1
|
Kleczkowski LA, Igamberdiev AU. Adenylate-driven equilibration of both ribo- and deoxyribonucleotides is under magnesium control: Quantification of the Mg 2+-signal. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154380. [PMID: 39709740 DOI: 10.1016/j.jplph.2024.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024]
Abstract
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg2+ controlling the ratios of Mg-free and Mg-complexed reactants. Their activities are driven by adenylates produced by adenylate kinase which controls the direction of NMPK and NDPK reactions, depending on the energy status of a cell. This enzymatic machinery is localized in the cytosol, mitochondria, and plastids, i.e. compartments with high energy budgets and where (except for cytosol) RNA and DNA synthesis occur. Apparent equilibrium constants of NMPKs, based on total nucleotide contents, are [Mg2+]-dependent. This allows for an indirect estimation of internal [Mg2+], which constitutes a signal of the energetic status of a given tissue/cell/compartment. Adenylates contribute the most to this Mg2+-signal, followed by uridylates, guanylates, and cytidylates, with deoxynucleotides' contribution deemed negligible. A method to quantify the Mg2+-signal, using nucleotide datasets, is discussed.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada.
| |
Collapse
|
2
|
Kozakiewicz-Piekarz A, Grzegórska M, Ziemkiewicz K, Grab K, Baranowski MR, Zapadka M, Karpiel M, Kupcewicz B, Kowalska J, Wujak M. Synthesis, kinetic studies, and QSAR of dinucleoside polyphosphate derivatives as human AK1 inhibitors. Bioorg Chem 2024; 148:107432. [PMID: 38744169 DOI: 10.1016/j.bioorg.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential. In this work, we determined the effect of a series of dinucleoside polyphosphate derivatives, commercially available (11 compounds) and newly synthesized (8 compounds), on the catalytic activity of human adenylate kinase isoenzyme 1 (hAK1). The tested compounds belonged to the following groups: (1) diadenosine polyphosphates with different phosphate chain lengths, (2) base-modified derivatives, and (3) phosphate-modified derivatives. We found that all the investigated compounds inhibited the catalytic activity of hAK1, yet with different efficiencies. Three dinucleoside polyphosphates showed IC50 values below 1 µM, and the most significant inhibitory effect was observed for P1-(5'-adenosyl) P5-(5'-adenosyl) pentaphosphate (Ap5A). To understand the observed differences in the inhibition efficiency of the tested dinucleoside polyphosphates, the molecular docking of these compounds to hAK1 was performed. Finally, we conducted a quantitative structure-activity relationship (QSAR) analysis to establish a computational prediction model for hAK1 modulators. Two PLS-regression-based models were built using kinetic data obtained from the AK1 activity analysis performed in both directions of the enzymatic reaction. Model 1 (AMP and ATP synthesis) had a good prediction power (R2 = 0.931, Q2 = 0.854, and MAE = 0.286), while Model 2 (ADP synthesis) exhibited a moderate quality (R2 = 0.913, Q2 = 0.848, and MAE = 0.370). These studies can help better understand the interactions between dinucleoside polyphosphates and adenylate kinase to attain more effective and selective inhibitors in the future.
Collapse
Affiliation(s)
| | - Magdalena Grzegórska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 87-100 Torun, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C 02-097 Warsaw, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Mariusz Zapadka
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland
| | - Marta Karpiel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 30-348 Krakow, Poland
| | - Bogumiła Kupcewicz
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Magdalena Wujak
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland.
| |
Collapse
|
3
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
4
|
Dulko-Smith B, Ojeda-May P, Åden J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 PMCID: PMC11779523 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Kleczkowski LA, Igamberdiev AU. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153901. [PMID: 36549033 DOI: 10.1016/j.jplph.2022.153901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Free magnesium (Mg2+) represents a powerful signal arising from interconversions of adenylates (ATP, ADP and AMP). This is a consequence of the involvement of adenylate kinase (AK) which equilibrates adenylates and uses defined species of Mg-complexed and Mg-free adenylates in both directions of its reaction. However, cells contain also other reversible Mg2+-dependent enzymes that equilibrate non-adenylate nucleotides (uridylates, cytidylates and guanylates), i.e. nucleoside monophosphate kinases (NMPKs) and nucleoside diphosphate kinase (NDPK). Here, we propose that AK activity is tightly coupled to activities of NMPK and NDPK, linking adenylate equilibrium to equilibria of other nucleotides, and with [Mg2+] controlling the ratios of Mg-chelated and Mg-free nucleotides. This coupling establishes main hubs for adenylate-driven equilibration of non-adenylate nucleotides, with [Mg2+] acting as signal arising from all nucleotides rather than adenylates only. Further consequences involve an overall adenylate control of UTP-, GTP- and CTP-dependent pathways and the availability of substrates for RNA and DNA synthesis.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B3X9, Canada.
| |
Collapse
|
6
|
Ludwiczak A, Wujak M, Kozakiewicz A, Wojtczak A, Komoszyński M. Adenylate kinases of thermophiles Aquifex aeolicus and Geobacillus stearothermophilus: biochemical and kinetic studies. Biochem Cell Biol 2021; 99:499-507. [PMID: 34357813 DOI: 10.1139/bcb-2020-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenylate kinases (AK) play a pivotal role in the regulation of cellular energy. The aim of our work was to achieve the overproduction and purification of AKs from two groups of bacteria and to determine, for the first time, the comprehensive biochemical and kinetic properties of adenylate kinase from Gram-negative Aquifex aeolicus (AKaq) and Gram-positive Geobacillus stearothermophilus (AKst). Therefore we determined KM and Vmax values, and the effects of temperature, pH, metal ions, donors of the phosphate groups and inhibitor Ap5A for both thermophilic AKs. The kinetic studies indicate that both AKs exhibit significantly higher affinity for substrates with the pyrophosphate group than for adenosine monophosphate. AK activation by Mg2+ and Mn2+ revealed that both ions are efficient in the synthesis of adenosine diphosphate and adenosine triphosphate; however, Mn2+ ions at 0.2-2.0 mmol/L concentration were more efficient in the activation of the ATP synthesis than Mg2+ ions. Our research demonstrates that zinc ions inhibit the activity of enzymes in both directions, while Ap5A at a concentration of 10 µmol/L and 50 µmol/L inhibited both enzymes with a different efficiency. Sigmoid-like kinetics were detected at high ATP concentrations not balanced by Mg2+, suggesting the allosteric effect of ATP for both bacterial AKs.
