1
|
Cebranopadol as a Novel Promising Agent for the Treatment of Pain. Molecules 2022; 27:molecules27133987. [PMID: 35807228 PMCID: PMC9268744 DOI: 10.3390/molecules27133987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are used to treat pain, but despite their effectiveness, they possess several side effects such as respiratory depression, tolerance and physical dependence. Cebranopadol has been evaluated as a solution to this problem. The compound acts on the mu opioid receptor and the nociceptin/orphanin receptor and these receptors co-activation can reduce opioid side-effects without compromising analgesia. In the present review, we have compiled information on the effects of cebranopadol, its pharmacokinetics, and clinical trials involving cebranopadol, to further explore its promise in pain management.
Collapse
|
2
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
3
|
Lv Q, Wu F, Gan X, Yang X, Zhou L, Chen J, He Y, Zhang R, Zhu B, Liu L. The Involvement of Descending Pain Inhibitory System in Electroacupuncture-Induced Analgesia. Front Integr Neurosci 2019; 13:38. [PMID: 31496944 PMCID: PMC6712431 DOI: 10.3389/fnint.2019.00038] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a major health problem, which can impair quality of life and reduce productivity. Electroacupuncture (EA), a modality of medicine based on the theories of Traditional Chinese Medicine (TCM), presents great therapeutic effects on chronic pain. Its clinical application has gained increasing popularity, and in parallel, more research has been performed on the mechanisms of EA-induced analgesia. The past decades have seen enormous advances both in neuronal circuitry of needle-insertion and in its molecular mechanism. EA may block pain by activating the descending pain inhibitory system, which originates in the brainstem and terminates at the spinal cord. This review article synthesizes corresponding studies to elucidate how EA alleviate pain via the mediation of this descending system. Much emphasis has been put on the implication of descending serotonergic and noradrenergic pathways in the process of pain modulation. Also, other important transmitters and supraspinal regions related to analgesic effects of EA have been demonstrated. Finally, it should be noticed that there exist some shortcomings involved in the animal experimental designed for EA, which account for conflicting results obtained by different studies.
Collapse
Affiliation(s)
- Qiuyi Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Wu
- Journal Center of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiulun Gan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjia He
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bixiu Zhu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Lanying Liu
- Department of Nephrology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
4
|
Tambaro S, Reali R, Volonterio A, Zanda M, Olimpieri F, Pinna GA, Lazzari P. NESS002ie: A new fluorinated thiol endopeptidase inhibitor with antinociceptive activity in an animal model of persistent pain. Pharmacol Biochem Behav 2013; 110:137-44. [DOI: 10.1016/j.pbb.2013.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 11/16/2022]
|
5
|
Wang J, Geng B, Shen HL, Xu X, Wang H, Wang CF, Ma JL, Wang ZP. Amino acid transport system A is involved in inflammatory nociception in rats. Brain Res 2012; 1449:38-45. [PMID: 22373650 DOI: 10.1016/j.brainres.2012.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have indicated that central sensitization is a state of increased excitability of nociceptive neurons in the spinal dorsal horn following peripheral tissue injury and/or inflammation and astrocytes play an important role in the central sensitization. The current study investigated the role of amino acid transport system A in central sensitization and hyperalgesia induced by intraplantar injection of formalin in rats. Formalin (5%, 50μl) injected subcutaneously into the unilateral hindpaw pad induced typical biphase nociceptive behaviors, including licking/biting and flinching of the injected paw and an increase of glial fibrillary acid protein (GFAP, an activated astrocyte marker) expression in spinal dorsal horn, and these effects could be attenuated by intrathecal injection of the competitive inhibitor of amino acid system A transporter, methylaminoisobutyric acid (MeAIB, 0.1, 0.3, 0.5, and 0.7mmol), in a dose-dependent manner. Intrathecal injection of vehicle (PBS) had no effect on the formalin-induced nociceptive behaviors and increase of the GFAP. These findings suggest that amino acid transport system A is involved in inflammation-induced nociception, and inhibition of this transporter system results in inhibition of the central sensitization and hyperalgesia.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou University, No. 82 Cui Ying Men Street, Lanzhou, Gansu 730030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yoshinaga K, Horii T, Hamano H, Eta R, Ozaki T, Orikawa Y, Yoshii K, Kawabata Y, Hori Y, Seto K, Takei M, Kuraishi Y. Pharmacological evaluation of analgesic effects of the cholecystokinin2 receptor antagonist Z-360 in mouse models of formalin- and cancer-induced pain. Biol Pharm Bull 2010; 33:244-8. [PMID: 20118547 DOI: 10.1248/bpb.33.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Z-360, a novel cholecystokinin(2) (CCK(2)) receptor antagonist, has been developed as a therapeutic drug for pancreatic cancer and showed pain relief action in phase Ib/IIa clinical trial. This study was attempted to elucidate the analgesic efficacy of Z-360 in mice. Oral administration of Z-360 (30-300 mg/kg) showed a dose-dependent inhibitory effect on the late phase of nociceptive responses to formalin. YF476, another CCK(2) receptor antagonist, was without effects at 1 and 10 mg/kg. In contrast, the CCK(1) receptor antagonist devazepide inhibited the nociceptive responses to formalin. In a mouse model of cancer pain, significant anti-allodynic effect of Z-360 was observed after single and repeated oral administration of 100 and 300 mg/kg doses. Anti-allodynic effect was also observed after repeated administration of devazepide. Combined single treatment with morphine and Z-360 caused an increase inhibition of pain-related responses in the pain models produced by formalin and cancer. Although Z-360 has lower affinity for CCK(1) receptor than for CCK(2) receptor, Z-360 exhibited an inhibitory effect on sulfated CCK-8-induced gallbladder emptying, a CCK(1) receptor-mediated effect, at a dose of 100 mg/kg. These results suggest that Z-360 inhibits inflammatory and cancer pain probably through the blockade of CCK(1) receptors. Z-360 is expected to become a useful drug for the pancreatic cancer with analgesic effects as well as the prolongation of survival.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., 2512-1 Numagami, Oshikiri, Kumagaya, Saitama 360-0111, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cholecystokinin receptors mediate tolerance to the analgesic effect of TENS in arthritic rats. Pain 2009; 148:84-93. [PMID: 19944533 DOI: 10.1016/j.pain.2009.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/25/2009] [Accepted: 10/15/2009] [Indexed: 11/21/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a treatment for pain that involves placement of electrical stimulation through the skin for pain relief. Previous work from our laboratory shows that repeated application of TENS produces analgesic tolerance by the fourth day and a concomitant cross-tolerance at spinal opioid receptors. Prior pharmacological studies show that blockade of cholecystokinin (CCK) receptors systemically and spinally prevents the development of analgesic tolerance to repeated doses of opioid agonists. We therefore hypothesized that systemic and intrathecal blockade of CCK receptors would prevent the development of analgesic tolerance to TENS, and cross-tolerance at spinal opioid receptors. In animals with knee joint inflammation (3% kaolin/carrageenan), high (100Hz) or low frequency (4Hz) TENS was applied daily and the mechanical withdrawal thresholds of the muscle and paw were examined. We tested thresholds before and after inflammation, and before and after TENS. Animals treated systemically, prior to TENS, with the CCK antagonist, proglumide, did not develop tolerance to repeated application of TENS on the fourth day. Spinal blockade of CCK-A or CCK-B receptors blocked the development of tolerance to high and low frequency TENS, respectively. In the same animals we show that spinal blockade of CCK-A receptors prevents cross-tolerance at spinal delta-opioid receptors that normally occurs with high frequency TENS; and blockade of CCK-B receptors prevents cross-tolerance at spinal mu-opioid receptors that normally occurs with low frequency TENS. Thus, we conclude that blockade of CCK receptors prevents the development of analgesic tolerance to repeated application of TENS in a frequency-dependent manner.
