1
|
Pandey AK, Dixit U, Kholodovych V, Comollo TW, Pandey VN. The β1'-β2' Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft. Biochemistry 2017; 56:3434-3442. [PMID: 28627879 DOI: 10.1021/acs.biochem.7b00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterodimeric human immunodeficiency virus type 1 reverse transcriptase is composed of p66 and p51 subunits. While in the p51 subunit, the connection domain is tucked in the polymerase cleft; it is effectively displaced from the cleft of the catalytically active p66 subunit. How is the connection domain relocated from the polymerase cleft of p66? Does the RNase H domain have any role in this process? To answer this question, we extended the C-terminal region of p51 by stepwise addition of N-terminal motifs of RNase H domain to generate p54, p57, p60, and p63 derivatives. We found all of the C-terminal extended derivatives of p51 assume open conformation, bind to the template-primer, and catalyze the polymerase reaction. Glycerol gradient ultracentrifugation analysis showed that only p54 sedimented as a monomer, while other derivatives were in a homodimeric conformation. We proposed a model to explain the monomeric conformation of catalytically active p54 derivative carrying additional 21-residues long β1'-β2' motif from the RNase H domain. Our results indicate that the β1'-β2' motif of the RNase H domain may be responsible for displacing the connection domain from the polymerase cleft of putative monomeric p66. The unstable elongated p66 molecule may then readily dimerize with p51 to assume a stable dimeric conformation.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers University , Piscataway, New Jersey 08854, United States
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Thomas W Comollo
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University-Newark , Newark, New Jersey 07103, United States
| |
Collapse
|
2
|
Hernandez JC, Latz E, Urcuqui-Inchima S. HIV-1 Induces the First Signal to Activate the NLRP3 Inflammasome in Monocyte-Derived Macrophages. Intervirology 2013; 57:36-42. [DOI: 10.1159/000353902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
|
3
|
Marko RA, Liu HW, Ablenas CJ, Ehteshami M, Götte M, Cosa G. Binding kinetics and affinities of heterodimeric versus homodimeric HIV-1 reverse transcriptase on DNA-DNA substrates at the single-molecule level. J Phys Chem B 2013; 117:4560-7. [PMID: 23305243 DOI: 10.1021/jp308674g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During viral replication, HIV-1 reverse transcriptase (RT) plays a pivotal role in converting genomic RNA into proviral DNA. While the biologically relevant form of RT is the p66-p51 heterodimer, two recombinant homodimer forms of RT, p66-p66 and p51-p51, are also catalytically active. Here we investigate the binding of the three RT isoforms to a fluorescently labeled 19/50-nucleotide primer/template DNA duplex by exploiting single-molecule protein-induced fluorescence enhancement (SM-PIFE). PIFE, which does not require labeling of the protein, allows us to directly visualize the binding/unbinding of RT to a double-stranded DNA substrate. We provide values for the association and dissociation rate constants of the RT homodimers p66-p66 and p51-p51 with a double-stranded DNA substrate and compare those to the values recorded for the RT heterodimer p66-p51. We also report values for the equilibrium dissociation constant for the three isoforms. Our data reveal great similarities in the intrinsic binding affinities of p66-p51 and p66-p66, with characteristic Kd values in the nanomolar range, much smaller (50-100-fold) than that of p51-p51. Our data also show discrepancies in the association/dissociation dynamics among the three dimeric RT isoforms. Our results further show that the apparent binding affinity of p51-p51 for its DNA substrate is to a great extent time-dependent when compared to that of p66-p66 and p66-p51, and is more likely determined by the dimer dissociation into its constituent monomers rather than the intrinsic binding affinity of dimeric RT.
