conflicting views have emerged on the dynamics of its synthesis during embryonic cycles, ranging from continuous translation to rapid synthesis during mitosis. Here we show that a CDK1-mediated negative-feedback loop attenuates cyclin production before mitosis. Cyclin B plateaus before peak CDK1 activation, and proteasome inhibition caused minimal accumulation during mitosis. Inhibiting CDK1 permitted continual cyclin B synthesis, whereas adding nondegradable cyclin stalled it. Cycloheximide treatment before mitosis affected neither cyclin levels nor mitotic entry, corroborating this repression. Attenuated cyclin production collaborates with its destruction, since excess cyclin B1 mRNA accelerated cyclin synthesis and caused incomplete proteolysis and mitotic arrest. This repression involved neither adenylation nor the 3' untranslated region, but it corresponded with a shift in cyclin B1 mRNA from polysome to nonpolysome fractions. A pulse-driven CDK1-anaphase-promoting complex (APC) model corroborated these results, revealing reduced cyclin levels during an oscillation and permitting more effective removal. This design also increased the robustness of the oscillator, with lessened sensitivity to changes in cyclin synthesis rate. Taken together, the results of this study underscore that attenuating cyclin synthesis late in interphase improves both the efficiency and robustness of the CDK1-APC oscillator.
Collapse
Affiliation(s)
- Qing Kang
- Department of Biology, Indiana University, Bloomington, IN 47405-7003, USA
| | | |
Collapse
|
6
|
Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O. eEF1B: At the dawn of the 21st century. ACTA ACUST UNITED AC 2006; 1759:13-31. [PMID: 16624425 DOI: 10.1016/j.bbaexp.2006.02.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 12/18/2022]
Abstract
Translational regulation of gene expression in eukaryotes can rapidly and accurately control cell activity in response to stimuli or when rapidly dividing. There is increasing evidence for a key role of the elongation step in this process. Elongation factor-1 (eEF1), which is responsible for aminoacyl-tRNA transfer on the ribosome, is comprised of two entities: a G-protein named eEF1A and a nucleotide exchange factor, eEF1B. The multifunctional nature of eEF1A, as well as its oncogenic potential, is currently the subject of a number of studies. Until recently, less work has been done on eEF1B. This review describes the macromolecular complexity of eEF1B, its multiple phosphorylation sites and numerous cellular partners, which lead us to suggest an essential role for the factor in the control of gene expression, particularly during the cell cycle.
Collapse
Affiliation(s)
- Frédéric Le Sourd
- Equipe Cycle Cellulaire et Développement, Unité Mer and Sante, UMR 7150 CNRS/UPMC, Station Biologique de Roscoff, BP 74, 29682 Roscoff Cedex, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Le Breton M, Cormier P, Bellé R, Mulner-Lorillon O, Morales J. Translational control during mitosis. Biochimie 2006; 87:805-11. [PMID: 15951098 DOI: 10.1016/j.biochi.2005.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/09/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Translation is now recognized as an important process in the regulation of gene expression. During the cell cycle, translation is tightly regulated. Protein synthesis is necessary for entry into and progression through mitosis and conversely, modifications of translational activity are observed during the cell cycle. This review focuses on translational control during mitosis (or M-phase) and the role of CDK1/cyclin B, the universal cell cycle regulator implicated in the G2/M transition, in protein synthesis regulation.