Collapse
|
8
|
Jutkiewicz EM. RB101-mediated protection of endogenous opioids: potential therapeutic utility? CNS DRUG REVIEWS 2007; 13:192-205. [PMID: 17627672 PMCID: PMC6726351 DOI: 10.1111/j.1527-3458.2007.00011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endogenous opioids met- and leu-enkephalin are inactivated by peptidases preventing the activation of opioid receptors. Inhibition of enkephalin-degrading enzymes increases endogenous enkephalin levels and stimulates robust behavioral effects. RB101, an inhibitor of enkephalin-degrading enzymes, produces antinociceptive, antidepressant, and anxiolytic effects in rodents, without typical opioid-related negative side effects. Although enkephalins are not selective endogenous ligands, RB101 induces these behaviors through receptor-selective activity. The antinociceptive effects of RB101 are produced through either the mu-opioid receptor alone or through activation of both mu- and delta-opioid receptors; the antidepressant-like and anxiolytic effects of RB101 are mediated only through the delta-opioid receptor. Although little is known about the effects of RB101 on other physiologically and behaviorally relevant peptides, these findings suggest that RB101 and other inhibitors of enkephalin-degrading enzymes may have potential as novel therapeutic compounds for the treatment of pain, depression, and anxiety.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA.
| |
Collapse
|
9
|
Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 2007; 11:145-59. [PMID: 17227231 DOI: 10.1517/14728222.11.2.145] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most efficient drugs to alleviate severe pain are opioid compounds. However, their chronic use could be associated with serious drawbacks, such as tolerance, respiratory depression and constipation. Therefore, there is a need for compounds able to efficiently alleviate inflammatory and neurogenic pain following chronic treatment. The discovery that the endogenous opioid peptides, enkephalins, are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by synthetic dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of morphine side effects. These dual inhibitors also have antidepressant-like properties through enkephalin-related activation of delta-opioid receptors. This is expected to reduce the emotional component of pain in humans. This article reviews the promising data obtained for future development of a new class of analgesic that could be of major interest in a number of severe and chronic pain syndromes.
Collapse
|
10
|
Torres-López JE, Juárez-Rojop IE, Granados-Soto V, Diaz-Zagoya JC, Flores-Murrieta FJ, Ortíz-López JUS, Cruz-Vera J. Peripheral participation of cholecystokinin in the morphine-induced peripheral antinociceptive effect in non-diabetic and diabetic rats. Neuropharmacology 2006; 52:788-95. [PMID: 17157334 DOI: 10.1016/j.neuropharm.2006.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/12/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
The effects of cholecystokinin (CCK-8) and the CCK receptor antagonist proglumide, on antinociception induced by local peripheral (subcutaneous) injected morphine in non-diabetic (ND) and streptozotocin-induced diabetic (D) rats, were examined by means of the formalin test. Morphine induced dose-dependent antinociception both in ND and D rats. However, in D rats, antinociceptive morphine potency was about twofold less than in ND rats. Pre-treatment with CCK-8 abolished the antinociceptive effect of morphine in a dose-dependent manner in both groups of rats. Additionally, proglumide enhanced the antinociceptive effect induced by all doses of morphine tested. Both CCK-8 and proglumide had no effect on flinching behaviour when given alone to ND rats. Unlike ND rats, in D rats proglumide produced dose-dependent antinociception and CCK-8 enhanced formalin-evoked flinches, as observed during the second phase of the test. In conclusion, our data show a decrease in peripheral antinociceptive potency of morphine when diabetes was present. Additionally, peripheral CCK plays an antagonic role to the peripheral antinociceptive effect of morphine, additional to the well known CCK/morphine interaction at spinal and supraspinal level.
Collapse
Affiliation(s)
- Jorge E Torres-López
- Laboratorio Mecanismos del Dolor, Centro de Investigación y Posgrado, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| | | | | | | | | | | | | |
Collapse
|
11
|
Juárez-Rojop IE, Granados-Soto V, Díaz-Zagoya JC, Flores-Murrieta FJ, Torres-López JE. Involvement of cholecystokinin in peripheral nociceptive sensitization during diabetes in rats as revealed by the formalin response. Pain 2006; 122:118-25. [PMID: 16527403 DOI: 10.1016/j.pain.2006.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 01/04/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
The possible pronociceptive role of peripheral cholecystokinin (CCK-8) as well as CCK(A) and CCK(B) receptors in diabetic rats was assessed. Subcutaneous injection of 0.5% formalin induced a greater nociceptive behavior in diabetic than in non-diabetic rats. Moreover, local peripheral injection of CCK-8 (0.1-100 microg) significantly increased 0.5% formalin-induced nociceptive activity in diabetic, but not in non-diabetic, rats. This effect was restricted to the formalin-injected paw as administration of CCK-8 into the contralateral paw was ineffective. Local peripheral administration of CCK-8, in the absence of formalin injection, produced a low level of, but significant increase in, flinching behavior in diabetic compared to non-diabetic rats. In addition, local peripheral administration of the non-selective CCK receptor antagonist proglumide (1-100 microg), CCK(A) receptor antagonist lorglumide (0.1-100 microg) or CCK(B) receptor antagonist CR-2945 (0.1-100 microg), but not vehicle or contralateral administration of CCK receptor antagonists, significantly reduced 0.5% formalin-induced flinching in diabetic rats. CR-2945 was the most effective drug in this condition. These effects were not observed in non-diabetic rats. The local peripheral pronociceptive effect of CCK-8 (100 microg) was significantly reduced by proglumide (100 microg), lorglumide (100 microg), and CR-2945 (100 microg). Results suggest that diabetes-induced peripheral sensitization could be due to a local peripheral release of CCK-8, which in turn would act on CCK(B), mainly but also in CCK(A), receptors located on the primary afferent neurons.
