1
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
3
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
4
|
Del Bel EA, Guimarães FS, Bermúdez-Echeverry M, Gomes MZ, Schiaveto-de-souza A, Padovan-Neto FE, Tumas V, Barion-Cavalcanti AP, Lazzarini M, Nucci-da-Silva LP, de Paula-Souza D. Role of nitric oxide on motor behavior. Cell Mol Neurobiol 2005; 25:371-92. [PMID: 16047547 PMCID: PMC11529539 DOI: 10.1007/s10571-005-3065-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 07/27/2004] [Indexed: 01/19/2023]
Abstract
The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena. These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), N(G)-nitro-L-arginine methylester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration. Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfal adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice. L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta. Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications. Finally, recent studies using experimental Parkinson's disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.
Collapse
Affiliation(s)
- E A Del Bel
- Department MEF Physiology, School of Odontology, Medical School, Campus USP, Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schiaveto de Souza A, da Silva CA, Del Bel EA. Methodological evaluation to analyze functional recovery after sciatic nerve injury. J Neurotrauma 2004; 21:627-35. [PMID: 15165370 DOI: 10.1089/089771504774129955] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Basso, Bresnahan and Beattie (BBB) locomotor scale has not been tested to evaluate functional consequences of peripheral nerve lesions. Alternative methods to evaluate animal functional recovery after sciatic nerve injury are desirable. Male Wistar rats had a right sciatic nerve segment exposed and were divided in three experimental groups: Sham (wound open, 10 min), Sham-device (nerve segment between crushing device, 10 min), and Crush-force (nerve crushing load of 15,000 g/1,000 mm Hg/mm(2), 10 min). Animals were evaluated preoperatively, 1, 7, 14, 21, and 28 days after procedure by calculation of Sciatic Functional Index (SFI), BBB score and open arena exploratory activity. The primary findings of the present study were (1) the SFI calculated by either DeMedinaceli, Carlton and Goldberg, and Bain formulae were highly correlated; (2) the BBB score evaluation was highly correlated with the SFI; (3) the BBB motor scale was able to detect functional impairments not recognized by the SFI; and (4) open arena exploratory activity was a poor method to detect sciatic nerve impairment. In conclusion, the BBB prescribed functional deficits on the sham-device and crush-force groups even when the SFI indicated full recovery. This greater sensitivity may prove useful when comparing new therapeutic approaches to nerve regeneration.
Collapse
|
6
|
Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001; 2:263-73. [PMID: 11283749 DOI: 10.1038/35067570] [Citation(s) in RCA: 565] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although spontaneous regeneration of lesioned fibres is limited in the adult central nervous system, many people that suffer from incomplete spinal cord injuries show significant functional recovery. This recovery process can go on for several years after the injury and probably depends on the reorganization of circuits that have been spared by the lesion. Synaptic plasticity in pre-existing pathways and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibres are important components of this recovery process. These reorganization processes might occur in cortical and subcortical motor centres, in the spinal cord below the lesion, and in the spared fibre tracts that connect these centres. Functional and anatomical evidence exists that spontaneous plasticity can be potentiated by activity, as well as by specific experimental manipulations. These studies prepare the way to a better understanding of rehabilitation treatments and to the development of new approaches to treat spinal cord injury.
Collapse
Affiliation(s)
- O Raineteau
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | |
Collapse
|
7
|
Abstract
After lesions of the developing mammalian CNS, structural plasticity and functional recovery are much more pronounced than in the mature CNS. We investigated the anatomical reorganization of the corticofugal projections rostral to a unilateral lesion of the corticospinal tract at the level of the medullary pyramid (pyramidotomy) and the contribution of this reorganization and other descending systems to functional recovery. Two-day-old (P2) and adult rats underwent a unilateral pyramidotomy. Three months later the corticofugal projections to the red nucleus and the pons were analyzed; a relatively large number of corticorubral and corticopontine fibers from the lesioned side had crossed the midline and established an additional contralateral innervation of the red nucleus and the pons. Such anatomical changes were not seen after adult lesions. Intracortical microstimulation of the primary motor cortex with EMG recordings of the elbow flexor muscles were used to investigate possible new functional connections from the motor cortex of the pyramidotomy side to the periphery. In rats lesioned as adults, stimulation of the motor cortex ipsilateral to the pyramidotomy never elicited EMG activity. In contrast, in P2 lesioned rats bilateral forelimb EMGs were found. EMG latencies were comparable for the ipsilateral and contralateral responses but were significantly longer than in unlesioned animals. Transient inactivation of both red nuclei with the GABA receptor agonist muscimol led to a complete loss of these bilateral movements. Movements and EMGs reappeared after wash-out of the drug. These results suggest an important role of the red nucleus in the reconnection of the cortex to the periphery after pyramidotomy.