Collapse
Affiliation(s)
- Agnieszka Ludwiczak
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum, Jurasza 2, 85-067 Bydgoszcz, Poland
| | - Anna Kozakiewicz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Andrzej Wojtczak
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Michał Komoszyński
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| |
Collapse
|
7
|
Wujak M, Kozakiewicz A, Ciarkowska A, Loch JI, Barwiolek M, Sokolowska Z, Budny M, Wojtczak A. Assessing the Interactions of Statins with Human Adenylate Kinase Isoenzyme 1: Fluorescence and Enzyme Kinetic Studies. Int J Mol Sci 2021; 22:ijms22115541. [PMID: 34073952 PMCID: PMC8197361 DOI: 10.3390/ijms22115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M−1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.
Collapse
Affiliation(s)
- Magdalena Wujak
- Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Jurasza 2, 85-089 Bydgoszcz, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Anna Kozakiewicz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
- Correspondence: ; Tel.: +48-56-611-4511
| | - Anna Ciarkowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Joanna I. Loch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Magdalena Barwiolek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Zuzanna Sokolowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| | - Marcin Budny
- Synthex Technologies Sp. z o.o., Gagarina 7/134B, 87-100 Toruń, Poland;
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (M.B.); (Z.S.); (A.W.)
| |
Collapse
|
8
|
Shibanuma Y, Nemoto N, Yamamoto N, Sampei GI, Kawai G. Crystal structure of adenylate kinase from an extremophilic archaeon Aeropyrum pernix with ATP and AMP. J Biochem 2021; 168:223-229. [PMID: 32271910 DOI: 10.1093/jb/mvaa043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of an adenylate kinase from an extremophilic archaeon Aeropyrum pernix was determined in complex with full ligands, ATP-Mg2+ and AMP, at a resolution of 2.0 Å. The protein forms a trimer as found for other adenylate kinases from archaea. Interestingly, the reacting three atoms, two phosphorus and one oxygen atoms, were located almost in line, supporting the SN2 nucleophilic substitution reaction mechanism. Based on the crystal structure obtained, the reaction coordinate was estimated by the quantum mechanics calculations combined with molecular dynamics. It was found that the reaction undergoes two energy barriers; the steps for breaking the bond between the oxygen and γ-phosphorus atoms of ATP to produce a phosphoryl fragment and creating the bond between the phosphoryl fragment and the oxygen atom of the β-phosphate group of ADP. The reaction coordinate analysis also suggested the role of amino-acid residues for the catalysis of adenylate kinase.
Collapse
Affiliation(s)
- Yoshinori Shibanuma
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Naoki Nemoto
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Norifumi Yamamoto
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| | - Gen-Ichi Sampei
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Gota Kawai
- Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
| |
Collapse
|
9
|
Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc Natl Acad Sci U S A 2019; 116:11275-11284. [PMID: 31110018 DOI: 10.1073/pnas.1816707116] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Consensus sequence design offers a promising strategy for designing proteins of high stability while retaining biological activity since it draws upon an evolutionary history in which residues important for both stability and function are likely to be conserved. Although there have been several reports of successful consensus design of individual targets, it is unclear from these anecdotal studies how often this approach succeeds and how often it fails. Here, we attempt to assess generality by designing consensus sequences for a set of six protein families with a range of chain lengths, structures, and activities. We characterize the resulting consensus proteins for stability, structure, and biological activities in an unbiased way. We find that all six consensus proteins adopt cooperatively folded structures in solution. Strikingly, four of six of these consensus proteins show increased thermodynamic stability over naturally occurring homologs. Each consensus protein tested for function maintained at least partial biological activity. Although peptide binding affinity by a consensus-designed SH3 is rather low, K m values for consensus enzymes are similar to values from extant homologs. Although consensus enzymes are slower than extant homologs at low temperature, they are faster than some thermophilic enzymes at high temperature. An analysis of sequence properties shows consensus proteins to be enriched in charged residues, and rarified in uncharged polar residues. Sequence differences between consensus and extant homologs are predominantly located at weakly conserved surface residues, highlighting the importance of these residues in the success of the consensus strategy.
Collapse
|
10
|
Kulkarni PG, Shah N, Waghela BN, Pathak CM, Pappachan A. Leishmania donovani adenylate kinase 2a prevents ATP-mediated cell cytolysis in macrophages. Parasitol Int 2019; 72:101929. [PMID: 31108219 DOI: 10.1016/j.parint.2019.101929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
In Leishmania spp. ATP utilizing enzymes serves as a key role in preserving integrity of host cells for survival of parasite. Earlier reports suggested that Adenylate kinase (AK) a phosphotransferase enzyme released by Leishmania donovani secretome, involved in modulating levels of NTPs. In the present study, we cloned, expressed and characterized recombinant putative AK. Based on a sequence and phylogeny analysis, we identified the prominent features of the seven AK isoforms of Leishmania donovani and assigned our putative AK as LdAK2a. The Km value of LdAK2a for ATP and AMP substrate were 204 μM and 184 μM, respectively and Vmax was calculated as 1.6 μmol min-1 mg-1 protein. Ap5A, a known inhibitor of AK inhibited LdAK2a with estimated Ki values of 280 nM and 230 nM for ATP and AMP respectively. CD spectral studies were carried out to estimate its structural stability. Recombinant LdAK2a was found to prevent ATP mediated cell cytolysis of Raw 264.7 macrophages in vitro, which was determined by LDH assay and MMP assay. This is the first report which validates that Leishmanial AK2a can prevent ATP mediated cytolysis of macrophage cells and thereby probably play a role in preserving integrity of host cells for survival of parasite.
Collapse
Affiliation(s)
- P G Kulkarni
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India
| | - N Shah
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India
| | - B N Waghela
- Department of Cell Biology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, Gujarat, India
| | - C M Pathak
- Department of Cell Biology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, Gujarat, India
| | - A Pappachan
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India; School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
11
|
Abstract
Adenylate kinase is a small, usually monomeric, enzyme found in every living thing due to its crucial role in energetic metabolism. This paper outlines the most relevant data about adenylate kinases isoforms, and the connection between dysregulation or mutation of human adenylate kinase and medical conditions. The following datadases were consulted: National Centre for Biotechnology Information, Protein Data Bank, and Mouse Genomic Informatics. The SmartBLAST tool, EMBOSS Needle Program, and Clustal Omega Program were used to analyze the best protein match, and to perform pairwise sequence alignment and multiple sequence alignment. Human adenylate kinase genes are located on different chromosomes, six of them being on the chromosomes 1 and 9. The adenylate kinases' intracellular localization and organ distribution explain their dysregulation in many diseases. The cytosolic isoenzyme 1 and the mitochondrial isoenzyme 2 are the main adenylate kinases that are integrated in the vast network of inflammatory modulators. The cytosolic isoenzyme 5 is correlated with limbic encephalitis and Leu673Pro mutation of the isoenzyme 7 leads to primary male infertility due to impairment of the ciliary function. The impairment of the mitochondrial isoenzymes 2 and 4 is demonstrated in neuroblastoma or glioma. The adenylate kinases are disease modifier that can assess the risk of diseases where oxidative stress plays a crucial role in pathogenesis like metabolic syndrome or neurodegenerative diseases. Because adenylate kinases has ATP as substrate, they are integrated in the global network of energetic process of any organism therefore are valid target for new pharmaceutical compounds.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Louis Pasteur, Cluj-Napoca, 400349, Romania.