Collapse
Affiliation(s)
- Isela E Juárez-Rojop
- Laboratorio Mecanismos del Dolor, Centro de Investigación y Posgrado, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | | |
Collapse
|
12
|
Quesada A, Micevych P. Estrogen and CCK1 receptor modification of mu-opioid receptor binding in the cortex of female rats. Brain Res 2006; 1073-1074:316-20. [PMID: 16472782 DOI: 10.1016/j.brainres.2005.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 12/29/2022]
Abstract
Cholecystokinin (CCK) in the nervous system has effects opposite to those of opioids. However, the mechanism by which CCK opposes the effect of opioids at the receptor or cellular level is still unknown. In the brain, distributions of CCK receptors and opioid receptors have been demonstrated to overlap. The present study was undertaken to determine the mechanism of CCK-opioid interactions in the cortex of ovariectomized rats. Furthermore, because estrogen is a powerful regulator of CCK and opioid activity, we examined whether estrogen state also modulates the interactions of these neuropeptides. mu-Opioid (MOP) receptor binding was examined in cortical membranes that were preincubated with CCK-8S and CCK receptor agonist and antagonist followed with 3H-DAMGO. Pharmacological results revealed that CCK-8S suppressed 3H-DAMGO binding in cortical membranes of ovariectomized rats. The same result was obtained using a CCK1 receptor agonist (JMV-180), whereas a CCK2 receptor agonist (CCK-4) failed to suppress 3H-DAMGO binding. Antagonism of the CCK1 receptor by JMV-179 blocked both CCK-8S and JMV-180 suppression of 3H-DAMGO binding. Furthermore, estrogen treatment to female rats resulted in a suppression of 3H-DAMGO binding in cortical membranes. These results demonstrate an estrogen regulation of the MOP receptor and a protein-protein interaction between CCK1 receptor and MOP receptor.
Collapse
Affiliation(s)
- Arnulfo Quesada
- Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
13
|
Xie YF, Wang J, Huo FQ, Jia H, Tang JS. Validation of a simple automated movement detection system for formalin test in rats. Acta Pharmacol Sin 2005; 26:39-45. [PMID: 15659112 DOI: 10.1111/j.1745-7254.2005.00001.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the validity and sensitivity of an automatic movement detection system developed by our laboratory for the formalin test in rats. METHODS The effects of systemic morphine and local anesthetic lidocaine on the nociceptive behaviors induced by formalin subcutaneously injected into the hindpaw were examined by using an automated movement detection system and manual measuring methods. RESULTS Formalin subcutaneously injected into the hindpaw produced typical biphasic nociceptive behaviors (agitation). The mean agitation event rate during a 60-min observation period increased linearly following increases in the formalin concentration (0.0%, 0.5%, 1.5%, 2.5%, and 5%, 50 microL). Systemic application of morphine of different doses (1, 2, and 5 mg/kg) 10-min prior to formalin injection depressed the agitation responses induced by formalin injection in a dose-dependent manner, and the antinociceptive effect induced by the largest dose (5 mg/kg) of morphine was significantly antagonized by systemic application of the opioid receptor antagonist naloxone (1.25 mg/kg). Local anesthetic lidocaine (20 mg/kg) injected into the ipsilateral ankle subskin 5-min prior to formalin completely blocked the agitation response to formalin injection. These results were comparable to those obtained from manual measure of the incidence of flinching or the duration time of licking/biting of the injected paw. CONCLUSION These data suggest that this automated movement detection system for formalin test is a simple, validated measure with good pharmacological sensitivity suitable for discovering novel analgesics or investigating central pain mechanisms.
Collapse
Affiliation(s)
- Yu-feng Xie
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | | | | | | | | |
Collapse
|
14
|
Kurrikoff K, Kõks S, Matsui T, Bourin M, Arend A, Aunapuu M, Vasar E. Deletion of the CCK2 receptor gene reduces mechanical sensitivity and abolishes the development of hyperalgesia in mononeuropathic mice. Eur J Neurosci 2004; 20:1577-86. [PMID: 15355324 DOI: 10.1111/j.1460-9568.2004.03619.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies suggest that cholecystokinin (CCK) is implicated in the modulation of pain sensitivity and the development of neuropathic pain. We used CCK(2) receptor deficient (CCK(2) (-/-)) mice and assessed their mechanical sensitivity using Von Frey filaments, as well as the development and time course of mechanical hyperalgesia in a model of neuropathic pain. We found that CCK(2) (-/-) mice displayed mechanical hyposensitivity, which was reversed to the level of wild-type animals after administration of naloxone (0.1-10 mg/kg). On the other hand, injection of L-365260 (0.01-1 mg/kg), an antagonist of CCK(2) receptors, decreased dose-dependently, mechanical sensitivity in wild-type mice. The mechanism of reduced mechanical sensitivity in CCK(2) (-/-) mice may be explained by changes in interactions between CCK and opioid systems. Indeed, CCK(2) (-/-) mice natively expressed higher levels of lumbar CCK(1), opioid delta and kappa receptors. Next, we found that CCK(2) (-/-) mice did not develop mechanical hyperalgesia in the Bennett's neuropathic pain model. Induction of neuropathy resulted in decrease of lumbar pro-opiomelanocortin (POMC) gene expression in wild-type mice, but increase of POMC expression in CCK(2) (-/-) mice. In addition, induction of neuropathy resulted in further increase of opioid delta receptor in CCK(2) (-/-) mice. Gene expression results indicate up-regulation of opioid system in CCK(2) (-/-) mice, which apparently result in decreased neuropathy score. Our study suggests that not only pain sensitivity, but also mechanical sensitivity and the development of neuropathic pain are regulated by antagonistic interactions between CCK and opioid systems.