Collapse
|
8
|
Benowitz LI, Goldberg DE, Madsen JR, Soni D, Irwin N. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci U S A 1999; 96:13486-90. [PMID: 10557347 PMCID: PMC23974 DOI: 10.1073/pnas.96.23.13486] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1999] [Indexed: 11/18/2022] Open
Abstract
The purine nucleoside inosine has been shown to induce axon outgrowth from primary neurons in culture through a direct intracellular mechanism. For this study, we investigated the effects of inosine in vivo by examining whether it would stimulate axon growth after a unilateral transection of the corticospinal tract. Inosine applied with a minipump to the rat sensorimotor cortex stimulated intact pyramidal cells to undergo extensive sprouting of their axons into the denervated spinal cord white matter and adjacent neuropil. Axon growth was visualized by anterograde tracing with biotinylated dextran amine and by immunohistochemistry with antibodies to GAP-43. Thus, inosine, a naturally occurring metabolite without known side effects, might help to restore essential circuitry after injury to the central nervous system.
Collapse
Affiliation(s)
- L I Benowitz
- Department of Neurosurgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
9
|
Chadi G, Castelucci P, Gomide VC. EXPERIMETAL MICRONEUROSURGERY OF THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM IN THE STUDY OF THE NEURONAL AND GLIAL TROPHISM AND PLASTICITY. Acta Cir Bras 1998. [DOI: 10.1590/s0102-86501998000100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Abstract
In this review we describe the growth of regenerating fibres through lesions in immature mammalian spinal cord. In newborn opossums and foetal rats, repair occurs rapidly and reliably without antibodies, implants or bridges of undamaged spinal cord. In the neonatal opossum one can compare recovery from lesions made to the CNS at various stages of development in the animal and in culture. As the CNS matures, the capacity for regeneration ceases abruptly. In particular, the extracellular matrix and molecules associated with glia have been shown to play a role in promoting and inhibiting regeneration. Major problems concern the precision with which regenerating axons become reconnected to their targets, and the specificity needed for recovery of function.
Collapse
Affiliation(s)
- J Nicholls
- Dept of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
11
|
Drew T, Jiang W, Kably B, Lavoie S. Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y96-043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Varga ZM, Schwab ME, Nicholls JG. Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture. Proc Natl Acad Sci U S A 1995; 92:10959-63. [PMID: 7479918 PMCID: PMC40550 DOI: 10.1073/pnas.92.24.10959] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurite outgrowth across spinal cord lesions in vitro is rapid in preparations isolated from the neonatal opossum Monodelphis domestica up to the age of 12 days. At this age oligodendrocytes, myelin, and astrocytes develop and regeneration ceases to occur. The role of myelin-associated neurite growth-inhibitory proteins, which increase in concentration at 10-13 days, was investigated in culture by applying the antibody IN-1, which blocks their effects. In the presence of IN-1, 22 out of 39 preparations from animals aged 13-17 days showed clear outgrowth of processes into crushes. When 34 preparations from 13-day-old animals were crushed and cultured without antibody, no axons grew into the lesion. The success rate with IN-1 was comparable to that seen in younger animals but the outgrowth was less profuse. IN-1 was shown by immunocytochemistry to penetrate the spinal cord. Other antibodies which penetrated the 13-day cord failed to promote fiber outgrowth. To distinguish between regeneration by cut neurites and outgrowth by developing uncut neurites, fibers in the ventral fasciculus were prelabeled with carbocyanine dyes and subsequently injured. The presence of labeled fibers in the lesion indicated that IN-1 promoted regeneration. These results show that the development of myelin-associated growth-inhibitory proteins contributes to the loss of regeneration as the mammalian central nervous system matures. The definition of a critical period for regeneration, coupled with the ability to apply trophic as well as inhibitory molecules to the culture, can permit quantitative assessment of molecular interactions that promote spinal cord regeneration.
Collapse
Affiliation(s)
- Z M Varga
- Department of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
13
|
Varga ZM, Bandtlow CE, Erulkar SD, Schwab ME, Nicholls JG. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules. Eur J Neurosci 1995; 7:2119-29. [PMID: 8542069 DOI: 10.1111/j.1460-9568.1995.tb00634.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A comparison was made of neurite growth across spinal cord lesions in the isolated central nervous system (CNS) of newborn opossums (Monodelphis domestica) at various stages of development. The aim was to define the critical period at which growth after injury ceases to occur, with emphasis on growth-inhibitory proteins, myelin and glial cells. In postnatal opossums 3-6 days old (P3-6), repair was observed 5 days after lesions were made in culture at the cervical level (C7) by crushing with forceps. Through-conduction of action potentials was re-established and axons stained by Dil grew into and beyond the crush. In a series of 66 animals 29 showed repair. In 28 animals at P11-12 with comparable lesions repair was observed in five preparations. At P13-14, the CNS was still viable in culture, but none of the 25 preparations examined showed any axonal growth into the crush or conduction through it. The rostro-caudal gradient of development permitted lesions to be made in mature cervical and immature lumbar regions of P11-12 spinal cord. Growth across crushes occurred in lumbar but not in cervical segments of the same preparation. The development of glial cells and myelin was assessed by electron microscopy and by staining with specific antibodies (Rip-1 and myelin-associated glycoprotein) in cervical segments of neonatal P6-14 opossums. At P8, oligodendrocytes and thin myelin sheaths started to appear followed at P9 by astrocytes stained with antibody against glial fibrillary acidic protein. By P14, astrocytes, oligodendrocytes and well-developed myelin sheaths were abundant. The cervical crush sites of P12 cords contained occasional astrocytes but no oligodendrocytes. Specific antibodies (IN-1) to neurite growth-inhibiting proteins (NI-35/250) associated with oligodendrocytes and myelin in the rat CNS cross-reacted with opossum proteins. Assays using the spreading of 3T3 fibroblasts and IN-1 showed that by P7 inhibitory proteins became apparent, particularly in the hindbrain and cervical spinal cord. The concentrations of NI-35/250 thereafter increased and became abundant in the adult opossum. Our finding of a well-defined critical period, encompassing only 5 days, in CNS preparations that can be maintained in culture offers advantages for analysing mechanisms that promote or prevent CNS repair.