- County Emergency Clinical Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Simultaneous Detection of Activity and Relative Molecular Mass of Adenylate Kinases After SDS-PAGE and Blotting. Methods Mol Biol 2018; 1626:169-178. [PMID: 28608209 DOI: 10.1007/978-1-4939-7111-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adenylate kinases (AKs) are ubiquitous monomeric phosphotransferases, which play a pivotal role in the energetic metabolism. At the present, nine isoforms are known. AKs catalyze the following reversible reaction: ATP + AMP ↔ 2 ADP, even though isoform 3 uses GTP instead ATP. For many years, the activity of AKs has been detected only after native polyacrylamide gel separations, i.e. in the absence of sodium dodecyl sulfate or methanol. In this work, we report the possibility to detect the activity of the isoforms able to use ATP as substrate, directly onto gel or nitrocellulose sheets, after denaturing SDS-PAGE and electroblotting. This method is innovative because it allows to determine simultaneously the activity and the molecular weight of AKs, especially onto nitrocellulose where bands are sharper, thanks to absence of protein diffusion.
Collapse
|
13
|
Moon S, Kim J, Bae E. Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes. Sci Rep 2017; 7:16027. [PMID: 29167503 PMCID: PMC5700098 DOI: 10.1038/s41598-017-16266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Psychrophiles are extremophilic organisms capable of thriving in cold environments. Proteins from these cold-adapted organisms can remain physiologically functional at low temperatures, but are structurally unstable even at moderate temperatures. Here, we report the crystal structure of adenylate kinase (AK) from the Antarctic fish Notothenia coriiceps, and identify the structural basis of cold adaptation by comparison with homologues from tropical fishes including Danio rerio. The structure of N. coriiceps AK (AKNc) revealed suboptimal hydrophobic packing around three Val residues in its central CORE domain, which are replaced with Ile residues in D. rerio AK (AKDr). The Val-to-Ile mutations that improve hydrophobic CORE packing in AKNc increased stability at high temperatures but decreased activity at low temperatures, suggesting that the suboptimal hydrophobic CORE packing is important for cold adaptation. Such linkage between stability and activity was also observed in AKDr. Ile-to-Val mutations that destabilized the tropical AK resulted in increased activity at low temperatures. Our results provide the structural basis of cold adaptation of a psychrophilic enzyme from a multicellular, eukaryotic organism, and highlight the similarities and differences in the structural adjustment of vertebrate and bacterial psychrophilic AKs during cold adaptation.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- iNtRON Biotechnology, Inc., Seongnam, 13202, Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
14
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
15
|
|
16
|
The many isoforms of human adenylate kinases. Int J Biochem Cell Biol 2014; 49:75-83. [PMID: 24495878 DOI: 10.1016/j.biocel.2014.01.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
Abstract
Adenine nucleotides are involved in a variety of cellular metabolic processes, including nucleic acid synthesis and repair, formation of coenzymes, energy transfer, cell and ciliary motility, hormone secretion, gene expression regulation and ion-channel control. Adenylate kinases are abundant phosphotransferases that catalyze the interconversion of adenine nucleotides and thus regulate the adenine nucleotide ratios in different intracellular compartments. Nine different adenylate kinase isoenzymes have been identified and characterized so far in human tissues, named AK1 to AK9 according to their order of discovery. Adenylate kinases differ in molecular weight, tissue distribution, subcellular localization, substrate and phosphate donor specificity and kinetic properties. The preferred substrate and phosphate donor of all adenylate kinases are AMP and ATP respectively, but some members of the family can phosphorylate other substrates and use other phosphate donors. In addition to their nucleoside monophosphate kinase activity, adenylate kinases were found to possess nucleoside diphosphate kinase activity as they are able to phosphorylate both ribonucleoside and deoxyribonucleoside diphosphates to their corresponding triphosphates. Nucleoside analogues are structural analogues of natural nucleosides, used in the treatment of cancer and viral infections. They are inactive prodrugs that are dependent on intracellular phosphorylation to their pharmacologically active triphosphate form. Novel data presented in this review confirm the role of adenylate kinases in the activation of deoxyadenosine and deoxycytidine nucleoside analogues.
Collapse
|
17
|
Mikoulinskaia GV, Taran SA, Skoblov YS, Feofanov SA. The study of the bacteriophage T5 deoxynucleoside monophosphate kinase active site by site-directed mutagenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1068162013060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Liang P, Zhang F, Chen W, Hu X, Huang Y, Li S, Ren M, He L, Li R, Li X, Xu J, Wu Z, Lu G, Yu X. Identification and biochemical characterization of adenylate kinase 1 from Clonorchis sinensis. Parasitol Res 2013; 112:1719-27. [PMID: 23455935 DOI: 10.1007/s00436-013-3330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 11/27/2022]
Abstract
Adenylate kinase 1 is responsible for the conversion of AMP into ADP involved in purine metabolism. In the present study, adenylate kinase 1 gene (CsADK1) was isolated from an adult cDNA library of Clonorchis sinensis, and the recombinant protein was expressed in Escherichia coli. Bioinformatics analysis implied that the putative protein contained 197 amino acids, and some residues in conservative binding sites of CsADK1 were substituted. The structure modeling analysis showed that CsADK1 was composed of a core domain, an NMP-binding domain, and a LID domain, which was just a small loop. It demonstrated that CsADK1 was a short isoform of ADKs. Moreover, CsADK1 was identified as an excretory/secretory product by western blot analysis. Real-time quantitative PCR showed that expression level of CsADK1 at the stage of excysted metacercaria was higher than those of adult worm (18.8-folds, P<0.01), metacercariae (1.5-folds, P<0.01), and eggs (5.6-folds, P<0.01). In addition, histochemistry analysis showed that CsADK1 was extensively distributed in metacercariae and in the vitellaria and eggs of adult worms. The Km and Vmax value for substrate ADP were 2.2 mM and 0.9 mM/min, respectively. The optimal temperature and pH value were 37 °C and from 7.5 to 8.0, respectively. The enzyme activity was highly dependent on Mg2+, and the optimal concentration of Mg2+ was 2 mM. However, the enzyme activity was slightly activated by Ca2+, and Mn2+ has no effect on activity. For monovalent ions, activity was highly activated by K+ and NH4+, but slightly by Li+. Taken together, CsADK1 was a metal ion-dependent enzyme involved in purine metabolism, which was important for development and reproduction, and might be a potential candidate for drug target for clonorchiasis.
