1
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Harcum SW, Bentley WE. Response dynamics of 26-, 34-, 39-, 54-, and 80-kDa proteases in induced cultures of recombinant Escherichia coli. Biotechnol Bioeng 2010; 42:675-85. [PMID: 18613100 DOI: 10.1002/bit.260420602] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several researchers have demonstrated that the presence of a heterologous protein in recombinant Escherichia coli elicits a response similar to the heat-shock response, which includes enhanced protease expression. The present work detects, quantifies, and characterizes intracellular protease activity in E. coli that are "shocked" by the induction of a recombinant protein, CAT, which is an endogenous protein in some E. coli strains. A novel, sodium dodecyl sulfate gelatin poly-acrylamide gel electrophoresis (SDS-GPAGE) method is used to detect, quantify, and characterize the presence of these proteases. A hypothesis is proposed which links the amplified protease activity to a temporary depletion of specific amino acid pools, and a stringent-like stress response.
Collapse
Affiliation(s)
- S W Harcum
- Center for Agricultural Biotechnology, and Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
3
|
Torrecilla A, Marques AF, Buscalioni RD, Oliveira JM, Teixeira NA, Atencia EA, Günther Sillero MA, Sillero A. Metabolic fate of AMP, IMP, GMP and XMP in the cytosol of rat brain: an experimental and theoretical analysis. J Neurochem 2001; 76:1291-307. [PMID: 11238714 DOI: 10.1046/j.1471-4159.2001.00084.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A systematic study of the metabolic fate of AMP, IMP, GMP and XMP (NMP) in the presence of cytosol from rat brain is here presented; the kinetics of both disappearance of NMP, and appearance of their degradation products was followed by HPLC. In the absence of ATP, AMP was preferentially degraded to adenosine with concomitant appearance of inosine and hypoxanthine. In the presence of ATP, AMP was preferentially degraded via IMP. The nucleosides generated in the course of the reactions are further degraded, almost exclusively, via nucleoside phosphorylase using as cofactor the P(i) generated in the reaction mixture. In order to quantify the effect of each one of the enzymes involved in the degradation of NMP, two complementary approaches were followed: (i) the V:(max) and K:(m) values of the enzymes acting in the intermediate steps of the reactions were determined; (ii) these data were introduced into differential equations describing the concentration of the nucleotides and their degradation products as a function of the time of incubation. Factors affecting kinetic parameters of the equation velocity as a function of ATP concentration were introduced when required. The differential equations were solved with the help of Mathematica 3.0. The theoretical method can be used to simulate situations not feasible to be carried out, such as to measure the influence of nM-microM concentrations of ATP on the metabolism of AMP.
Collapse
Affiliation(s)
- A Torrecilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols (UAM/CSIC), Facultad de Medicina, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
English TE, Storey KB. Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus. Arch Biochem Biophys 2000; 376:91-100. [PMID: 10729194 DOI: 10.1006/abbi.1999.1686] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP deaminase (AMPD) and adenylate kinase (AK) were purified from skeletal muscle of the white-tailed prairie dog, Cynomus leucurus, and enzyme properties were assayed at temperatures characteristic of euthermia (37 degrees C) and hibernation (5 degrees C) to analyze their role in adenylate metabolism during hibernation. Total adenylates decreased in muscle of torpid individuals from 6.97 +/- 0. 31 to 4.66 +/- 0.58 micromol/g of wet weight due to a significant drop in ATP but ADP, AMP, IMP, and energy charge were unchanged. The affinity of prairie dog AMPD for AMP was not affected by temperature and did not differ from that of rabbit muscle AMPD, used for comparison. However, both prairie dog and rabbit AMPD showed much stronger inhibition by ions and GTP at 5 degrees C, versus 37 degrees C, and inhibition by inorganic phosphate, NH(4)Cl, and (NH(4))(2)SO(4) was much stronger at 5 degrees C for the prairie dog enzyme. Furthermore, ATP and ADP, which activated AMPD at 37 degrees C, were strong inhibitors of prairie dog AMPD at 5 degrees C, with I(50) values of 1 and 14 microM, respectively. ATP also inhibited rabbit AMPD at 5 degrees C (I(50) = 103 microM). Strong inhibition of AMPD at 5 degrees C by several effectors suggests that enzyme function is specifically suppressed in muscle of hibernating animals. By contrast, AK showed properties that would maintain or even enhance its function at low temperature. K(m) values for substrates (ATP, ADP, AMP) decreased with decreasing temperature, the change in K(m) ATP paralleling the decrease in muscle ATP concentration. AK inhibition by ions was also reduced at 5 degrees C. The data suggest that adenylate degradation via AMPD is blocked during hibernation but that AK maintains its function in stabilizing energy charge.
Collapse
Affiliation(s)
- T E English
- Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | |
Collapse
|
5
|
Abstract
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5'-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.