Collapse
Affiliation(s)
- Z M Varga
- Department of Pharmacology, Biocenter, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Prakriya M, McCabe PM, Holets VR. A computerized grid walking system for evaluating the accuracy of locomotion in rats. J Neurosci Methods 1993; 48:15-25. [PMID: 8377518 DOI: 10.1016/s0165-0270(05)80003-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A microcomputer-based system employing photoelectric devices to record rat movements and footfalls in the grid walking test paradigm was developed and evaluated. Behavioral data obtained from the system were: distance traversed on the grid, time taken to traverse the distance, number of footfalls, times of footfalls, positions of footfalls, durations of footfalls, and whether the footfall was due to a hind or a fore limb. Validation of the system was performed by comparing the data obtained from the videotape analysis with that obtained from the computerized system. Correlation coefficients between the data obtained from the two methods were found to be 0.92 for one observer, 0.84 for a second observer, and 0.88 with the mean of the two observers. An experimental study in which a group of rats was administered dorsal hemisection lesions of the spinal cord was also conducted. Animals in the lesion group took the same amount of time to cross the runway as the control animals, but made more footfalls per crossing and had longer durations per footfall. The studies validate the capacity of the computerized system to efficiently detect fine locomotory deficits, suggesting that it is a viable tool for the evaluation of neurological dysfunctions in experimental rats.
Collapse
Affiliation(s)
- M Prakriya
- Miami Project, University of Miami, FL 33136
| | | | | |
Collapse
|
15
|
Kunkel-Bagden E, Dai HN, Bregman BS. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function. Exp Neurol 1992; 116:40-51. [PMID: 1559563 DOI: 10.1016/0014-4886(92)90174-o] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is often assumed that the response of the immature nervous system to injury is more robust and exhibits greater anatomical reorganization and greater recovery of function than in the adult. In the present experiments the extent of recovery of function after spinal cord injury at birth or at maturity was assessed. We used a series of quantitative tests of motor behavior to measure reflex responses and triggered movements and to examine different components of locomotion. Rats received a midthoracic "over-hemisection" at birth or as adults. The neonatal operates were allowed to mature and the adult operates were allowed to recover. The animals were trained to walk on a treadmill and to cross runways of varying difficulty. The animals were tested for reflex responses and triggered movements, videotaped while crossing the runways, and footprinted while walking on the treadmill. The adult operates had greater deficits in the reflex responses than the neonatal operates. The adult operates lost the contact placing response and had a decreased hopping response in the ipsilateral limb, while these responses were not impaired in the neonatal operates. Although the contact placing response in the neonatal operates was spared, a greater stimulus was necessary to induce the response than in control animals. In contrast, the neonatal operates had greater deficits in locomotion. Footprint analysis revealed that the animals' base of support was significantly greater after the neonatal injury than after the adult injury, and deficits in limb rotation were larger in the neonatal operates than in the adult operates. Both groups crossed the grid with a similar number of steps but the adult operates made significantly more errors with the hindlimb ipsilateral to the lesion than the contralateral one, while the neonatal operates made an equivalent number of errors with both limbs. The neonatal operates took longer to execute the climb test and used a different movement pattern than the adult operates. The neonatal operates had a different locomotor pattern than the adult operates. Despite greater recovery of reflex responses after spinal cord injury at birth, the pattern of locomotion exhibits greater deficits when compared with the same lesion in the adult. Just as the anatomical consequences of injury to the developing nervous system are not uniform, similarly, the behavioral consequences are also not uniform. Spinal cord injury before the mature pattern of locomotion has developed results in a different motor strategy than after injury in the adult.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Kunkel-Bagden
- Department of Anatomy and Cell Biology, Georgetown University School of Medicine, Washington, D.C. 20007
| | | | | |
Collapse
|