Collapse
Affiliation(s)
- Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schrank TP, Wrabl JO, Hilser VJ. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations. Top Curr Chem (Cham) 2013; 337:95-121. [PMID: 23543318 DOI: 10.1007/128_2012_410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because "entropy promoting" glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme-substrate complex, is likely required for a full and quantitative understanding of how enzymes work.
Collapse
Affiliation(s)
- Travis P Schrank
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77555-1068, USA,
| | | | | |
Collapse
|
20
|
Kenyon CP, Roth RL. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase. BMC BIOCHEMISTRY 2012; 13:15. [PMID: 22876783 PMCID: PMC3537612 DOI: 10.1186/1471-2091-13-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 07/26/2012] [Indexed: 11/10/2022]
Abstract
Background It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP) as a molecular probe with site directed mutagenesis (SDM) of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings. Results We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK) and adenylate kinase 1 (AK1), are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP. Conclusions The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It is therefore conceivable that kinase enzymes achieve the observed 2,500-fold variation in KM through a combination of the various conserved “push” and “pull” mechanisms associated with the release of C8-H, the proton transfer cascades unique to the class of kinase in question and the resultant/concomitant creation of a pentavalent species from the γ-phosphate group of ATP. Also demonstrated is the interplay between the role of the C8-H of ATP and the ATP concentration in the observed enzyme activity. The lability of the C8-H mediated by active site residues co-ordinated to the purine ring of ATP therefore plays a significant role in explaining the broad KM range associated with kinase steady state enzyme activities.
Collapse
Affiliation(s)
- Colin P Kenyon
- CSIR, Biosciences, Meiring Naude Road, Pretoria 0001, Gauteng, South Africa.
| | | |
Collapse
|
21
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Labesse G, Benkali K, Salard-Arnaud I, Gilles AM, Munier-Lehmann H. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation. Nucleic Acids Res 2010; 39:3458-72. [PMID: 21149268 PMCID: PMC3082897 DOI: 10.1093/nar/gkq1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(–) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.
Collapse
Affiliation(s)
- Gilles Labesse
- Atelier de Bio- et Chimie Informatique Structurale, CNRS, UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
23
|
Shi T, Dong Y, Li J, Gao P, Fu D, Ma D. High-throughput screening identifies CHMP4A associated with hypoxia-inducible factor 1. Life Sci 2010; 87:604-8. [PMID: 20888838 DOI: 10.1016/j.lfs.2010.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/18/2010] [Accepted: 09/16/2010] [Indexed: 01/08/2023]
Abstract
AIMS Tumor hypoxia is a common phenomenon and hypoxia-inducible factor-1 is the transcription factor that is most closely associated with hypoxia. Hypoxia-inducible factor-1 is overexpressed in most solid tumors and plays a vital role in hypoxic acclimatization, energy metabolism, tumor angiogenesis, tumor invasion, and drug tolerance in cancer cells. We aimed to identify novel human genes associated with the stability and transcriptional activity of hypoxia-inducible factor-1. MAIN METHODS A cell-based dual luciferase reporter system based on a hypoxia responsive element luciferase reporter gene was constructed to screen 409 novel human genes cloned in our lab. Western blot analysis was used to examine the changes in the expression level of hypoxia-inducible factor-1 α, and RT-PCR analysis was used to detect the transcription level of adenylate kinase 3. KEY FINDINGS Our results demonstrated that chromatin-modifying protein 4A could significantly up-regulate the hypoxia responsive element luciferase activity under both normoxic and cobalt chloride-induced hypoxic environment in HeLa cells. Moreover, Chromatin-modifying protein 4A could increase the expression of hypoxia-inducible factor-1 α protein under normoxic condition, and enhance the transcription level of adenylate kinase 3, which is one of the target genes of hypoxia-inducible factor-1. SIGNIFICANCE The functional screening platform therefore can be applied for the high-throughput screening of hypoxia-inducible factor-1-related genes, which would provide new insights into underlying molecular mechanisms that may regulate hypoxia in mammalian cells.
Collapse
Affiliation(s)
- Taiping Shi
- Chinese National Human Genome Center, #3-707 North YongChang Road BDA, Beijing 100176, PR China.
| | | | | | | | | | | |
Collapse
|
24
|
Burkart A, Shi X, Chouinard M, Corvera S. Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem 2010; 286:4081-9. [PMID: 20876536 DOI: 10.1074/jbc.m110.134106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unfolded protein response (UPR) is a homeostatic signaling mechanism that balances the protein folding capacity of the endoplasmic reticulum (ER) with the secretory protein load of the cell. ER protein folding capacity is dependent on the abundance of chaperones, which is increased in response to UPR signaling, and on a sufficient ATP supply for their activity. An essential branch of the UPR entails the splicing of XBP1 mRNA to form the XBP1 transcription factor. XBP1 has been shown to be required during adipocyte differentiation, enabling mature adipocytes to secrete adiponectin, and during differentiation of B cells into antibody-secreting plasma cells. Here we find that adenylate kinase 2 (AK2), a mitochondrial enzyme that regulates adenine nucleotide interconversion within the intermembrane space, is markedly induced during adipocyte and B cell differentiation. Depletion of AK2 by RNAi impairs adiponectin secretion in 3T3-L1 adipocytes, IgM secretion in BCL1 cells, and the induction of the UPR during differentiation of both cell types. These results reveal a new mechanism by which mitochondria support ER function and suggest that specific mitochondrial defects may give rise to impaired UPR signaling. The requirement for AK2 for UPR induction may explain the pathogenesis of the profound hematopoietic defects of reticular dysgenesis, a disease associated with mutations of the AK2 gene in humans.
Collapse
Affiliation(s)
- Alison Burkart
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
25
|
Buchko GW, Robinson H, Abendroth J, Staker BL, Myler PJ. Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): profound asymmetry in the crystal structure of the 'open' state. Biochem Biophys Res Commun 2010; 394:1012-7. [PMID: 20331978 DOI: 10.1016/j.bbrc.2010.03.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 02/02/2023]
Abstract
In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1A resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP(bd)) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 A. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division and Seattle Structural Genomics Center for Infectious Disease, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
26
|
Igamberdiev AU, Kleczkowski LA. Metabolic systems maintain stable non-equilibrium via thermodynamic buffering. Bioessays 2009; 31:1091-9. [PMID: 19708023 DOI: 10.1002/bies.200900057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here, we analyze how the set of nucleotides in the cell is equilibrated and how this generates simple rules that help the cell to organize itself via maintenance of a stable non-equilibrium state. A major mechanism operating to achieve this state is thermodynamic buffering via high activities of equilibrating enzymes such as adenylate kinase. Under stable non-equilibrium, the ratios of free and Mg-bound adenylates, Mg(2+) and membrane potentials are interdependent and can be computed. The adenylate status is balanced with the levels of reduced and oxidized pyridine nucleotides through regulated uncoupling of the pyridine nucleotide pool from ATP production in mitochondria, and through oxidation of substrates non-coupled to NAD(+) reduction in peroxisomes. The set of adenylates and pyridine nucleotides constitutes a generalized cell energy status and determines rates of major metabolic fluxes. As the result, fluxes of energy and information become organized spatially and temporally, providing conditions for self-maintenance of metabolism.
