1
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
2
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
3
|
Evdokimova V, Ruzanov P, Anglesio MS, Sorokin AV, Ovchinnikov LP, Buckley J, Triche TJ, Sonenberg N, Sorensen PHB. Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. Mol Cell Biol 2006; 26:277-92. [PMID: 16354698 PMCID: PMC1317623 DOI: 10.1128/mcb.26.1.277-292.2006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
YB-1 is a broad-specificity RNA-binding protein that is involved in regulation of mRNA transcription, splicing, translation, and stability. In both germinal and somatic cells, YB-1 and related proteins are major components of translationally inactive messenger ribonucleoprotein particles (mRNPs) and are mainly responsible for storage of mRNAs in a silent state. However, mechanisms regulating the repressor activity of YB-1 are not well understood. Here we demonstrate that association of YB-1 with the capped 5' terminus of the mRNA is regulated via phosphorylation by the serine/threonine protein kinase Akt. In contrast to its nonphosphorylated form, phosphorylated YB-1 fails to inhibit cap-dependent but not internal ribosome entry site-dependent translation of a reporter mRNA in vitro. We also show that similar to YB-1, Akt is associated with inactive mRNPs and that activated Akt may relieve translational repression of the YB-1-bound mRNAs. Using Affymetrix microarrays, we found that many of the YB-1-associated messages encode stress- and growth-related proteins, raising the intriguing possibility that Akt-mediated YB-1 phosphorylation could, in part, increase production of proteins regulating cell proliferation, oncogenic transformation, and stress response.
Collapse
Affiliation(s)
- Valentina Evdokimova
- Department of Pathology, British Columbia Research Institute for Children's and Women's Health, Vancouver, BC, Canada V5Z 163.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Matsumoto K, Tanaka KJ, Tsujimoto M. An acidic protein, YBAP1, mediates the release of YB-1 from mRNA and relieves the translational repression activity of YB-1. Mol Cell Biol 2005; 25:1779-92. [PMID: 15713634 PMCID: PMC549371 DOI: 10.1128/mcb.25.5.1779-1792.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes.
Collapse
Affiliation(s)
- Ken Matsumoto
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
5
|
Raffetseder U, Frye B, Rauen T, Jürchott K, Royer HD, Jansen PL, Mertens PR. Splicing factor SRp30c interaction with Y-box protein-1 confers nuclear YB-1 shuttling and alternative splice site selection. J Biol Chem 2003; 278:18241-8. [PMID: 12604611 DOI: 10.1074/jbc.m212518200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The multifunctional DNA- and RNA-associated Y-box protein 1 (YB-1) specifically binds to splicing recognition motifs and regulates alternative splice site selection. Here, we identify the arginine/serine-rich SRp30c protein as an interacting protein of YB-1 by performing a two-hybrid screen against a human mesangial cell cDNA library. Co-immunoprecipitation studies confirm a direct interaction of tagged proteins YB-1 and SRp30c in the absence of RNA via two independent protein domains of YB-1. A high affinity interaction is conferred through the N-terminal region. We show that the subcellular YB-1 localization is dependent on the cellular SRp30c content. In proliferating cells, YB-1 localizes to the cytoplasm, whereas FLAG-SRp30c protein is detected in the nucleus. After overexpression of YB-1 and FLAG-SRp30c, both proteins are co-localized in the nucleus, and this requires the N-terminal region of YB-1. Heat shock treatment of cells, a condition under which SRp30c accumulates in stress-induced Sam68 nuclear bodies, abrogates the co-localization and YB-1 shuttles back to the cytoplasm. Finally, the functional relevance of the YB-1/SRp30c interaction for in vivo splicing is demonstrated in the E1A minigene model system. Here, changes in splice site selection are detected, that is, overexpression of YB-1 is accompanied by preferential 5' splicing site selection and formation of the 12 S isoform.
