1
|
Abstract
AbstractNatriuretic peptides (NPs) regulate salt and water homeostasis by inducing natriuresis and diuresis in the kidney. These actions in addition to those via the heart and vascular system play important roles in the regulation of blood pressure. In the central nervous system NPs play a significant role in neuronal development, synaptic transmission and neuroprotection. Currently, six different human NPs have been described: atrial natriuretic peptide (ANP), urodilatin (URO, renal natriuretic peptide), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) as well as guanylin and uroguanylin. ANP, URO and BNP activate the natriuretic peptide receptor A (NPR-A or guanylate cyclase A (GC-A)) while CNP activates natriuretic peptide receptor B (NPR-B or guanylate cyclase B (GC-B)). Guanylin and uroguanylin are known to activate guanylate cyclase C (GC-C). The receptors GC-A, GC-B, and GC-C are widely expressed in the human body. Currently, GC-B and CNP seems to have the highest expression in central nervous system compared to other NPs and their receptors. All known NPs generate intracellular cyclic GMP (cGMP) by activating their specific guanylate cyclase receptors. Subsequently, cGMP is able to activate protein kinase I or II (PKG I or II) and/or directly regulate transmembrane proteins such as ion channels, transporters and pumps. NPs also bind to the natriuretic peptide receptor C (also called clearance receptor NPR-C) which is a major pathway for the degradation of NPs and has no guanylate cyclase activity. In this review we will focus on new insights regarding the physiological effects of NPs in the brain, especially specific areas of their signaling pathways in neurons and glial cells.
Collapse
|
2
|
Cao LH, Yang XL. Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 2007; 84:234-48. [PMID: 18215455 DOI: 10.1016/j.pneurobio.2007.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/05/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type NPs, are a family of structurally related but genetically distinct peptides. These peptides, along with their receptors (NPRs), are long known to be involved in the regulation of various physiological functions, such as diuresis, natriuresis, and blood flow. Recently, abundant evidence shows that NPs and NPRs are widely distributed in the central nervous system (CNS), suggesting possible roles of NPs in modulating physiological functions of the CNS. This review starts with a brief summary of relevant background information, such as molecular structures of NPs and NPRs and general intracellular mechanisms after activation of NPRs. We then provide a detailed description of the expression profiles of NPs and NPRs in the CNS and an in-depth discussion of how NPs are involved in neural development, neurotransmitter release, synaptic transmission and neuroprotection through activation of NPRs.
Collapse
Affiliation(s)
- Li-Hui Cao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | |
Collapse
|
3
|
Saavedra JM, Pavel J. Angiotensin II AT1 receptor antagonists inhibit the angiotensin-CRF-AVP axis and are potentially useful for the treatment of stress-related and mood disorders. Drug Dev Res 2005. [DOI: 10.1002/ddr.20027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Jankowski M, Reis AM, Wang D, Gutkowska J. Postnatal ontogeny of natriuretic peptide systems in the rat hypothalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:39-46. [PMID: 15283993 DOI: 10.1016/j.devbrainres.2004.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2004] [Indexed: 01/09/2023]
Abstract
Our study has attempted to clarify the developmental profile of atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) along with the expression of their receptors in the rat hypothalamus. Radioimmunoassay (RIA) of dissected hypothalamic tissue revealed that ANP rose from 167 +/- 50 pg/mg protein immediately after birth to 516 +/- 78 pg/mg protein in the next 24 h and to 928 +/- 100 pg/mg protein by postnatal day (PD) 5. A second increment of ANP in the hypothalamus was noted between PD 10 and PD 20 (from 780 +/- 110 to 2,650 +/- 136 pg/mg protein). These changes were not gender-related and consistent with a rise of ANP mRNA. Diethylstilbestrol treatment of immature rats increased hypothalamic ANP concentration from 2.11 +/- 0.24 to 2.97 +/- 0.44 ng/mg protein (P<0.001), but equine chorionic gonadotropin had no effect, indicating that estrogen is a potential stimulus of ANP only at supra-physiological concentrations. CNP, the most abundant natriuretic peptide in the brain, gradually increased in the developing hypothalamus, but did not plateau at PD 20. Reverse transcription-polymerase chain reaction analysis of ANP receptor mRNA demonstrated higher guanylyl cyclase (GC) A, no changes in GC-B, and lower C-receptor levels in adult compared to newborn rats. In conclusion, we have shown that hypothalamic ANP undergoes a dramatic rise after birth, and progresses further until the 3rd postnatal week. ANP and CNP changes in the developing hypothalamus can influence brain maturation.