Collapse
MESH Headings
- Animals
- Benzodiazepinones/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Dynorphins/genetics
- Dynorphins/metabolism
- Enkephalins/genetics
- Enkephalins/metabolism
- Gene Expression/genetics
- Hyperalgesia/drug therapy
- Hyperalgesia/genetics
- Inflammation/etiology
- Inflammation/pathology
- Ligation/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Naloxone/pharmacology
- Naloxone/therapeutic use
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Pain Measurement/drug effects
- Pain Measurement/methods
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Phenylurea Compounds/pharmacology
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/biosynthesis
- Receptor, Cholecystokinin B/deficiency
- Receptor, Cholecystokinin B/genetics
- Receptor, Cholecystokinin B/physiology
- Receptors, Cholecystokinin/antagonists & inhibitors
- Receptors, Opioid/classification
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/genetics
- Sciatic Neuropathy/pathology
- Time Factors
Collapse
Affiliation(s)
- Kaido Kurrikoff
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
15
|
Rünkorg K, Veraksits A, Kurrikoff K, Luuk H, Raud S, Abramov U, Matsui T, Bourin M, Kõks S, Vasar E. Distinct changes in the behavioural effects of morphine and naloxone in CCK2 receptor-deficient mice. Behav Brain Res 2003; 144:125-35. [PMID: 12946603 DOI: 10.1016/s0166-4328(03)00070-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of morphine, mu-opioid receptor agonist, and naloxone, a non-selective opioid receptor antagonist, in the locomotor activity and place conditioning tests were studied in the CCK(2) receptor-deficient male mice. The exposure of mice to the motility boxes for 3 consecutive days induced a significant inhibition of locomotor activity in the wild-type (+/+) mice compared to homozygous (-/-) animals. The administration of naloxone (10 mg/kg i.p.) to animals, adapted to the motility boxes, induced a significant reduction of locomotor activity in the homozygous (-/-), but not in the wild-type (+/+) mice. Treatment of habituated mice with morphine (10 mg/kg i.p.) caused a stronger increase of locomotor activity in the wild-type (+/+) mice compared to the homozygous (-/-) littermates. In the place preference test the pairing of the preferred side with naloxone (1 and 10 mg/kg i.p.) induced a dose-dependent place aversion in the wild-type (+/+) mice. The treatment with naloxone was less effective in the homozygous (-/-) mice, because the high dose of naloxone (10 mg/kg) tended to shift the preference. The pairing of morphine (3 mg/kg i.p.) injections with the non-preferred side induced a significant place preference both in the wild-type (+/+) and homozygous (-/-) mice. The increased density of opioid receptors was established in the striatum of homozygous (-/-) mice, but not in the other forebrain structures. In conclusion, the targeted invalidation of CCK(2) receptors induces a dissociation of behavioural effects of morphine and naloxone. Morphine-induced place preference remained unchanged, whereas hyper-locomotion was less pronounced in the mutant mice compared to the wild-type (+/+) littermates. By contrast, naloxone-induced place aversion was weaker, but naloxone caused a stronger inhibition of locomotor activity in the homozygous (-/-) mice than in the wild-type (+/+) animals. These behavioural alterations can be explained in the light of data that the targeted mutation of CCK(2) receptors induces distinct changes in the properties of opioid receptors in various brain structures.
Collapse
Affiliation(s)
- Kertu Rünkorg
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Iversen L. CCK Antagonist Potentiation of Opioid Analgesia. Pain 2003. [DOI: 10.1201/9780203911259.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Le Guen S, Catheline G, Fournié-Zaluski MC, Roques BP, Besson JM, Buritova J. Further evidence for the interaction of mu- and delta-opioid receptors in the antinociceptive effects of the dual inhibitor of enkephalin catabolism, RB101(S). A spinal c-Fos protein study in the rat under carrageenin inflammation. Brain Res 2003; 967:106-12. [PMID: 12650971 DOI: 10.1016/s0006-8993(02)04231-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that RB101, a dual inhibitor of enkephalin-degrading enzymes, decreased carrageenin-evoked c-Fos protein expression at the spinal cord level in awake rats. Moreover, we have also shown that c-Fos expression is a useful marker of the possible direct or indirect interactions between neural pathways, such as opioid and cholecystokinin systems. We now investigated the respective roles of the three main types of opioid receptors (mu, delta, or kappa) and their possible interactions, in the depressive effects of RB101 in inflammatory nociceptive conditions induced by intraplantar carrageenin (6 mg/150 microl of saline). We used beta-funaltrexamine (beta-FNA), naltrindole (NTI), and nor-binaltorphimine (BNI) as specific antagonists for mu, delta- and kappa-opioid receptors, respectively. c-Fos protein-immunoreactivity (c-Fos-IR) was evaluated as the number of c-Fos-IR nuclei in the lumbar spinal cord 90 min after carrageenin. c-Fos-IR nuclei were preferentially located in the superficial (I-II) and deep (V-VI) laminae of segments L4-L5 (areas containing numerous neurons responding exclusively, or not, to nociceptive stimuli). RB101(S) (30 mg/kg, i.v.) significantly reduced the total number of carrageenin-evoked c-Fos-IR nuclei (30% reduction, P<0.01). This effect was completely blocked by beta-FNA (10 mg/kg, i.v.), or NTI (1 mg/kg, i.v.). In contrast, BNI (2.5 mg/kg, i.v.) did not reverse the reducing effects of RB101(S) on carrageenin-evoked c-Fos protein expression. These results suggest that functional interactions occur between mu- and delta-opioid receptors in enkephalin-induced antinociceptive effects.