Collapse
Affiliation(s)
- Ute Raffetseder
- Division of Nephrology and Clinical Immunology, University Hospital of Aachen, 52057 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Nekrasov MP, Ivshina MP, Chernov KG, Kovrigina EA, Evdokimova VM, Thomas AAM, Hershey JWB, Ovchinnikov LP. The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J Biol Chem 2003; 278:13936-43. [PMID: 12582179 DOI: 10.1074/jbc.m209145200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic messenger ribonucleoprotein particles of mammalian somatic cells contain the protein YB-1, also called p50, as a major core component. YB-1 is multifunctional and involved in regulation of mRNA transcription and translation. Our previous studies demonstrated that YB-1 stimulates initiation of translation in vitro at a low YB-1/mRNA ratio, whereas an increase of YB-1 bound to mRNA resulted in inhibition of protein synthesis in vitro and in vivo. Here we show that YB-1-mediated translation inhibition in a rabbit reticulocyte cell-free system is followed by a decay of polysomes, which is not a result of mRNA degradation or its functional inactivation. The inhibition does not change the ribosome transit time, and therefore, it affects neither elongation nor termination of polypeptide chains and only occurs at the stage of initiation. YB-1 induces accumulation of mRNA in the form of free messenger ribonucleoprotein particles, i.e. it blocks mRNA association with the small ribosomal subunit. The accumulation is accompanied by eukaryotic initiation factor eIF4G dissociation from mRNA. The C-terminal domain of YB-1 is responsible for inhibition of translation as well as the disruption of mRNA interaction with eIF4G.
Collapse
Affiliation(s)
- Maxim P Nekrasov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russian Federation, Russia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N. The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer. EMBO J 2001; 20:5491-502. [PMID: 11574481 PMCID: PMC125650 DOI: 10.1093/emboj/20.19.5491] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
mRNA silencing and storage play an important role in gene expression under diverse circumstances, such as throughout early metazoan development and in response to many types of environmental stress. Here we demonstrate that the major mRNA-associated protein YB-1, also termed p50, is a potent cap-dependent mRNA stabilizer. YB-1 addition or overexpression dramatically increases mRNA stability in vitro and in vivo, whereas YB-1 depletion results in accelerated mRNA decay. The cold shock domain of YB-1 is responsible for the mRNA stabilizing activity, and a blocked mRNA 5' end is required for YB-1-mediated stabilization. Significantly, exogenously added YB-1 destabilizes the interaction of the cap binding protein, eIF4E, with the mRNA cap structure. Conversely, sequestration of eIF4E from the cap increases the association of endogenous YB-1 with mRNA at or near the cap, and significantly enhances mRNA stability. These data support a model whereby down-regulation of eIF4E activity or increasing the YB-1 mRNA binding activity or concentration in cells activates a general default pathway for mRNA stabilization.
Collapse
Affiliation(s)
- Valentina Evdokimova
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Peter Ruzanov
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Hiroaki Imataka
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Brian Raught
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Yuri Svitkin
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Lev P. Ovchinnikov
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6 and Institute of Protein Research, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation, 142 292 Corresponding author e-mail:
| |
Collapse
|
8
|
Ceman S, Nelson R, Warren ST. Identification of mouse YB1/p50 as a component of the FMRP-associated mRNP particle. Biochem Biophys Res Commun 2000; 279:904-8. [PMID: 11162447 DOI: 10.1006/bbrc.2000.4035] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fragile X mental retardation is caused by the absence of FMRP, an RNA-binding protein found in a large mRNP complex. Although there is evidence that FMRP exists as a homo-multimer, additional proteins have been identified that associate with FMRP in the mRNP. The autosomal paralogs of FMRP, FXR1P, and FXR2P, associate with FMRP, as do nucleolin and NUFIP1, all RNA binding proteins. Using cell lines that were stably transfected with Flag-Fmr1, we identified an additional protein that coimmunoprecipitates with FMRP. The approximately 50 kDa protein was identified by mass spectrometry as mouse Y box-binding protein 1 (YB1), which is 97% identical to the core mRNP protein p50, an RNA-binding protein. An anti-p50 antiserum recognized the 50 kDa protein, confirming the identification. The association of the FMRP-mRNP with a Y box protein, the latter commonly found in mRNPs, further suggests the involvement of FMRP in translation modulation.