Collapse
Affiliation(s)
- Magali Le Breton
- Equipe Cycle Cellulaire et Développement, UMR 7150 CNRS/UPMC, Station Biologique de Roscoff, BP 74, 29682 Roscoff cedex, France
| | | | | | | | | |
Collapse
|
8
|
Pomerening JR, Valente L, Kinzy TG, Jacobs TW. Mutation of a conserved CDK site converts a metazoan Elongation Factor 1Bbeta subunit into a replacement for yeast eEF1Balpha. Mol Genet Genomics 2003; 269:776-88. [PMID: 12898219 DOI: 10.1007/s00438-003-0888-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 06/13/2003] [Indexed: 10/26/2022]
Abstract
Elongation factor subunit eEF1Bbeta (formerly EF-1beta in plants and EF-1delta in animals) was identified and cloned in a screen for proteins from pea that interact with a cyclin-dependent kinase (CDK). CDKs are enzymes that regulate progression through meiotic and mitotic cell cycles in eukaryotes. eEF1Bbeta and the related protein eEF1Balpha (formerly EF-1beta' in plants and EF-1beta in animals and fungi) can catalyze GTP/GDP exchange on the G-protein eEF1A (formerly EF-1alpha in plants, animals and fungi) during the elongation phase of protein synthesis in eukaryotes. Recombinant Cdc2 and its native homologues from pea extracts associated both in vitro and in vivo with eEF1Bbeta. A Cdc2-cyclin B complex phosphorylated recombinant plant eEF1Bbetas, but not eEF1Balpha. These interactions between CDK and eEF1Bbeta prompted investigations into the in vivo consequences of this relationship. Expression of cDNAs encoding rice or pea eEF1Bbeta subunits failed to complement a Saccharomyces cerevisiae mutant deleted for the eEF1Balpha gene, as was previously observed for the human eEF1Bbeta. However, replacement of Thr91, the sole consensus CDK phosphorylation site in pea eEF1Bbeta, with alanine allowed the pea protein to substitute for eEF1Balpha function in vivo. In addition, this rescued strain was severely cold sensitive, and more sensitive to translational inhibitors than wild-type yeast. Taken together, these results suggest a physiological connection between the cyclin-dependent class of kinases and a translational elongation factor in mitotic cells, and provide the first in vivo evidence that an altered form of eEF1Bbeta can serve as the guanine nucleotide exchange factor for eEF1A.
Collapse
Affiliation(s)
- J R Pomerening
- Department of Molecular Pharmacology, Stanford University School of Medicine, 269 West Campus Drive, CCSR 3160, Stanford, CA 94305-5174, USA.
| | | | | | | |
Collapse
|
9
|
Le Breton M, Bellé R, Cormier P, Mulner-Lorillon O, Morales J. M-phase regulation of the recruitment of mRNAs onto polysomes using the CDK1/cyclin B inhibitor aminopurvalanol. Biochem Biophys Res Commun 2003; 306:880-6. [PMID: 12821124 DOI: 10.1016/s0006-291x(03)01083-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Translation under the control of the universal cell cycle regulator CDK1/cyclin B was investigated during the first cell cycle in sea urchin embryos. The CDK1/cyclin B inhibitor aminopurvalanol arrested embryos at the G2/M transition. Polysomal mRNAs were purified from control and arrested embryos, and screened for specific mRNA recruitment or release at M-phase by subtractive hybridization. The polysomal repartition of clones issued from this screen was analyzed. Three specific mRNAs were selectively recruited onto polysomes at M-phase. Conversely, two other specific mRNAs were released from polysomes. The isolation of these translationally regulated mRNAs gives now important tools for insights into the regulation of protein synthesis by the cell cycle regulator CDK1-cyclin B.