Collapse
Affiliation(s)
- Marek Jankowski
- Centre de recherche, Centre hospitalier de l'Université de Montreal-Hôtel-Dieu, Pavillon de Bullion, 3850 rue Saint-Urbain, Montreal, Quebec H2W 1T7, Canada.
| | | | | | | |
Collapse
|
5
|
DiCicco-Bloom E, Lelièvre V, Zhou X, Rodriguez W, Tam J, Waschek JA. Embryonic expression and multifunctional actions of the natriuretic peptides and receptors in the developing nervous system. Dev Biol 2004; 271:161-75. [PMID: 15196958 DOI: 10.1016/j.ydbio.2004.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 03/11/2004] [Accepted: 03/11/2004] [Indexed: 12/01/2022]
Abstract
Atrial natriuretic peptide (ANP) binding sites have been detected in the embryonic brain, but the specific receptor subtypes and biological functions for ANP family ligands therein remain undefined. We now characterize the patterns of gene expression for the natriuretic peptides [ANP, brain natriuretic peptide (BNP), type-C natriuretic peptide (CNP)] and their receptors (NPR-A, NPR-B, NPR-C) at several early stages in the embryonic mouse nervous system by in situ hybridization, and begin to define the potential developmental actions using cell culture models of peripheral (PNS) and central nervous systems (CNS). In the CNS, gene transcripts for CNP were present at the onset of neurogenesis, embryonic day 10.5 (E10.5), primarily in the dorsal part of the ventricular zone (VZ) throughout the hindbrain and spinal cord. On E14.5, new CNP signals were observed in the ventrolateral spinal cord where motor neurons reside, and in bands of cells surrounding the spinal cord and hindbrain, localized to dura and/or cartilage primordia. ANP and BNP gene transcripts were not detected in embryonic brain, but were highly abundant in the heart. The CNP-specific receptor (NPR-B) gene was expressed in cells just outside the VZ, in regions where post-mitotic neurons are differentiating. Gene expression for NPR-C, which recognizes all natriuretic peptides, was present in the roof plate of the hindbrain and spinal cord and in bilateral stripes just dorsolateral to the floor plate at E12.5. In the PNS, NPR-B and NPR-C transcripts were highly expressed in dorsal root sensory (DRG) and cranial ganglia beginning at E10.5, with NPR-C signal also prominent in adjoining nerves, consistent with Schwann cell localization. In contrast, NPR-A gene expression was undetectable in neural tissues. To define ontogenetic functions, we employed embryonic DRG and hindbrain cell cultures. The natriuretic peptides potently stimulated DNA synthesis in neuron-depleted as well as neuron-containing Schwann cell cultures and differentially inhibited neurite outgrowth in DRG sensory neuron cultures. CNP also exhibited modest survival-promoting effects for sensory neurons. In marked contrast to PNS effects, the peptides inhibited proliferation of neural precursor cells of the E10.5 hindbrain. Moreover, CNP, alone and in combination with sonic hedgehog (Shh), induced the expression of the Shh target gene gli-1 in hindbrain cultures, suggesting that natriuretic peptides may also modify patterning events in the embryonic brain. These studies reveal widespread, but discrete patterns of natriuretic peptide and receptor gene expression in the early embryonic nervous system, and suggest that the peptides play region- and stage-specific roles during the development of the peripheral and central nervous systems.