Collapse
Affiliation(s)
- Stéphanie Le Guen
- Laboratoire de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS FRE2463, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | | | |
Collapse
|
18
|
Veraksits A, Rünkorg K, Kurrikoff K, Raud S, Abramov U, Matsui T, Bourin M, Kõks S, Vasar E. Altered pain sensitivity and morphine-induced anti-nociception in mice lacking CCK2 receptors. Psychopharmacology (Berl) 2003; 166:168-75. [PMID: 12545332 DOI: 10.1007/s00213-002-1333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2002] [Accepted: 10/18/2002] [Indexed: 11/30/2022]
Abstract
RATIONALE Cholecystokinin (CCK) interacts with the endopioid system in the regulation of various physiological functions, including the control of pain sensitivity, motor activity and emotional behaviour. OBJECTIVE The aim of the present work was to study the pain sensitivity, morphine-induced antinociception and density of opioid receptors in mice lacking CCK(2) receptors. METHODS Plantar analgesia and hotplate tests were used to evaluate pain sensitivity and morphine-induced antinociception. The parameters of opioid receptors were analysed by using [(3)H]-diprenorphine binding. RESULTS In the plantar analgesia test the latency of hind paw withdrawal was significantly increased in CCK(2) receptor deficient mice compared to wild-type (+/+) littermates. The treatment with saline reversed the reduced pain sensitivity in heterozygous (+/-) and homozygous (-/-) mice. The administration of morphine (1 mg/kg) induced a significantly stronger antinociceptive effect in homozygous (-/-) mice compared with wild-type (+/+) animals. In the hotplate test, only homozygous (-/-) mutant mice displayed the delayed latency of hind paw licking/shaking in comparison with wild-type (+/+) mice. The injection of saline and isolation of mice for 30 min reversed the delayed response in homozygous (-/-) mice. However, in this test, the anti-nociceptive action of morphine (5-10 mg/kg) in mutant mice did not differ from that in wild-type (+/+) littermates. By contrast, the jump latency was decreased in both homozygous (-/-) and heterozygous (+/-) mice in the hotplate test. The increased density of opioid receptors was established in the striatum of homozygous (-/-) mice. CONCLUSION It is apparent that the targeted mutagenesis of the CCK(2) receptor gene has different effects on the sensitivity of opioid receptors in various brain structures. This is a probable reason for the altered pain sensitivity and morphine-induced antinociception in mutant mice compared to wild-type (+/+) littermates.
Collapse
Affiliation(s)
- Alar Veraksits
- Department of Physiology, Biomedicum, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Benoist JM, Keime F, Montagne J, Noble F, Fournié-Zaluski MC, Roques BP, Willer JC, Le Bars D. Depressant effect on a C-fibre reflex in the rat, of RB101, a dual inhibitor of enkephalin-degrading enzymes. Eur J Pharmacol 2002; 445:201-10. [PMID: 12079685 DOI: 10.1016/s0014-2999(02)01753-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of N-[(R,S)-2-benzyl-3[(S)-(2-amino-4-methylthio)butyldithiol]-1-oxopropyl]-L-phenylalanine benzyl ester (RB101), a dual inhibitor of the enkephalin-degrading enzymes, neutral endopeptidase and aminopeptidase N, was assessed in anaesthetised rats on the C-fibre reflex elicited by electrical stimulation within the sural nerve territory and recorded from the ipsilateral biceps femoris muscle. The temporal evolution of the pharmacological response was monitored by the repeated application of a constant stimulus intensity, namely three times threshold (3 T). In addition, recruitment curves were built by varying the stimulus intensity from 0 to 7 T. RB101 (7.5, 15 and 30 mg kg(-1), i.v.) induced a dose-dependent, naloxone-reversible depression of the reflex, which lasted around 60 min with the highest dose. The ED(50) was calculated as 16.9 mg kg(-1). Analyses of the recruitment curves revealed: (1) a significant increase of threshold; (2) a significant depression of the reflex in the ascending part of the curve; and (3) a lack of major depressive effects on the responses elicited by the strongest stimuli (corresponding to the plateau of the curve). The increase in the nociceptive threshold by enkephalin-degrading enzyme inhibitors, confirms previous data obtained from behavioural tests. In addition, the present study revealed an efficacy of these compounds over a wide range of stimulus intensities, albeit excluding the highest.
Collapse
Affiliation(s)
- Jean-Michel Benoist
- Laboratoire de Physiopharmacologie du Système nerveux, INSERM U161, 2 rue d'Alésia, 75014 Paris Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 2001; 85:280-6. [PMID: 11152727 DOI: 10.1152/jn.2001.85.1.280] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
21
|
Coudoré-Civiale MA, Courteix C, Fialip J, Boucher M, Eschalier A. Spinal effect of the cholecystokinin-B receptor antagonist CI-988 on hyperalgesia, allodynia and morphine-induced analgesia in diabetic and mononeuropathic rats. Pain 2000; 88:15-22. [PMID: 11098095 DOI: 10.1016/s0304-3959(00)00304-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since evidence points to the involvement of cholecystokinin (CCK) in nociception, we examined the effect of intrathecal CI-988, an antagonist of the CCK-B receptors, on mechanical hyperalgesia and allodynia in normal, mononeuropathic and diabetic rats,. Owing to the anti-opioid activity of CCK, it has been suggested that hyperactivity in the spinal CCK system is responsible for the low sensitivity of neuropathic pain to opioids. We therefore also evaluated the effect of the combination of i.t. CI-988 + i.v. morphine on mechanical hyperalgesia in diabetic and mononeuropathic rats using isobolographic analysis. Although ineffective in normal rats, CI-988 induced antinociceptive effects in diabetic (290 +/- 20 g with a cut-off of 750 g) and mononeuropathic (117 +/- 16 g; cut-off 750 g) rats, suggesting an involvement of the CCKergic system in neurogenic pain conditions. The combination of CI-988 and morphine showed a superadditive interaction in the diabetic rats only (477 +/- 16 g; cut-off 750 g), in comparison with the antinociceptive effect of each drug. In addition, CI-988 exhibited a weak anti-allodynic effect in mononeuropathic rats, and no anti-allodynic effect in diabetic rats. These results show the CCK-B receptor blockade-mediated antinociceptive effects and reveals the antinociceptive action of morphine in diabetic rats after CCKergic system inhibition.