Collapse
|
27
|
Panayiotou C, Solaroli N, Johansson M, Karlsson A. Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Int J Biochem Cell Biol 2009; 42:62-9. [PMID: 19766732 DOI: 10.1016/j.biocel.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.
Collapse
Affiliation(s)
- Christakis Panayiotou
- Department of Laboratory Medicine, Karolinska Institute, F68, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
28
|
Calzia D, Panfoli I, Ravera S, Dazzi E, Gandolfo S, Pepe IM, Vergani L, Morelli AM. Structural modification of proteins by direct electric current from low voltage. J Biochem Mol Toxicol 2009; 23:309-17. [DOI: 10.1002/jbt.20293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Solaroli N, Panayiotou C, Johansson M, Karlsson A. Identification of two active functional domains of human adenylate kinase 5. FEBS Lett 2009; 583:2872-6. [DOI: 10.1016/j.febslet.2009.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022]
|
30
|
Tan YW, Hanson JA, Yang H. Direct Mg(2+) binding activates adenylate kinase from Escherichia coli. J Biol Chem 2009; 284:3306-3313. [PMID: 19029291 PMCID: PMC3837426 DOI: 10.1074/jbc.m803658200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 11/07/2008] [Indexed: 01/23/2023] Open
Abstract
We report evidence that adenylate kinase (AK) from Escherichia coli can be activated by the direct binding of a magnesium ion to the enzyme, in addition to ATP-complexed Mg(2+). By systematically varying the concentrations of AMP, ATP, and magnesium in kinetic experiments, we found that the apparent substrate inhibition of AK, formerly attributed to AMP, was suppressed at low magnesium concentrations and enhanced at high magnesium concentrations. This previously unreported magnesium dependence can be accounted for by a modified random bi-bi model in which Mg(2+) can bind to AK directly prior to AMP binding. A new kinetic model is proposed to replace the conventional random bi-bi mechanism with substrate inhibition and is able to describe the kinetic data over a physiologically relevant range of magnesium concentrations. According to this model, the magnesium-activated AK exhibits a 23- +/- 3-fold increase in its forward reaction rate compared with the unactivated form. The findings imply that Mg(2+) could be an important affecter in the energy signaling network in cells.
Collapse
Affiliation(s)
- Yan-Wen Tan
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Jeffrey A Hanson
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Haw Yang
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
31
|
Meng G, Zhai R, Liu B, Zheng X. Identification of a novel nuclear-localized adenylate kinase from Drosophila melanogaster. BIOCHEMISTRY (MOSCOW) 2008; 73:38-43. [PMID: 18294127 DOI: 10.1134/s0006297908010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a step to further understand the role of adenylate kinase (AK) in the energy metabolism network, we identified, purified, and characterized a previously undescribed adenylate kinase in Drosophila melanogaster. The cDNA encodes a 175-amino acid protein, which shows 47.85% identity in 163 amino acids to human AK6. The recombinant protein was successfully expressed in Escherichia coli BL21(DE3) strain. Characterization of this protein by enzyme activity assay showed adenylate kinase activity. AMP and CMP were the preferred substrates, and UMP can also be phosphorylated to some extent, with ATP as the best phosphate donor. Subcellular localization study showed a predominantly nuclear localization. Therefore, based on the substrate specificity, the specific nuclear localization in the cell, and the sequence similarity with human AK6, we named this novel adenylate kinase identified from the fly DAK6.
Collapse
Affiliation(s)
- Geng Meng
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Beijing, China
| | | | | | | |
Collapse
|
32
|
Illuminating the mechanistic roles of enzyme conformational dynamics. Proc Natl Acad Sci U S A 2007; 104:18055-60. [PMID: 17989222 DOI: 10.1073/pnas.0708600104] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme's lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK's domain movements on its catalytic time scale. To quantitatively measure the enzyme's entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly, the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme's conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme's rate-limiting step.
Collapse
|
33
|
Ravera S, Calzia D, Panfoli I, Pepe IM, Morelli A. Simultaneous detection of molecular weight and activity of adenylate kinases after electrophoretic separation. Electrophoresis 2007; 28:291-300. [PMID: 17203507 DOI: 10.1002/elps.200600353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenylate kinases (AKs) are ubiquitous monomeric phosphotransferases catalyzing the reversible reaction, AMP + MgATP = ADP + MgADP, which plays a pivotal role in the energetic metabolism. In vertebrates, six AK isoforms are known. In this work, we report the detection of many AK isoforms directly on gel or NC after separation by denaturing electrophoresis and electroblotting, by an optimized protocol for the enzyme detection. The method allows to clarify the apparent MW of most of those AK isozymes that follow the cited reaction, especially onto NC where bands are sharper due to the absence of protein diffusion. In contrast, GTP:AMP phosphotransferases are not detectable. AK activity from many sources can be detected in both its reaction courses; ATP production appears as dark-blue bands, while ADP formation appears as nonfluorescent bands over a fluorescent background, under long-wavelength UV light. We show that nondenaturing gel electrophoresis is not the first choice for AK activity detection. Our method is different from the preceding reports on AK activity detection in bacteria after native polyacrylamide gel separations, in the absence of SDS or methanol. The procedure is also quantitative, allowing to determine the amount of enzyme present in samples.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Biology, University of Genoa, Genova, Italy.
| | | | | | | | | |
Collapse
|
34
|
Zhai R, Meng G, Zhao Y, Liu B, Zhang G, Zheng X. A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans. FEBS Lett 2006; 580:3811-7. [PMID: 16781712 DOI: 10.1016/j.febslet.2006.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 11/27/2022]
Abstract
The adrenal gland protein AD-004 like protein (ADLP) from Caenorhabditis elegans was cloned and expressed in Escherichia coli. Enzyme assays showed that ADLP has special adenylate kinase (AK) properties, with ATP and dATP as the preferred phosphate donors. In contrast to all other AK isoforms, AMP and dAMP were the preferred substrates of ADLP; CMP, TMP and shikimate acid were also good substrates. Subcellular localization studies showed a predominant nuclear localization for this protein, which is different from AK1-AK5, but similar to that of human AK6. These results suggest that ADLP is more likely a member of the AK6 family. Furthermore, RNAi experiments targeting ADLP were conducted and showed that RNAi treatment resulted in the suppression of worm growth.