Collapse
Affiliation(s)
- E DiCicco-Bloom
- Department of Neuroscience and Cell Biology, University of Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
6
|
Dumont Y, Chabot JG, Quirion R. Receptor autoradiography as mean to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. Peptides 2004; 25:365-91. [PMID: 15134861 DOI: 10.1016/j.peptides.2004.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.
Collapse
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, Mcgill University, 6875 Boul LaSalle, Montreal, Que., Canada H4H 1R3
| | | | | |
Collapse
|
7
|
Lelièvre V, Pineau N, Hu Z, Ioffe Y, Byun JY, Muller JM, Waschek JA. Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways. J Biol Chem 2001; 276:43668-76. [PMID: 11553633 DOI: 10.1074/jbc.m107341200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify neural tumor cell lines that could be used as models to study growth-related natriuretic peptide actions, we determined the effects of these peptides on the proliferation of human and rodent neuroblastoma cell lines. Subnanomolar concentrations of atrial natriuretic peptide (ANP) and type C natriuretic peptide (CNP) stimulated proliferation in all four cell lines. These actions were associated with cGMP elevation and were blocked by a protein kinase G inhibitor. These data imply the involvement of guanylyl cyclase (GC)-coupled natriuretic receptors. However, higher concentrations of ANP and CNP, and low concentrations of des-[Gln(18),Ser(19),Gly(20),Leu(21),Gly(22)]-ANP(4-23)-NH(2) (desANP(4-23)) (analog for NPR-C receptor) exerted antiproliferative actions in three of the cell lines. These effects were insensitive to a protein kinase G inhibitor and to HS-142-1, suggesting that growth-inhibitory actions involved a non-GC receptor. They did not appear to involve cAMP, protein kinase A, protein kinase C, or calcium mobilization but were abolished when constitutive mitogen-activated protein kinase activity was inhibited. Radioligand binding experiments revealed the presence of a uniform class of binding sites in NG108 cells and multiple binding sites in Neuro2a cells. Northern and reverse transcriptase-polymerase chain reaction analyses revealed differential gene expression for NPR-A/B/C in NG108 and Neuro2a cells. The results indicate that natriuretic peptides stimulate neuroblastoma cell proliferation through type NPR-A/B (GC) receptors. Higher concentrations of ANP and CNP exerted a mitogen-activated protein kinase-dependent antiproliferative action mediated by a non-GC receptor that interacts with desANP(4-23) with relatively high affinity.
Collapse
Affiliation(s)
- V Lelièvre
- Department of Psychiatry and Mental Retardation Research Center, UCLA, Neuropsychiatric Institute, Los Angeles, California 90024, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chapter IV Brain endothelin and natriuretic peptide receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Zorad S, Alsasua A, Saavedra JM. Decreased expression of natriuretic peptide A receptors and decreased cGMP production in the choroid plexus of spontaneously hypertensive rats. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 33:209-22. [PMID: 9642674 DOI: 10.1007/bf02815183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide receptor (ANP) subtypes and their signal transduction response were characterized in choroid plexus of spontaneously hypertensive (SHR) and normotensive (WKY) rats. We found two ANP receptor subtypes, guanylate cyclase coupled and uncoupled, in both rat strains. Binding of ANP was lower in SHR choroid plexus when compared to WKY. The lower ANP binding in SHR was the result of a decrease of binding to the guanylate cyclase-coupled receptor subtype A, a decrease that correlated well with the decreased ANP-induced cGMP formation in SHR. Forskolin stimulated cGMP production to the same extent in both strains. In WKY rats, ANP increased basal and forskolin-stimulated cAMP production; conversely, in SHR, ANP did not affect the basal level of cAMP and inhibited the forskolin-stimulated cAMP production. These results demonstrate differences in ANP receptor subtype expression, and ANP signal transduction in choroid plexus of hypertensive and normotensive rats, which is of possible significance to the central mechanisms of blood pressure control.