Collapse
Affiliation(s)
- Ryan A Marko
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Hernández JC, Stevenson M, Latz E, Urcuqui-Inchima S. HIV type 1 infection up-regulates TLR2 and TLR4 expression and function in vivo and in vitro. AIDS Res Hum Retroviruses 2012; 28:1313-28. [PMID: 22280204 DOI: 10.1089/aid.2011.0297] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) play a critical role in innate immunity against pathogens. Their stimulation induces the activation of NF-κB, an important inducer of HIV-1 replication. In recent years, an increasing number of studies using several cells types from HIV-infected patients indicate that TLRs play a key role in regulating the expression of proinflammatory cytokines and viral pathogenesis. In the present study, the effect of HIV-1 stimulation of monocyte-derived macrophage (MDM) and peripheral blood mononuclear cell (PBMC) subpopulations from healthy donors on the expression and functions of TLR2 and TLR4 was examined. In addition, and to complete the in vitro study, the expression pattern of TLR2 and TLR4 in 49 HIV-1-infected patients, classified according to viral load and the use of HAART, was determined and compared with 25 healthy subjects. An increase of TLR expression and production of proinflammatory cytokines were observed in MDMs and PBMCs infected with HIV-1 in vitro and in response to TLR stimulation, compared to the mock. In addition, an association between TLR expression and up-regulation of CD80 in plasmacytoid dendritic cells (pDCs) was observed. The ex vivo analysis indicated increased expression of TLR2 and TLR4 in myeloid dendritic cells (mDCs), but only of TLR2 in monocytes obtained from HIV-1-infected patients, compared to healthy subjects. Remarkably, the expression was higher in cells from patients who do not use HAART. In monocytes, there was a positive correlation between both TLRs and viral load, but not CD4(+) T cell numbers. Together, our in vitro and ex vivo results suggest that TLR expression and function can be up-regulated in response to HIV-1 infection and could affect the inflammatory response. We propose that modulation of TLRs represents a mechanism to promote HIV-1 replication or AIDS progression in HIV-1-infected patients.
Collapse
Affiliation(s)
- Juan C. Hernández
- Grupo Inmunovirología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- INFETARE, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| | - Mario Stevenson
- Developmental Center for AIDS Research, University of Miami, Miami, Florida
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Spence RA, Johnson KA. Section Reviews; Anti-infectives: Section Review Anti-infectives: Therapeutic potential of nonnucleoside reverse transcriptase inhibitors in the treatment of HIV infection. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.8.985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rebecca A Spence
- Department of Biochemistry & Molecular Biology, 106 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kenneth A Johnson
- Department of Biochemistry & Molecular Biology, 106 Althouse Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
6
|
Hehl EA, Joshi P, Kalpana GV, Prasad VR. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol 2004; 78:5056-67. [PMID: 15113887 PMCID: PMC400328 DOI: 10.1128/jvi.78.10.5056-5067.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptase (RT) and integrase (IN) are two key catalytic enzymes encoded by all retroviruses. It has been shown that a specific interaction occurs between the human immunodeficiency virus type 1 (HIV-1) RT and IN proteins (X. Wu, H. Liu, H. Xiao, J. A. Conway, E. Hehl, G. V. Kalpana, V. R. Prasad, and J. C. Kappes, J. Virol. 73:2126-2135, 1999). We have now further examined this interaction to map the binding domains and to determine the effects of interaction on enzyme function. Using recombinant purified proteins, we have found that both a HIV-1 RT heterodimer (p66/p51) and its individual subunits, p51 and p66, are able to bind to HIV-1 IN. An oligomerization-defective mutant of IN, V260E, retained the ability to bind to RT, showing that IN oligomerization may not be required for interaction. Furthermore, we report that the C-terminal domain of IN, but not the N-terminal zinc-binding domain or the catalytic core domain, was able to bind to heterodimeric RT. Deletion analysis to map the IN-binding domain on RT revealed two separate IN-interacting domains: the fingers-palm domain and the carboxy-terminal half of the connection subdomain. The carboxy-terminal domain of IN alone retained its interaction with both the fingers-palm and the connection-RNase H fragments of RT, but not with the half connection-RNase H fragment. This interaction was not bridged by nucleic acids, as shown by micrococcal nuclease treatment of the proteins prior to the binding reaction. The influences of IN and RT on each other's activities were investigated by performing RT processivity and IN-mediated 3' processing and joining reactions in the presence of both proteins. Our results suggest that, while IN had no influence on RT processivity, RT stimulated the IN-mediated strand transfer reaction in a dose-dependent manner up to 155-fold. Thus, a functional interaction between these two viral enzymes may occur during viral replication.