Collapse
Affiliation(s)
- Ruitong Zhai
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
35
|
Lee SH, Kim HJ, Park YK, Bai GH. Investigation of the Growth Rate Change in Recombinant BCG which was cloned Mycobacterium tuberculosis Adenylate Kinase Mutation Gene or Human Muscle-type Adenylate Kinase Synthetic Gene. Tuberc Respir Dis (Seoul) 2006. [DOI: 10.4046/trd.2006.60.2.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Seung-Heon Lee
- Department of Molecular Biology, Korean Institute of Tuberculosis, Seoul, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University College of Biotechnology, Ansan, Korea
| | - Young-Kil Park
- Department of Molecular Biology, Korean Institute of Tuberculosis, Seoul, Korea
| | - Gill-Han Bai
- Department of Molecular Biology, Korean Institute of Tuberculosis, Seoul, Korea
| |
Collapse
|
36
|
Yang G, Yu X, Wu Z, Xu J, Song L, Zhang H, Hu X, Zheng N, Guo L, Xu J, Dai J, Ji C, Gu S, Ying K. Molecular cloning and characterization of a novel adenylate kinase 3 gene from Clonorchis sinensis. Parasitol Res 2005; 95:406-12. [PMID: 15747033 DOI: 10.1007/s00436-005-1305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/20/2004] [Indexed: 11/24/2022]
Abstract
Adenylate kinase (AK) is a ubiquitous enzyme that contributes to the homeostasis of adenine nucleotides in living cells. AK catalyzes reversible high energy phosphoryl transfer reactions between ATP (or GTP) and AMP to generate ADP (or GDP). From a Clonorchis sinensis adult worm cDNA library, we isolated a cDNA clone encoding a novel AK3 isozyme. The 956 bp cDNA encodes a putative protein of 228 amino acids with a predicted molecular mass of 26.2 kDa. The recombinant CsAK3 protein produced in Escherichia coli can be refolded into a functional protein with AK3 activity. The optimum pH and temperature for the enzyme are 8.5 and 40 degrees C, respectively. The calculated activation energy is 56.04 kJ mol-1. The Km of the CsAK3 for AMP and GTP are 118 microM and 359 microM, respectively. CsAK3 is inhibited by Ap5A (>70% inhibition by 2.0 mM AP5A). Ap5A may be a potential lead compound acting on C. sinensis in which AK3 as a drug target.
Collapse
Affiliation(s)
- Guang Yang
- Department of Parasitology, Medical School, Sun Yat-Sen University, 74 Zhongshan 2 Road, 510089, Guangzhou , P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ginger ML, Ngazoa ES, Pereira CA, Pullen TJ, Kabiri M, Becker K, Gull K, Steverding D. Intracellular Positioning of Isoforms Explains an Unusually Large Adenylate Kinase Gene Family in the Parasite Trypanosoma brucei. J Biol Chem 2005; 280:11781-9. [PMID: 15657034 DOI: 10.1074/jbc.m413821200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ren H, Wang L, Bennett M, Liang Y, Zheng X, Lu F, Li L, Nan J, Luo M, Eriksson S, Zhang C, Su XD. The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A 2005; 102:303-8. [PMID: 15630091 PMCID: PMC544302 DOI: 10.1073/pnas.0407459102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Adenylate kinases (AKs) play important roles in nucleotide metabolism in all organisms and in cellular energetics by means of phosphotransfer networks in eukaryotes. The crystal structure of a human AK named AK6 was determined by in-house sulfur single-wavelength anomalous dispersion phasing methods and refined to 2.0-A resolution with a free R factor of 21.8%. Sequence analyses revealed that human AK6 belongs to a distinct subfamily of AKs present in all eukaryotic organisms sequenced so far. Enzymatic assays show that human AK6 has properties similar with other AKs, particularly with AK5. Fluorescence microscopy showed that human AK6 is localized predominantly to the nucleus of HeLa cells. The identification of a nuclear-localized AK sheds light on nucleotide metabolism in the nucleus and the energetic communication between mitochondria and nucleus by means of phosphotransfer networks.
Collapse
Affiliation(s)
- Hui Ren
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ulschmid JK, Rahlfs S, Schirmer RH, Becker K. Adenylate kinase and GTP:AMP phosphotransferase of the malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 2004; 136:211-20. [PMID: 15478799 DOI: 10.1016/j.molbiopara.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For coping with energetic and synthetic challenges, parasites require high activities of adenylate kinase (AK; ATP + AMP <==> 2 ADP) and GTP:AMP phosphotransferase (GAK; GTP + AMP <==> GDP + ADP). These enzymes were identified in erythrocytic stages of Plasmodium falciparum. The genes encoding PfAK and PfGAK are located on chromosomes 10 and 4, respectively. Molecular cloning and heterologous expression in E. coli yielded enzymatically active proteins of 28.9 (PfAK) and 28.0 kDa (PfGAK). Recombinant PfAK resembles authentic PfAK in its biochemical characteristics including the possible association with a stabilizing protein and the high specificity for AMP as the mononucleotide substrate. Specificity is less stringent for the triphosphate, with ATP as the best substrate (75 U/mg; kcat = 2160 min(-1) at 25 degrees C). PfAK contains the sequence of the amphiphatic helix that is known to mediate translocation of the cytosolic protein into the mitochondrial intermembrane space. PfGAK exhibits substrate preference for GTP and AMP (100 U/mg; kcat = 2800 min(-1) at 25 degrees C); notably, there is no detectable activity with ATP. In contrast to its human orthologue (AK3), PfGAK contains a zinc finger motif and binds ionic iron. The dinucleoside pentaphosphate compounds AP5A and GP5A inhibited PfAK and PfGAK, respectively, with Ki values of approximately 0.2 microM which is more than 250-fold lower than the KM values determined for the nucleotide substrates. The disubstrate inhibitors are useful for studying the enzymatic mechanism of PfAK and PfGAK as well as their function in adenine nucleotide homeostasis; in addition, the chimeric inhibitors represent interesting lead compounds for developing nucleosides to be used as antiparasitic agents.
Collapse
Affiliation(s)
- Julia K Ulschmid
- Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
40
|
Pullen TJ, Ginger ML, Gaskell SJ, Gull K. Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 2004; 15:3257-65. [PMID: 15146060 PMCID: PMC452581 DOI: 10.1091/mbc.e04-03-0217] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The eukaryotic flagellum is a large structure into which specific constituent proteins must be targeted, transported and assembled after their synthesis in the cytoplasm. Using Trypanosoma brucei and a proteomic approach, we have identified and characterized a novel set of adenylate kinase proteins that are localized to the flagellum. These proteins represent unique isoforms that are targeted to the flagellum by an N-terminal extension to the protein and are incorporated into an extraaxonemal structure (the paraflagellar rod). We show that the N-terminal extension is both necessary for isoform location in the flagellum and sufficient for targeting of a green fluorescent protein reporter protein to the flagellum. Moreover, these N-terminal extension sequences are conserved in evolution and we find that they allow the identification of novel adenylate kinases in the genomes of humans and worms. Given the existence of specific isoforms of certain central metabolic enzymes, and targeting sequences for these isoforms, we suggest that these isoforms form part of a complex, "solid-phase" metabolic capability that is built into the eukaryotic flagellum.