Collapse
Affiliation(s)
- S Ceman
- Department of Biochemistry, Howard Hughes Medical Institute, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
9
|
Ruzanov PV, Evdokimova VM, Korneeva NL, Hershey JW, Ovchinnikov LP. Interaction of the universal mRNA-binding protein, p50, with actin: a possible link between mRNA and microfilaments. J Cell Sci 1999; 112 ( Pt 20):3487-96. [PMID: 10504297 DOI: 10.1242/jcs.112.20.3487] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that p50 is the most abundant protein associated with a variety of eukaryotic mRNAs and exhibits about 98% amino acid sequence identity to mammalian Y-box binding transcription factors. The dual function of p50 in the cell as a regulator of both transcription and translation has been suggested. To gain insight into the role of p50 in these processes, we performed the yeast two-hybrid screen to identify p50 molecular partners. Here we report the identification of actin as a p50-interacting protein. Coimmunoprecipitation of p50 and actin from HeLa extracts as well as in vitro binding studies indicate specificity and a high affinity for the interaction between p50 and actin. Interestingly, p50 binding to actin is affected by mRNA; binding was observed at a low p50/mRNA ratio and was greatly reduced at higher ratios. Since the p50/mRNA ratio appears to be important for mRNA translatability, we speculate that p50 can regulate the attachment of mRNA to the actin network depending on its translational activity. Using immunofluorescence, we show that p50 binds to actin filaments in permeabilized cells and causes actin fibers to bundle in vitro. Together, these findings support the view that p50 may play an important role in mRNA transport, anchoring, and localization on actin filaments in the cell.
Collapse
Affiliation(s)
- P V Ruzanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | |
Collapse
|
10
|
Evdokimova VM, Ovchinnikov LP. Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 1999; 31:139-49. [PMID: 10216949 DOI: 10.1016/s1357-2725(98)00137-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
p50, the major core protein of messenger ribonucleoprotein particles (mRNPs), is a universal protein found exclusively in association with different mRNA species in the cytoplasm of somatic mammalian cells. Furthermore, p50 is the most abundant and tightly bound protein within both inactive mRNPs and active mRNPs derived from polysomes, although the latter contain a lower level of p50. Recent experiments have revealed that, depending on the p50 to mRNA ratio, p50 may either act as a repressor or an activator of protein synthesis. On the other hand, p50 exhibits about 98% amino acid sequence identity to mammalian transcription factors that bind specifically to Y-box containing DNA. Thus, it is a counterpart of the Y-box binding proteins which are found in bacteria, plants and animals, exhibiting multiple biological activities ranging from transcriptional regulation of a wide variety of genes to 'masking' mRNA activity in germinal cells. This review summarizes our current knowledge of p50 structure and function. It also discusses the biological roles of p50 and related proteins in gene expression and describes the likely mechanisms of their action.
Collapse
Affiliation(s)
- V M Evdokimova
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | |
Collapse
|
11
|
Evdokimova VM, Kovrigina EA, Nashchekin DV, Davydova EK, Hershey JW, Ovchinnikov LP. The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 1998; 273:3574-81. [PMID: 9452484 DOI: 10.1074/jbc.273.6.3574] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major core protein of cytoplasmic messenger ribonucleoprotein particles (p50) has been shown previously to inhibit protein synthesis in vitro and in vivo. Furthermore, p50 is highly homologous to the Y-box-binding transcription factor family of proteins, binds DNA containing the Y-box motif, and thus may have a dual function in cells as a regulator of both transcription and translation. Here we show that binding or removal of p50 from rabbit reticulocyte lysate by monospecific antibodies to p50 strongly inhibits translation of endogenous and exogenous globin mRNAs as well as prokaryotic beta-galactosidase mRNA in a rabbit reticulocyte cell-free system. Thus, depending on the conditions, p50 not only may act as a translational repressor, but may also be required for protein synthesis. Translation inhibition with anti-p50 antibodies is not a result of mRNA degradation or its functional inactivation. The inhibition does not change the ribosome transit time, and therefore, it does not affect elongation/termination of polypeptide chains. The inhibition with anti-p50 antibodies is followed by a decay of polysomes and accumulation of the 48 S preinitiation complex. These results suggest that p50 participates in initiation of protein biosynthesis. Although uninvolved in the formation of the 48 S preinitiation complex, p50 is necessary either for attachment of the 60 S ribosomal subunit or for previous 5'-untranslated region scanning by the 43 S preinitiation complex.