Collapse
Affiliation(s)
- Eric A Hehl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
7
|
de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andréola ML. DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 2002; 324:195-203. [PMID: 12441099 DOI: 10.1016/s0022-2836(02)01064-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 integrase, the retroviral-encoded enzyme involved in the integration of the retrotranscribed viral genome into the host nuclear DNA, is an attractive and still unexploited target. To date, very few inhibitors of this enzyme with a potential therapeutic value have been described. During the search for new HIV-1 targets, we recently described DNA oligodeoxynucleotide aptamers (ODN 93 and ODN 112) that are strong inhibitors of the RNase H activity associated with HIV-1 reverse transcriptase. The striking structural homology between RNase H and integrase led us to study the effect of the RNase H inhibitors on the integrase. Shorter DNA aptamers derived from ODNs 93 and 112 (ODNs 93del and 112del) were able to inhibit HIV-1 integrase in the nanomolar range. They had G-rich sequences able to form G-quartets stabilized by the presence of K(+). The presence of these ions increased the inhibitory efficiency of these agents dramatically. Inhibition of enzymatic activities by ODN 93del and ODN 112del was observed in a cell-free assay system using a recombinant integrase and HIV-1 replication was abolished in infected human cells. Moreover, cell fusion assays showed that these agents do not block viral cell entry at concentrations where viral replication is stopped.
Collapse
Affiliation(s)
- V R de Soultrait
- UMR 5097, CNRS-Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
8
|
Polymethylene derivatives of pyrimidine nucleic bases bearing ω-functional groups. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02821834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Henskens YM, Veerman EC, Nieuw Amerongen AV. Cystatins in health and disease. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:71-86. [PMID: 8868064 DOI: 10.1515/bchm3.1996.377.2.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolytic enzymes have many physiological functions in plants, bacteria, viruses, protozoa and mammals. They play a role in processes such as food digestion, complement activation or blood coagulation. The action of proteolytic enzymes is biologically controlled by proteinase inhibitors and increasing attention is being paid to the physiological significance of these natural inhibitors in pathological processes. The reason for this growing interest is that uncontrolled proteolysis can lead to irreversible damage e.g. in chronic inflammation or tumor metastasis. This review focusses on the possible role of the cystatins, natural and specific inhibitors of the cysteine proteinases, in pathological processes.
Collapse
Affiliation(s)
- Y M Henskens
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Netherlands
| | | | | |
Collapse
|
10
|
Strand displacement activity of the human immunodeficiency virus type 1 reverse transcriptase heterodimer and its individual subunits. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42209-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Andreola ML, Dufour E, Tarrago-Litvak L, Jamkovoy VI, Levina AS, Barr PJ, Litvak S, Nevinsky GA. Human immunodeficiency virus type-1 reverse transcriptase copies very short templates: kinetic and crosslinking analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:147-54. [PMID: 7684930 DOI: 10.1016/0167-4781(93)90175-d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe in this article some properties concerning the cDNA elongation activity of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). The kinetic parameters of the polymerization reaction catalyzed by HIV-1 RT, using short templates, were studied. Values of Km and Vmax were measured as a function of the oligoadenylate template length: the logarithm of Km increased linearly, with an incremental factor of 2.2, when the template length differs by one nucleotide. Using short templates, olig(A)n (n = 7-14) and primers shorter or longer than the template, HIV-1 reverse transcriptase was able to synthesize polymer products longer than 200 nucleotides. We showed that an oligonucleotide as short as (pA)3 was long enough to serve as template for cDNA synthesis by RT. In the binding of RT to template of different lengths (5 to 14 nucleotides long), two constants were determined differing in each case by a factor of about 10. The three recombinant forms of HIV-1 RT (p66/p51, p66/p66 and p51/p51) were crosslinked to a short template, (pA)14, in the presence of cis-aquahydroxydiamminoplatinum. The efficiency of crosslink of [32P](pA)14 template with each of the subunits of RT correlated well with the affinity of this template to the different forms of RT. In the case of p66/p51, the crosslink occurred mainly with the p66 subunit. These results confirm the important catalytic role of the p66 subunit in the heterodimeric human retroviral polymerase.
Collapse
Affiliation(s)
- M L Andreola
- Institut de Biochimie Cellulaire du CNRS, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|