Collapse
Affiliation(s)
- Magali Le Breton
- Station Biologique de Roscoff, UMR 7127, CNRS/UPMC, BP 74, 29682, Roscoff Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Abstract
Several cyclins and cdks have been cloned in Xenopus, but their developmental expression has not been thoroughly examined. We have analyzed the temporal and spatial expression of cdk1, cdk2, cdk4 and cyclins D1, D2, E, A1, A2 and B1 by in situ hybridization. The transcripts of these cyclins and cdks exhibit striking tissue-restricted expression patterns very early in development that cannot be strictly correlated with proliferation. While the cdks and their activating cyclins are expressed in somewhat overlapping patterns, they are not precisely coincident. Additionally, maternal and zygotic cyclin forms demonstrate markedly different expression patterns.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XZ, UK
| | | |
Collapse
|
11
|
Nairn AC, Matsushita M, Nastiuk K, Horiuchi A, Mitsui K, Shimizu Y, Palfrey HC. Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:91-129. [PMID: 11575162 DOI: 10.1007/978-3-662-09889-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- A C Nairn
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Vée S, Lafanechère L, Fisher D, Wehland J, Job D, Picard A. Evidence for a role of the (alpha)-tubulin C terminus in the regulation of cyclin B synthesis in developing oocytes. J Cell Sci 2001; 114:887-98. [PMID: 11181172 DOI: 10.1242/jcs.114.5.887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microinjected mAb YL1/2, an (alpha)-tubulin antibody specific for the tyrosinated form of the protein, blocks the cell cycle in developing oocytes. Here, we have investigated the mechanism involved in the mAb effect. Both developing starfish and Xenopus oocytes were injected with two different (alpha)-tubulin C terminus antibodies. The injected antibodies blocked cell entry into mitosis through specific inhibition of cyclin B synthesis. The antibody effect was independent of the presence or absence of polymerized microtubules and was mimicked by injected synthetic peptides corresponding to the tyrosinated (alpha)-tubulin C terminus, whereas peptides lacking the terminal tyrosine were ineffective. These results indicate that tyrosinated (alpha)-tubulin, or another protein sharing the same C-terminal epitope, is involved in specific regulation of cyclin B synthesis in developing oocytes.
Collapse
Affiliation(s)
- S Vée
- Laboratoire Arago, BP 44, Banyuls sur mer F-66651 cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Datta B, Datta R, Mukherjee S, Zhang Z. Increased phosphorylation of eukaryotic initiation factor 2alpha at the G2/M boundary in human osteosarcoma cells correlates with deglycosylation of p67 and a decreased rate of protein synthesis. Exp Cell Res 1999; 250:223-30. [PMID: 10388536 DOI: 10.1006/excr.1999.4508] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate of protein synthesis in higher eukaryotes is largely regulated at the level of eIF2alpha phosphorylation by its kinases. A cellular glycoprotein, p67, protects eIF2alpha from phosphorylation. An enzyme, p67-deglycosylase, when active, removes the carbohydrate moieties from p67 and inactivates it. Subsequently, protein synthesis is inhibited. During mitosis the overall rate of protein synthesis sharply declines. To understand the molecular mechanism underlying this inhibition of protein synthesis, we have examined the phosphorylation of eIF2alpha and the activity of p67. We find that the phosphorylation of eIF2alpha increases at the G2/M border of cycling U2-OS cells, and p67 is deglycosylated at the same period of the cell cycle. In addition, the level and the activity of p67-deglycosylase also increase at the G2/M boundary of cycling U2-OS cells. These results thus provide an important in vivo correlation between the increased phosphorylation of eIF2alpha and deglycosylation of p67 by p67-deglycosylase at the G2/M boundary of cycling U2-OS cells. This may explain in part the inhibition of protein synthesis in U2-OS cells approaching mitosis.
Collapse
Affiliation(s)
- B Datta
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, Nebraska, 68588, USA.