Collapse
Affiliation(s)
- Timothy J Pullen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
41
|
Miron S, Munier-Lehmann H, Craescu CT. Structural and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity. Biochemistry 2004; 43:67-77. [PMID: 14705932 DOI: 10.1021/bi0355995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis is the leading cause of death worldwide from a single infectious disease. Search of new therapeutic tools requires the discovery and biochemical characterization of new potential targets among the bacterial proteins essential for the survival and virulence. Among them are the nucleoside monophosphate kinases, involved in the nucleotide biosynthesis. In this work, we determined the solution structure of adenylate kinase (AK) from Mycobacterium tuberculosis (AKmt), a protein of 181 residues that was found to be essential for bacterial survival. The structure was calculated by a simulated annealing protocol and energy minimization using experimental restraints, collected by nuclear magnetic resonance spectroscopy. The final, well-defined 20 NMR structures show an average root-mean-square deviation of 0.77 A for the backbone atoms in regular secondary structure segments. The protein has a central CORE domain, composed of a five-stranded parallel beta-sheet surrounded by seven alpha-helices, and two peripheral domains, AMPbd and LID. As compared to other crystallographic structures of free form AKs, AKmt is more compact, with the AMP(bd) domain closer to the CORE of the protein. Analysis of the (15)N relaxation data enabled us to obtain the global rotational correlation time (9.19 ns) and the generalized order parameters (S(2)) of amide vectors along the polypeptide sequence. The protein exhibits restricted movements on a picosecond to nanosecond time scale in the secondary structural regions with amplitudes characterized by an average S(2)() value of 0.87. The loops beta1/alpha1, beta2/alpha2, alpha2/alpha3, alpha3/alpha4, alpha4/beta3, beta3/alpha5, alpha6/alpha7 (LID), alpha7/alpha8, and beta5/alpha9 exhibit rapid fluctuations with enhanced amplitudes. These structural and dynamic features of AKmt may be related to its low catalytic activity that is 10-fold lower than in their eukaryote counterparts.
Collapse
Affiliation(s)
- Simona Miron
- Institut National de la Santé et de la Recherche Médicale U350 et Institut Curie-Recherche, Centre Universitaire, Bâtiments 110-112, F-91405 Orsay, France.
| | | | | |
Collapse
|
42
|
Villa H, Pérez-Pertejo Y, García-Estrada C, Reguera RM, Requena JM, Tekwani BL, Balaña-Fouce R, Ordóñez D. Molecular and functional characterization of adenylate kinase 2 gene from Leishmania donovani. ACTA ACUST UNITED AC 2003; 270:4339-47. [PMID: 14622299 DOI: 10.1046/j.1432-1033.2003.03826.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP-regenerating enzymes may have an important role in maintaining ATP levels in mitochondria-like kinetoplast organelle and glycosomes in parasitic protozoa. Adenylate kinase (AK) (ATP:AMP phosphotransferase) catalyses the reversible transfer of the gamma-phosphate group from ATP to AMP, releasing two molecules of ADP. This study describes cloning and functional characterization of the gene encoding AK2 from a genomic library of Leishmania donovani and also its expression in leishmania promastigote cultures. AK2 was localized on an approximately 1.9-Mb chromosomal band as a single copy gene. L. donovani AK2 gene is expressed as a single 1.9-kb mRNA transcript that is developmentally regulated and accumulated during the early log phase. The overexpression of L. donovani AKgene in Escherichia coli yielded a 26-kDa polypeptide that could be refolded to a functional protein with AK activity. The recombinant protein was purified to apparent homogeneity. Kinetic analysis of purified L. donovani AK showed hyperbolic behaviour for both ATP and AMP, with Km values of 104 and 74 microM, respectively. The maximum enzyme activity (Vmax) was 0.18 micromol.min(-1).mg(-1) protein. P1,P5-(bis adenosine)-5'-pentaphosphate (Ap5A), the specific inhibitor of AK, competitively inhibited activity of the recombinant enzymes with estimated Ki values of 190 nM and 160 nM for ATP and AMP, respectively. Ap5A also inhibited the growth of L. donovani promastigotes in vitro which could be only partially reversed by the addition of ADP. Thus, presence of a highly regulated AK2, which may have role in maintenance of ADP/ATP levels in L. donovani, has been demonstrated.
Collapse
Affiliation(s)
- Héctor Villa
- Departamento de Farmacología y Toxicología (INTOXCAL), Facultad de Veterinaria, Universidad de León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Miura K, Inouye S, Sakai K, Takaoka H, Kishi F, Tabuchi M, Tanaka T, Matsumoto H, Shirai M, Nakazawa T, Nakazawa A. Cloning and characterization of adenylate kinase from Chlamydia pneumoniae. J Biol Chem 2001; 276:13490-8. [PMID: 11278507 DOI: 10.1074/jbc.m009461200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydiae proliferate only within the infected host cells and are thought to be "energy parasites," because they take up ATP from the host cell as an energy source. In the present study, we isolated from Chlamydia pneumoniae the gene encoding adenylate kinase (AK). Using the enzyme produced in Escherichia coli, its properties were characterized. K(m) values for AMP and for ADP of the purified C. pneumoniae AK (AKcpn) were each 330 microm, which is significantly higher than the reported values of other AKs, whereas K(m) for ATP was 24 microm, which was rather lower than others. AKcpn contains 1 g atom of zinc/mol of 24,000-dalton protein. Mass spectrometric analysis of AKcpn and analysis of properties of mutated AKcpn strongly suggested that zinc is associated with four cysteine residues in the LID domain of the enzyme. The apo-AKcpn that lost zinc retained AK activity, although K(m) for AMP of apo-AKcpn increased about 2-fold and V(max) decreased about one-half from that of holo-AKcpn. The apo-AKcpn was more thermolabile and sensitive to trypsin digestion than the holo-AKcpn. Moreover, the recovery in vitro of the AK activity during the renaturation process of the denatured apo-AKcpn was dependent on zinc. A mutated protein in which cysteine residues in the LID domain were substituted by other amino acids lost both zinc and enzyme activity. The mutated protein was more sensitive to protease than the apo-AKcpn. These results indicate that zinc in AKcpn, although not essential for the catalysis, stabilizes the enzyme and probably plays a crucial role in proper folding of the protein. Furthermore, the catalytic properties of AKcpn suggest a distinctive regulatory mechanism in the metabolism compared with AKs in other organisms.