Collapse
Affiliation(s)
- Marie-Ange Coudoré-Civiale
- Laboratoire de Physiologie, Faculté de Pharmacie, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France Laboratoire de Pharmacologie, Faculté de Pharmacie, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France Laboratoire de Pharmacologie Médicale, Faculté de Médecine, INSERM EPI 9904, 28 place Henri-Dunant, B.P. 38, 63001 Clermont-Ferrand Cedex 1, France
| | | | | | | | | |
Collapse
|
22
|
Abdel-Fattah AM, Matsumoto K, Watanabe H. Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur J Pharmacol 2000; 400:89-97. [PMID: 10913589 DOI: 10.1016/s0014-2999(00)00340-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, were examined in mice. The p.o. administration of N. sativa oil (50-400 mg/kg) dose-dependently suppressed the nociceptive response in the hot-plate test, tail-pinch test, acetic acid-induced writhing test and in the early phase of the formalin test. The systemic administration (2.5-10 mg/kg, p.o. and 1-6 mg/kg, i.p.) and the i.c.v. injection (1-4 microgram/mouse) of thymoquinone attenuated the nociceptive response in not only the early phase but also the late phase of the formalin test. Naloxone injected s.c. (1 mg/kg) significantly blocked N. sativa oil- and thymoquinone-induced antinociception in the early phase of the formalin test. Moreover, the i.c.v. injection of naloxone (10 microgram/mouse), the mu(1)-opioid receptor antagonist, naloxonazine (1-5 microgram/mouse), or the kappa-opioid receptor antagonist, nor-binaltorphimine (1-5 microgram/mouse), significantly reversed thymoquinone-induced antinociception in the early phase but not the late phase of the formalin test, whereas the delta-opioid receptor antagonist, naltrindole (1-5 ng/mouse, i.c.v.), had no effect on either phase. The antinociceptive effect of morphine was significantly reduced in thymoquinone- and N. sativa oil-tolerant mice, but not vice versa. These results suggest that N. sativa oil and thymoquinone produce antinociceptive effects through indirect activation of the supraspinal mu(1)- and kappa-opioid receptor subtypes.
Collapse
Affiliation(s)
- A M Abdel-Fattah
- Department of Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
23
|
Chambers MS, Fletcher SR. CCK-B antagonists in the control of anxiety and gastric acid secretion. PROGRESS IN MEDICINAL CHEMISTRY 2000; 37:45-81. [PMID: 10845247 DOI: 10.1016/s0079-6468(08)70057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- M S Chambers
- Neuroscience Research Centre, Merck, Sharp and Dohme Research Laboratories, Harlow, Essex, U.K
| | | |
Collapse
|
24
|
Abstract
Cholecystokinin (CCK) acts as an anti-opioid peptide. The mechanisms of CCK-opioid interaction under normal and pathological conditions were examined with various techniques. Nerve injury induces upregulation of CCK mRNA and CCK2 receptors in sensory neurons. The involvement of CCK in spinal nociception in normal and axotomized rats was examined. The CCK2 receptor antagonist CI-988 did not reduce spinal hyperexcitability following repetitive C-fiber stimulation in normal or axotomized rats, suggesting that CCK is probably not released from injured primary afferents. With in vivo microdialysis intravenous (i.v.) or intrathecal (i.t.) morphine increased the extracellular level of CCK in the dorsal horn in a naloxone reversible manner. Morphine also released CCK after axotomy, but not during carrageenan-induced inflammation. In contrast, K(+)-stimulation failed to increase extracellular levels of CCK in axotomized rats, but did so in inflamed rats. Double-coloured immunofluorescence technique revealed partial co-localization between CCK-like immunoreactivity (LI) and mu-opioid receptor (MOR)-LI in superficial dorsal horn neurons. The presence of MOR in CCK containing neurons suggests a possible direct influence of opioids on CCK release in the spinal cord. Axotomy, but not inflammation, induced a moderate decrease in CCK- and MOR-LI in the dorsal horn. I.v. morphine further temporarily reduced CCK- and MOR-LIs in axotomized, but not in normal or inflamed, rats. While the effect of morphine on CCK-LI can be interpreted as the result of increased CCK release, the effect on MOR-LI may be related to changes in the microenvironment of the dorsal horn induced by nerve injury.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Karolinska Institutet, Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Huddinge University Hospital, S-141 86, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Le Guen S, Honoré P, Catheline G, Fournié-Zaluski MC, Roques BP, Besson JM. The effects of RB101, a mixed inhibitor of enkephalin-catabolizing enzymes, on carrageenin-induced spinal c-Fos expression are completely blocked by beta-funaltrexamine, a selective mu-opioid receptor antagonist. Brain Res 1999; 834:200-6. [PMID: 10407116 DOI: 10.1016/s0006-8993(99)01569-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have demonstrated that pre-administered RB101 (40 mg/kg, i.v.), a mixed inhibitor of enkephalin-catabolizing enzymes, decreased spinal c-Fos expression induced 1 h and 30 min after intraplantar (i.pl.) carrageenin (41% reduction, p<0.01). These effects were completely blocked by pre-administered beta-funaltrexamine (10 mg/kg, i.v., 24 h prior to stimulation), a selective long-lasting mu-opioid receptor antagonist. In conclusion, these results clearly demonstrate that the effects of endogenous enkephalins on noxiously evoked spinal c-Fos expression are essentially mediated via mu-opioid receptors.
Collapse
Affiliation(s)
- S Le Guen
- Physiopharmacologie du Système Nerveux, Institut National de la Santé et de la Recherche Médicale U161 and Ecole Pratique des Hautes Etudes, 2 rue d'Alésia, Paris 75014, France.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but also found in high density in the mammalian brain. The C-terminal sulphated octapeptide fragment of cholecystokinin (CCK8) constitutes one of the major neuropeptides in the brain; CCK8 has been shown to be involved in numerous physiological functions such as feeding behavior, central respiratory control and cardiovascular tonus, vigilance states, memory processes, nociception, emotional and motivational responses. CCK8 interacts with nanomolar affinities with two different receptors designated CCK-A and CCK-B. The functional role of CCK and its binding sites in the brain and periphery has been investigated thanks to the development of potent and selective CCK receptor antagonists and agonists. In this review, the strategies followed to design these probes, and their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this peptide and the clinical perspectives offered by manipulation of the CCK system will be reported. The physiological and pathological implication of CCK-B receptor will be confirmed in CCK-B receptor deficient mice obtained by gene targeting (Nagata el al., 1996. Proc. Natl. Acad. Sci. USA 93, 11825-11830). Moreover, CCK receptor gene structure, deletion and mutagenesis experiments, and signal transduction mechanisms will be discussed.