| | | | | | | |
Collapse
|
14
|
Zhao W, Manley JL. Deregulation of poly(A) polymerase interferes with cell growth. Mol Cell Biol 1998; 18:5010-20. [PMID: 9710585 PMCID: PMC109086 DOI: 10.1128/mcb.18.9.5010] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Accepted: 06/09/1998] [Indexed: 11/20/2022] Open
Abstract
Vertebrate poly(A) polymerase (PAP) contains a catalytic domain and a C-terminal Ser-Thr-rich regulatory region. Consensus and nonconsensus cyclin-dependent kinase (cdk) sites are conserved in the Ser-Thr-rich region in vertebrate PAPs. PAP is phosphorylated by cdc2-cyclin B on these sites in vitro and in vivo and is inactivated by hyperphosphorylation in M-phase cells, when cdc2-cyclin B is active. In the experiments described here, we undertook a genetic approach in chicken DT40 cells to study the function of PAP phosphorylation. We found that PAP is highly conserved in chicken and is essential in DT40 cells. While cells could tolerate reduced levels of PAP, even modest overexpression of either wild-type PAP or a mutant PAP with two consensus cdk sites mutated (cdk- PAP) was highly deleterious and at a minimum resulted in reduced growth rates. Importantly, cells that expressed cdk- PAP had a significantly lower growth rate than did cells that expressed similar levels of wild-type PAP, which was reflected in increased accumulation of cells in the G0-G1 phase of the cell cycle. We propose that the lower growth rate is due to the failure of hyperphosphorylation and thus M-phase inactivation of cdk- PAP.
Collapse
Affiliation(s)
- W Zhao
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
15
|
Seghezzi W, Chua K, Shanahan F, Gozani O, Reed R, Lees E. Cyclin E associates with components of the pre-mRNA splicing machinery in mammalian cells. Mol Cell Biol 1998; 18:4526-36. [PMID: 9671462 PMCID: PMC109038 DOI: 10.1128/mcb.18.8.4526] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1998] [Accepted: 05/13/1998] [Indexed: 02/08/2023] Open
Abstract
Cyclin E-cdk2 is a critical regulator of cell cycle progression from G1 into S phase in mammalian cells. Despite this important function little is known about the downstream targets of this cyclin-kinase complex. Here we have identified components of the pre-mRNA processing machinery as potential targets of cyclin E-cdk2. Cyclin E-specific antibodies coprecipitated a number of cyclin E-associated proteins from cell lysates, among which are the spliceosome-associated proteins, SAP 114, SAP 145, and SAP 155, as well as the snRNP core proteins B' and B. The three SAPs are all subunits of the essential splicing factor SF3, a component of U2 snRNP. Cyclin E antibodies also specifically immunoprecipitated U2 snRNA and the spliceosome from splicing extracts. We demonstrate that SAP 155 serves as a substrate for cyclin E-cdk2 in vitro and that its phosphorylation in the cyclin E complex can be inhibited by the cdk-specific inhibitor p21. SAP 155 contains numerous cdk consensus phosphorylation sites in its N terminus and is phosphorylated prior to catalytic step II of the splicing pathway, suggesting a potential role for cdk regulation. These findings provide evidence that pre-mRNA splicing may be linked to the cell cycle machinery in mammalian cells.
Collapse
Affiliation(s)
- W Seghezzi
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304-1104, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Colgan DF, Murthy KG, Zhao W, Prives C, Manley JL. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J 1998; 17:1053-62. [PMID: 9463383 PMCID: PMC1170454 DOI: 10.1093/emboj/17.4.1053] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We showed previously that p34(cdc2)/cyclin B (MPF) hyperphosphorylates poly(A) polymerase (PAP) during M-phase of the cell cycle, causing repression of its enzymatic activity. Mutation of three cyclin-dependent kinase (cdk) consensus sites in the PAP C-terminal regulatory domain prevented complete phosphorylation and MPF-mediated repression. Here we show that PAP also contains four nearby non-consensus cdk sites that are phosphorylated by MPF. Remarkably, full phosphorylation of all these cdk sites was required for repression of PAP activity, and partial phosphorylation had no detectable effect. The consensus sites were phosphorylated in vitro at a 10-fold lower concentration of MPF than the non-consensus sites. Consistent with this, during meiotic maturation of Xenopus oocytes, consensus sites were phosphorylated prior to the non-consensus sites at metaphase of meiosis I, and remained so throughout maturation, while the non-consensus sites did not become fully phosphorylated until after 12 h of metaphase II arrest. We propose that PAP's multiple cdk sites, and their differential sensitivity to MPF, provide a mechanism to link repression specifically to late M-phase. We discuss the possibility that this reflects a general means to control the timing of cdk-dependent regulatory events during the cell cycle.