Collapse
Affiliation(s)
- K Miura
- Department of Biochemistry, Central Laboratory for Biomedical Research and Education, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Notari L, Pepe IM, Cugnoli C, Morelli A. Adenylate kinase activity in rod outer segments of bovine retina. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:438-43. [PMID: 11245807 DOI: 10.1016/s0005-2728(01)00160-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rod outer segments of bovine retina contain two different adenylate kinases: a soluble activity, which is not sensitive to calcium ion, and an activity bound to disk membranes, which is dependent on the calcium levels. In fact, the maximal activity associated to the disks is reached at Ca(2+) concentrations between 10(-6) and 10(-7) M, which is the range of calcium level actually present in the rod cell. The Michaelis-Menten kinetics of the enzyme activity on disk membranes was determined and the actual concentrations of ATP, AMP and ADP were measured in the photoreceptor outer segment. Therefore, the physiological relevance of the adenylate kinase activity was discussed considering the above results. The formation of ATP catalyzed by the enzyme seems appropriate to supply at least some of the reactions necessary for phototransduction, indicating that ATP could be regenerated from ADP directly on the disk membranes where the photoreception events take place.
Collapse
Affiliation(s)
- L Notari
- Institute of Biochemistry, University of Genoa, Italy
| | | | | | | |
Collapse
|
45
|
Van Rompay AR, Johansson M, Karlsson A. Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol Ther 2000; 87:189-98. [PMID: 11008000 DOI: 10.1016/s0163-7258(00)00048-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleoside monophosphate kinases catalyze the reversible phosphotransferase reaction between nucleoside triphosphates and monophosphates, i.e., monophosphates are converted to their corresponding diphosphate form. These enzymes play an important role in the synthesis of nucleotides that are required for a variety of cellular metabolic processes, as well as for RNA and DNA synthesis. Human tissues contain a thymidylate kinase, a uridylate-cytidylate kinase, five isozymes of adenylate kinase, and several guanylate kinases. Nucleoside monophosphate kinases are also required for the pharmacological activation of therapeutic nucleoside and nucleotide analogs. This overview is focused on the substrate specificity, tissue distribution, and subcellular location of the mammalian monophosphate kinases and their role in the activation of nucleoside and nucleotide analogs.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, S-141 86, Stockholm, Sweden
| | | | | |
Collapse
|
46
|
Noma T, Murakami R, Yamashiro Y, Fujisawa K, Inouye S, Nakazawa A. cDNA cloning and chromosomal mapping of the gene encoding adenylate kinase 2 from Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:109-14. [PMID: 10786623 DOI: 10.1016/s0167-4781(99)00223-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As a step toward understanding of the role of adenylate kinase (AK) in energy metabolism, we analyzed this enzyme in Drosophila melanogaster. The enzyme activities of all three AK isozymes were determined in cell-free extracts of flies, and their proteins were detected by Western blot analysis using polyclonal antibodies against the mammalian isozymes. A cDNA encoding adenylate kinase was isolated from D. melanogaster cDNA library. The cDNA encodes a 240-amino acid protein, which shows high similarity to bovine, human and rat AK2, and hence was named DAK2. Preliminary subcellular fractionation analysis indicated that DAK2 is localized in both cytoplasm and mitochondria. In situ hybridization to salivary gland polytene chromosomes revealed that the Dak2 gene is located at 60B on the right arm of the second chromosome.
Collapse
Affiliation(s)
- T Noma
- Department of Biochemistry, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Resolving the order of events that occurred during the transition from prokaryotic to eukaryotic cells remains one of the greatest problems in cell evolution. One view, the Archezoa hypothesis, proposes that the endosymbiotic origin of mitochondria occurred relatively late in eukaryotic evolution and that several mitochondrion-lacking protist groups diverged before the establishment of the organelle. Phylogenies based on small subunit ribosomal RNA and several protein-coding genes supported this proposal, placing amitochondriate protists such as diplomonads, parabasalids, and Microsporidia as the earliest diverging eukaryotic lineages. However, trees of other molecules, such as tubulins, heat shock protein 70, TATA box-binding protein, and the largest subunit of RNA polymerase II, indicate that Microsporidia are not deeply branching eukaryotes but instead are close relatives of the Fungi. Furthermore, recent discoveries of mitochondrion-derived genes in the nuclear genomes of entamoebae, Microsporidia, parabasalids, and diplomonads suggest that these organisms likely descend from mitochondrion-bearing ancestors. Although several protist lineages formally remain as candidates for Archezoa, most evidence suggests that the mitochondrial endosymbiosis took place prior to the divergence of all extant eukaryotes. In addition, discoveries of proteobacterial-like nuclear genes coding for cytoplasmic proteins indicate that the mitochondrial symbiont may have contributed more to the eukaryotic lineage than previously thought. As genome sequence data from parabasalids and diplomonads accumulate, it is becoming clear that the last common ancestor of these protist taxa and other extant eukaryotic groups already possessed many of the complex features found in most eukaryotes but lacking in prokaryotes. However, our confidence in the deeply branching position of diplomonads and parabasalids among eukaryotes is weakened by conflicting phylogenies and potential sources of artifact. Our current picture of early eukaryotic evolution is in a state of flux.
Collapse
|
48
|
Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP. A new subfamily of short bacterial adenylate kinases with theMycobacteriumtuberculosis enzyme as a model: A predictive and experimental study. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990801)36:2<238::aid-prot9>3.0.co;2-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
50
|
Van Rompay AR, Johansson M, Karlsson A. Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:509-17. [PMID: 10215863 DOI: 10.1046/j.1432-1327.1999.00294.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenylate kinases have an important role in the synthesis of adenine nucleotides that are required for cellular metabolism. We report the cDNA cloning of a novel 22-kDa human enzyme that is sequence related to the human adenylate kinases and to UMP/CMP kinase of several species. The enzyme was expressed in Escherichia coli and shown to catalyse phosphorylation of AMP and dAMP with ATP as phosphate donor. When GTP was used as phosphate donor, the enzyme phosphorylated AMP, CMP, and to a small extent dCMP. Expression as a fusion protein with the green fluorescent protein showed that the enzyme is located in the cytosol. Northern blot analysis with mRNA from eight different human tissues demonstrated that the enzyme was expressed exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb. The gene that encoded the enzyme was localized to chromosome 1p31. Based on the substrate specificity and the sequence similarity with the previously identified human adenylate kinases, we have named this novel enzyme adenylate kinase 5.
Collapse
Affiliation(s)
- A R Van Rompay
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|