Collapse
Affiliation(s)
- F Noble
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|
27
|
Lucas GA, Hoffmann O, Alster P, Wiesenfeld-Hallin Z. Extracellular cholecystokinin levels in the rat spinal cord following chronic morphine exposure: an in vivo microdialysis study. Brain Res 1999; 821:79-86. [PMID: 10064790 DOI: 10.1016/s0006-8993(99)01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conflicting results concerning the issue of whether or not chronic morphine exposure induces an increase in CCK biosynthesis have been found in many CNS sites, including the spinal cord, where CCK activity may contribute to the facilitation of the development of opiate tolerance. The present study was undertaken in order to monitor the extracellular level of CCK under spontaneous and stimulus-evoked release in the spinal cord dorsal horn of drug naive and morphine tolerant rats. Tolerance was induced by implantation of two morphine pellets (2x75 mg) which induced a stable morphine plasma concentration after 48 h post-implantation. The tail-flick test and naloxone precipitated withdrawal were used as indexes of tolerance and dependence to morphine. The effect of morphine-pellet implantation on basal and K+-induced release of CCK-like immunoreactivity (CCK-LI) in the rat dorsal horn were monitored with in vivo microdialysis 96 h after implantation of morphine or placebo pellets, when rats showed tolerance and dependence. Basal CCK levels were below the detection limit of the assay (0.6 pM) in both tolerant and normal animals. K+ (100 mM) in the perfusion medium induced a more than 3-fold increase of the extracellular level of CCK-LI in control animals, and a more than 4-fold increase on CCK-LI in morphine-pellet implanted animals. However, this difference was not significant. In addition, naloxone (2 mg/kg; i.v.), did not induce any change in the extracellular level of CCK in either group. The present study suggests that the modulatory interaction between CCK and opioids in the development of tolerance in the spinal cord may occur without necessarily increasing the extracellular level of CCK. Another possible explanation of the finding is that the microdialysis technique is not sensitive enough to detect differences in unstimulated CCK levels in normal and tolerant animals.
Collapse
Affiliation(s)
- G A Lucas
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Division of Clinical Neurophysiology, Huddinge University Hospital, S-141 86, Huddinge, Sweden
| | | | | | | |
Collapse
|
28
|
Gray AM, Spencer PS, Sewell RD. The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds. Br J Pharmacol 1998; 124:669-74. [PMID: 9690858 PMCID: PMC1565439 DOI: 10.1038/sj.bjp.0701882] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Debate exists as to the nature of antidepressant-induced antinociception. It is unclear whether antidepressants are inherently antinociceptive, are able to potentiate opioid antinociception or both. We have used the acetic acid induced abdominal constriction assay in mice to investigate antidepressant-induced antinociception. 2. All the antidepressants tested (s.c.) produced dose-dependent protection against acetic acid-induced abdominal constriction. Similarly, morphine and aspirin were also effective antinociceptive agents in this nociceptive assay. 3. Opioid antagonists, naloxone (0.5 mg kg(-1), s.c.) and naltrindole (1 mg kg(-1), s.c.), shifted the dose-response relationships to the right for each of the antidepressant agents (dothiepin, amitriptyline, sibutramine, (+)-oxaprotiline and paroxetine). In this context the naloxone dose-ratios were 1.95, 3.90, 2.32, 4.50 and 2.65, with naltrindole dose-ratios of 4.36, 17.00, 4.28, 11.48 and 2.65 were obtained, respectively. Naloxone also shifted the morphine dose-response relationship to the right, by a factor of 2.62, whilst naltrindole had no effect upon morphine antinociception. Aspirin antinociception remained unaffected by both opioid antagonists. 4. The enkephalin catabolism inhibitor acetorphan, by itself, produced no activity in this test at a dose of 10 mg kg(-1) (s.c.). However, at higher doses, acetorphan produced a linear dose-response relationship against acetic acid-induced abdominal constriction. 5. When acetorphan was administered before either the antidepressants or morphine, there was a clear potentiation of the antidepressant- or morphine-induced antinociception. However, acetorphan had no effect on aspirin antinociception. 6. Since neither of the opioid antagonists were able to attenuate, nor was acetorphan able to potentiate, aspirin antinociception, we concluded that the mechanism of antidepressant-induced antinociception is different from that of the non-steroidal anti-inflammatory drugs. 7. These data are consistent with the view that antidepressants may induce endogenous opioid peptide release, as shown by the acetorphan study. In this context, the ability of naltrindole to displace the antidepressant dose-response relationship to the right without affecting morphine antinociception, implicates the delta-opioid receptor and endogenous opioid peptides in antidepressant-induced antinociception.
Collapse
Affiliation(s)
- A M Gray
- Division of Pharmacology, The Welsh School of Pharmacy, UWC, Cardiff, Wales
| | | | | |
Collapse
|
29
|
Roques BP, Noble F. Association of enkephalin catabolism inhibitors and CCK-B antagonists: a potential use in the management of pain and opioid addiction. Neurochem Res 1996; 21:1397-410. [PMID: 8947930 DOI: 10.1007/bf02532381] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The overlapping distribution of opioid and cholecystokinin (CCK) peptides and their receptors (mu and delta opioid receptors; CCK-A and CCK-B receptors) in the central nervous system have led to a large number of studies aimed at clarifying the functional relationships between these two neuropeptides. Most of the pharmacological studies devoted to the role of CCK and enkephalins have been focused on the control of pain. Recently the existence of regulatory mechanisms between both systems have been proposed, and the physiological antagonism between CCK and endogenous opioid systems has been definitely demonstrated by coadministration of CCK-B selective antagonists with RB 101, a systemically active inhibitor, which fully protects enkephalins from their degradation. Several studies have also been done to investigate the functional relationships between both systems in development of opioid side-effects and in behavioral responses. This article will review the experimental pharmacology of association of enkephalin-degrading enzyme inhibitors and CCK-B antagonists to demonstrate the interest of these molecules in the management of both pain and opioid addiction.