Collapse
Affiliation(s)
- V M Evdokimova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russian Federation
| | | | | | | | | | | |
Collapse
|
12
|
Yurkova MS, Murray MT. A translation regulatory particle containing the Xenopus oocyte Y box protein mRNP3+4. J Biol Chem 1997; 272:10870-6. [PMID: 9099743 DOI: 10.1074/jbc.272.16.10870] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In oocytes, nontranslated maternal mRNAs are packaged by protein into messenger ribonucleoprotein particles (mRNPs) that are masked from translation by protein-RNA interactions. Proteins associated with such masked states of mRNAs are particularly abundant in amphibian oocytes. One of these mRNP proteins from Xenopus oocytes, mRNP3+4 (also called FRG Y2a/b or p54/p56), binds to diverse mRNAs independent of their sequence and is the germ line member of the evolutionarily conserved Y box protein multigene family. Xenopus oocytes contain soluble pools of mRNP3+4 6 S oligomers, probably dimers, and larger approximately 15 S particles containing mRNP3+4 and additional proteins. Here we report the purification of this larger form as an approximately 320-kDa particle that contains mRNP3+4 and nine additional polypeptides, including mRNA-binding polypeptides of 34 and 36 kDa and a doublet of 110/105 kDa that proved to be nucleolin. The particle has a protein kinase activity that phosphorylates its own mRNP3+4, nucleolin, and a 31-kDa polypeptide component and exhibits translational inhibition in both the wheat germ extract and rabbit reticulocyte lysate systems. The presence of mRNP3+4 and nucleolin in this large translation regulatory particle suggests that it participates in an early step of mRNP assembly and masking.
Collapse
Affiliation(s)
- M S Yurkova
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48202, USA
| | | |
Collapse
|
13
|
Minich WB, Maidebura IP, Ovchinnikov LP. Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:633-8. [PMID: 8462540 DOI: 10.1111/j.1432-1033.1993.tb17701.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 50-kDa protein has been purified to homogeneity from free mRNP of rabbit reticulocytes. This protein, designated as p50, is present within both free mRNP (approximately 4 mol protein/mol globin mRNA) and polyribosomal mRNP (approximately 2 mol protein/mol globin mRNA). p50 is a basic protein (pI approximately 9.5) and is characterized by a high glycine content of approximately 20%. Nitrocellulose-filter analysis has shown that p50 interacts with globin mRNA with an association constant of approximately 2.5 x 10(8) M-1 (100 mM KAc, 4 degrees C). Various RNA and polyribonucleotides have the following relative affinity for p50; poly(G) > poly(U) > globin mRNA approximately 16S rRNA > poly(A) > poly(C). p50 can be phosphorylated both in vitro and in vivo.
Collapse
Affiliation(s)
- W B Minich
- Institute of Protein Research, Russian Academy of Sciences, Pushchino
| | | | | |
Collapse
|
14
|
Abstract
Polyribosomal and free mRNPs from rabbit reticulocytes were isolated and characterized. Translation of mRNPs was studied in the rabbit reticulocyte and wheat germ cell-free systems. Both classes of mRNPs were active in rabbit reticulocyte lysates. However, considerable differences between mRNPs and mRNA have been revealed. High concentrations of mRNA in the form of mRNP did not inhibit protein biosynthesis, whereas the same amounts of deproteinized mRNA caused inhibition of this process. Polyribosomal mRNPs and deproteinized mRNA, but not free mRNPs, are active in the wheat germ cell-free translation system. Translation of free mRNPs in this system can be restored by addition of 0.5 M KCl-wash of rabbit reticulocyte ribosomes. These results suggest the existence of a special repressor/activator regulatory system which controls mRNA distribution between free mRNPs and polyribosomes in rabbit reticulocytes. This regulatory system should include: i) a translation repressor associated with mRNA within free mRNPs, preventing its translation; and ii) a translation activator associated with ribosomes, overcoming the effect of the repressor. Both classes of cytoplasmic mRNPs contain a major 50 kDa protein (p50). The content of this protein per mol of mRNA in free mRNPs is twice as much as in polyribosomal ones. The method of p50 isolation has been developed and some properties of this protein were investigated. It has been shown that small amounts of p50 stimulate, whereas high amounts inhibit mRNA translation. We suggest that p50 has a dual role in protein biosynthesis. In polyribosomal mRNPs (p50:mRNA approximately 2:1, mol/mol), this protein promotes the translation process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W B Minich
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | |
Collapse
|
15
|
Minich WB, Volyanik EV, Korneyeva NL, Berezin YV, Ovchinnikov LP. Cytoplasmic mRNP proteins affect mRNA translation. Mol Biol Rep 1990; 14:65-7. [PMID: 2194111 DOI: 10.1007/bf00360418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- W B Minich
- Institute of Protein Research, Academy of Sciences of the USSR, Pushchino, Moscow Region
| | | | | | | | | |
Collapse
|