Collapse
Affiliation(s)
- S Zorad
- Section on Pharmacology, National Institute of Mental Health, Bethesda, MD 20892-1264, USA
| | | | | |
Collapse
|
10
|
Ray PE, Saavedra JM. Selective chronic sodium or chloride depletion specifically modulates subfornical organ atrial natriuretic peptide receptor number in young rats. Cell Mol Neurobiol 1997; 17:455-70. [PMID: 9353588 PMCID: PMC11560202 DOI: 10.1023/a:1026302703894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. We studied the effects of selective chronic sodium depletion of chloride depletion on atrial natriuretic peptide receptor number in the subfornical organ and paraventricular nucleus of young rats. 2. Sodium or chloride depletion decreased plasma levels of atrial natriuretic peptide, increased plasma renin activity, and induced extracellular fluid volume contraction. Chloride depletion induced more significant changes in extracellular fluid volume contraction than sodium depletion. 3. In the subfornical organ, atrial natriuretic peptide receptor number significantly decreased (30%) after sodium depletion, while chloride depletion induced a smaller, not statistically significant decrease. Conversely, atrial natriuretic peptide receptors located in the paraventricular nucleus of young rats were not significantly affected by sodium or chloride depletion. 4. Water deprivation reversed the decrease in atrial natriuretic peptide receptors produced by sodium depletion. Water-deprived sodium-depleted rats actually had higher numbers of atrial natriuretic peptide receptors in the subfornical organ than control rats. These changes were associated with severe extracellular fluid volume contraction and up regulation of brain vasopressin mRNA steady-state levels. Thus, the direction of change in the number of subfornical organ atrial natriuretic peptide receptors was dependent on the degree of extracellular fluid volume contraction. 5. Our results suggest that atrial natriuretic peptide receptors located in the subfornical organ, and not in the paraventricular nucleus, are selectively regulated by sodium depletion and extracellular fluid volume contraction.
Collapse
Affiliation(s)
- P E Ray
- Department of Nephrology, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|
11
|
Trachte GJ, Kanwal S, Elmquist BJ, Ziegler RJ. C-type natriuretic peptide neuromodulates via "clearance" receptors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C978-84. [PMID: 7733246 DOI: 10.1152/ajpcell.1995.268.4.c978] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A recently discovered endogenous autacoid, C-type natriuretic peptide, was tested in a pheochromocytoma (PC12) cell line for effects on 1) catecholamine release induced by a depolarizing stimulus, 2) guanylyl and adenylyl cyclase activities, and 3) specific 125I-labeled atrial natriuretic peptide (ANP) binding. C-type natriuretic peptide suppressed evoked neurotransmitter release in the absence of guanylyl cyclase activation or adenylyl cyclase inhibition; however, both a "clearance" (ANP-C) receptor binding agent, des-[Gln18Ser19Gly20Leu21Gly22]-ANF-(4-23)-NH2 (cANF), and pertussis toxin prevented this neuromodulatory effect. The C-type natriuretic peptide preferentially bound to receptors that also bound cANF. The results suggest that C-type natriuretic peptide suppressed evoked neurotransmitter efflux by binding to ANP-C receptors coupled to a pertussis toxin-sensitive process; furthermore, the neuromodulatory effect of C-type natriuretic peptide occurred independently of guanylyl cyclase activation or adenylyl cyclase inhibition. The novel aspects of these findings are 1) neuromodulatory effects of C-type natriuretic peptide, 2) guanylyl cyclase-independent actions of C-type natriuretic peptide, and 3) ANP-C receptors mediating C-type natriuretic peptide actions.
Collapse
Affiliation(s)
- G J Trachte
- Department of Pharmacology, University of Minnesota-Duluth, School of Medicine 55812, USA
| | | | | | | |
Collapse
|