Collapse
Affiliation(s)
- B P Roques
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS URA D 1500 Université René Descartes, UFR des Sciences Pharmaceutiques et Biologiques 4, Paris, France
| | | |
Collapse
|
30
|
Wiesenfeld-Hallin Z, Xu XJ. The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. REGULATORY PEPTIDES 1996; 65:23-8. [PMID: 8876032 DOI: 10.1016/0167-0115(96)00068-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Z Wiesenfeld-Hallin
- Karolinska Institute, Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | |
Collapse
|
31
|
Yamamoto T, Nozaki-Taguchi N. The effects of intrathecally administered FK480, a cholecystokinin-A receptor antagonist, and YM022, a cholecystokinin-B receptor antagonist, on the formalin test in the rat. Anesth Analg 1996; 83:107-13. [PMID: 8659718 DOI: 10.1097/00000539-199607000-00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholecystokinin (CCK) is located in the brain and the spinal cord, and CCK antagonist is reported to enhance the analgesic effect of morphine. It has been suggested that, during inflammation, the level of endogenous opioid peptides increases in the spinal cord. Intrathecally administered CCK antagonist may have some analgesic effect during inflammation via the activated spinal opioid system. To gain a better understanding of the roles of CCK-A and CCK-B receptors in spinal nociceptive transmission during inflammation, this study evaluated the effects of intrathecally administered FK480 (a CCK-A receptor antagonist) and YM022 (a CCK-B receptor antagonist). Inflammation was induced by paw formalin injection (formalin test) in rats. The subcutaneous injection of formalin into the hind paw evoked biphasic flinching (Phase 1, 0-9 min; Phase 2, 10-60 min) of the injected paw. Drugs were administered intrathecally 10 min before (pretreatment) or 7 min after (posttreatment) the formalin injection. Neither pretreatment nor posttreatment with FK480 has any effect on the formalin test. Pretreatment, but not posttreatment, with YM022 depressed the Phase 1 and Phase 2 flinching behavior in a dose-dependent manner, and this YM022 effect was stereospecific and was not antagonized by naloxone. These data indicate that a CCK-B receptor antagonist, but not a CCK-A receptor antagonist, produces an antinociceptive effect in the rat formalin test. This effect of a CCK-B receptor antagonist was not mediated by the spinal opioid receptor activation.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Anesthesiology, School of Medicine, Chiba University, Japan
| | | |
Collapse
|
32
|
Yamamoto T, Nozaki-Taguchi N. The Effects of Intrathecally Administered FK480, a Cholecystokinin-A Receptor Antagonist, and YM022, a Cholecystokinin-B Receptor Antagonist, on the Formalin Test in the Rat. Anesth Analg 1996. [DOI: 10.1213/00000539-199607000-00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Tsuda M, Suzuki T, Misawa M, Nagase H. Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 1996; 307:7-14. [PMID: 8831097 DOI: 10.1016/0014-2999(96)00219-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the anticonflict effect of diazepam was significantly abolished by pretreatment with naloxone, beta-funaltrexamine or nor-binaltorphimine but not naltrindole, using a Vogel-type conflict paradigm in mice. However, naloxone alone had a significant proconflict effect, and beta-funaltrexamine alone tended to produce a proconflict effect. Spontaneous drinking behavior was not affected by treatment with diazepam and nor-binaltorphimine. In addition, nor-binaltorphimine had no effect on diazepam-induced motor incoordination, hypothermia or anticonvulsant action, respectively. Moreover, the stable dynorphin analog E2078 ([N-methyl-Tyr1, N-alpha-methyl-Arg7-D-Leu8]dynorphin A-(1-8) ethylamide) and the highly selective kappa-opioid receptor agonist U50,488H (trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide++ + methanesulfonate hydrochloride) produced a significant anticonflict effect, which was completely antagonized by pretreatment with nor-binaltorphimine. These findings suggested that the kappa-opioid system may play an important role in the anxiolytic effect of benzodiazepine and the regulation of anxiety.
Collapse
Affiliation(s)
- M Tsuda
- Department of Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
34
|
Xu XJ, Hoffmann O, Wiesenfeld-Hallin Z. L-740,093, a new antagonist of the CCK-B receptor, potentiates the antinociceptive effect of morphine: electrophysiological and behavioural studies. Neuropeptides 1996; 30:203-6. [PMID: 8771563 DOI: 10.1016/s0143-4179(96)90088-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction between morphine and L740,093, a newly developed highly potent antagonist of cholecystokinin-B receptors, was examined in electrophysiological and behavioural studies. Intravenous L740,093 at 0.01 mg/kg had no effect on its own, but significantly potentiated the depressive effect of 1 mg/kg morphine on the nociceptive flexor reflex in decerebrate, spinalized rats. Similarly, subcutaneous L740, 093 at 0.03 mg/kg significantly prolonged the duration of antinociception induced by 10 mg/kg morphine in the rat hotplate test. A bell shaped dose-response curve was noted in the behavioural studies with respect to the interaction between L740,094 and morphine. L740,093, which has excellent CNS penetration, may represent a new tool in studying the involvement of the endogenous cholecystokinin system in the modulation of opioid analgesia and in exploring novel analgesics.
Collapse
Affiliation(s)
- X J Xu
- Karolinska Institute, Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
35
|
Castro JL, Ball RG, Broughton HB, Russell MG, Rathbone D, Watt AP, Baker R, Chapman KL, Fletcher AE, Patel S, Smith AJ, Marshall GR, Ryecroft W, Matassa VG. Controlled modification of acidity in cholecystokinin B receptor antagonists: N-(1,4-benzodiazepin-3-yl)-N'-[3-(tetrazol-5-ylamino) phenyl]ureas. J Med Chem 1996; 39:842-9. [PMID: 8632408 DOI: 10.1021/jm9506736] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The design, synthesis, and biological activity of a novel series of CCK-B receptor antagonists (1) which incorporate a tetrazol-5-ylamino functionality attached to the phenyl ring of the arylurea moiety of L-365,260 are described. In these compounds, the acidity of the tetrazole was gradually modified by utilization of simple conformational constraints, and X-ray crystallographic data were obtained to support the conformational depenence of the pK(a) of the aminotetrazoles. Compounds to emerge from the present work such as 1f and 2c,d are among the highest affinity and, in the case of 1f, most selective (CCK-A/CCK-B, 37 000) antagonists so far reported for this receptor. The C(5)-cyclohexyl compound 2c (L-736,380) dose-dependently inhibited gastric acid secretion in anesthetized rats (ID(50), 0.064 mg/kg) and ex vivo binding of [(125)I]CCK-8S in BKTO mice brain membranes (ED(50), 1.7 mg/kg) and is one of the most potent acidic CCK-B receptor antagonists yet described.
Collapse
Affiliation(s)
- J L Castro
- Neuroscience Research Centre, Terlings Park, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|