Collapse
Affiliation(s)
- D F Colgan
- Department of Biological Sciences, Columbia University, New York 10027, USA
| | | | | | | | | |
Collapse
|
17
|
Stukenberg PT, Lustig KD, McGarry TJ, King RW, Kuang J, Kirschner MW. Systematic identification of mitotic phosphoproteins. Curr Biol 1997; 7:338-48. [PMID: 9115395 DOI: 10.1016/s0960-9822(06)00157-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are thought to initiate and coordinate cell division processes by sequentially phosphorylating key targets; in most cases these substrates remain unidentified. RESULTS Using a screen that scores for phosphorylation of proteins, which were translated from pools of cDNA plasmids in vitro, by either phosphoepitope antibody recognition or electrophoretic mobility shifts, we have identified 20 mitotically phosphorylated proteins from Xenopus embryos, 15 of which have sequence similarity to other proteins. Of these proteins, five have previously been shown to be phosphorylated during mitosis (epithelial-microtubule associated protein-115, Oct91, Elongation factor 1gamma, BRG1 and Ribosomal protein L18A), five are related to proteins postulated to have roles in mitosis (epithelial-microtubule associated protein-115, Schizosaccharomyces pombe Cdc5, innercentrosome protein, BRG1 and the RNA helicase WM6), and nine are related to transcription factors (BRG1, negative co-factor 2alpha, Oct91, S. pombe Cdc5, HoxD1, Sox3, Vent2, and two isoforms of Xbr1b). Of 16 substrates tested, 14 can be directly phosphorylated in vitro by the mitotic CDK, cyclin B-Cdc2, although three of these may be physiological substrates of other kinases activated during mitosis. CONCLUSIONS Examination of this broad set of mitotic phosphoproteins has allowed us to draw three conclusions about how the activation of CDKs regulates cell-cycle events. First, Cdc2 itself appears to directly phosphorylate most of the mitotic phosphoproteins. Second, during mitosis most of the substrates are phosphorylated more than once and a number may be targets of multiple kinases, suggesting combinatorial regulation. Third, the large fraction of mitotic phosphoproteins that are presumptive transcription factors, two of which have been previously shown to dissociate from DNA during mitosis, suggests that an important function of mitotic phosphorylation is to strip the chromatin of proteins associated with gene expression.
Collapse
Affiliation(s)
- P T Stukenberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Keating TJ, Fukami K, Robinson KR. Inhibition of protein synthesis in frog (Xenopus laevis) egg extracts by an antibody against phosphatidylinositol 4,5-bisphosphate. Biochem J 1996; 317 ( Pt 3):643-6. [PMID: 8760344 PMCID: PMC1217534 DOI: 10.1042/bj3170643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The antibody kt10, which is directed against the phospholipid PtdIns(4,5)P2, inhibits protein synthesis when added to cytosolic extracts prepared from frog eggs. Addition of stable analogues of diacylglycerol and Ins(1,4,5)P3 failed to rescue the inhibition of translation, suggesting that the effect of the antibody was not to block hydrolysis of PtdIns(4,5)P2. Neomycin, which also binds PtdIns(4,5)P2, produced a similar reduction in protein-synthesis levels in the extract system, supporting the idea that it is the interaction of the antibody with PtdIns(4,5)P2 that is producing the effect.
Collapse
Affiliation(s)
- T J Keating
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | |
Collapse
|
19
|
Palfrey HC, Nairn AC. Calcium-dependent regulation of protein synthesis. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:191-223. [PMID: 7695990 DOI: 10.1016/s1040-7952(05)80008-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H C Palfrey
- Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637
| | | |
Collapse
|