Collapse
Affiliation(s)
- A M Hohl
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
6
|
Sims B, Mahnke-Zizelman DK, Profit AA, Prestwich GD, Sabina RL, Theibert AB. Regulation of AMP deaminase by phosphoinositides. J Biol Chem 1999; 274:25701-7. [PMID: 10464307 DOI: 10.1074/jbc.274.36.25701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMP deaminase (AMPD) converts AMP to IMP and is a diverse and highly regulated enzyme that is a key component of the adenylate catabolic pathway. In this report, we identify the high affinity interaction between AMPD and phosphoinositides as a mechanism for regulation of this enzyme. We demonstrate that endogenous rat brain AMPD and the human AMPD3 recombinant enzymes specifically bind inositide-based affinity probes and to mixed lipid micelles that contain phosphatidylinositol 4,5-bisphosphate. Moreover, we show that phosphoinositides specifically inhibit AMPD catalytic activity. Phosphatidylinositol 4,5-bisphosphate is the most potent inhibitor, effecting pure noncompetitive inhibition of the wild type human AMPD3 recombinant enzyme with a K(i) of 110 nM. AMPD activity can be released from membrane fractions by in vitro treatment with neomycin, a phosphoinositide-binding drug. In addition, in vivo modulation of phosphoinositide levels leads to a change in the soluble and membrane-associated pools of AMPD activity. The predicted human AMPD3 sequence contains pleckstrin homology domains and (R/K)X(n)(R/K)XKK sequences, both of which are characterized phosphoinositide-binding motifs. The interaction between AMPD and phosphoinositides may mediate membrane localization of the enzyme and function to modulate catalytic activity in vivo.
Collapse
Affiliation(s)
- B Sims
- Departments of Neurobiology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tavenier M, Skladanowski AC, De Abreu RA, de Jong JW. Kinetics of adenylate metabolism in human and rat myocardium. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1244:351-6. [PMID: 7599155 DOI: 10.1016/0304-4165(95)98595-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways producing and converting adenosine have hardly been investigated in human heart, contrasting work in other species. We compared the kinetics of enzymes associated with purine degradation and salvage in human and rat heart cytoplasm assaying for adenosine deaminase, nucleoside phosphorylase, xanthine oxidoreductase, AMP deaminase, AMP- and IMP-specific 5'-nucleotidases, adenosine kinase and hypoxanthine guanine phosphoribosyltransferase (HGPRT). Xanthine oxidoreductase was not detectable in human heart. The Km-values of the AMP-catabolizing enzymes were 2-5 times higher in human heart; the substrate affinity of the other enzymes was in the same order of magnitude in both species. The maximal activity (Vmax) of adenosine kinase was the same in both species, but HGPRT in man was only 12% of that in the rat. For human heart the Vmax-values of adenosine deaminase, nucleoside phosphorylase, AMP- and IMP-specific 5'-nucleotidases, and AMP deaminase were 25-50% of those for rat heart. We conclude that human heart is less geared to purine catabolism than rat heart as is evident from the lower activities of the catabolic enzymes. Maintenance of the nucleotide pool may thus play a more important role in human heart.
Collapse
Affiliation(s)
- M Tavenier
- Cardiochemical Laboratory, Thoraxcenter, Erasmus University Rotterdam, Netherlands
| | | | | | | |
Collapse
|
8
|
Hu B, Altschuld RA, Hohl CM. Adenosine stimulation of AMP deaminase activity in adult rat cardiac myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C48-53. [PMID: 8430774 DOI: 10.1152/ajpcell.1993.264.1.c48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using an in situ assay for analyzing AMP deaminase activity in isolated adult rat ventricular myocytes, we have shown that IMP production is stimulated approximately twofold in cardiac cells incubated with 10 microM adenosine. This effect of adenosine was not blocked by the adenosine A1-receptor antagonist 8-cyclophenyl-1,3-dipropylaxanthine (0.01-1 microM) except at a concentration (100 microM) that may inhibit adenosine transport. Similarly, in situ AMP deaminase activity was not enhanced by treatment with the specific adenosine A1-receptor agonists N6-phenylisopropyl adenosine or cyclopentyladenosine, nor was it sensitive to prior treatment of cells with pertussis toxin. The nucleoside transport blockers S-4-nitrobenzyl-6-thioinosine, dipyridamole, and papaverine inhibited adenosine-induced increases in IMP production by 75-85%, suggesting an intracellular site of action. Modulation of enzyme activity via the transmethylation pathway could not be implicated since incubation of cardiac cells under conditions known to elevate intracellular S-adenosyl-L-homocysteine had no demonstrable effect on AMP deaminase. Furthermore, a direct allosteric effect of adenosine on the partially purified rat cardiac enzyme was not observed. The results indicate that intracellular adenosine modulates rat cardiac AMP deaminase by an unknown mechanism.
Collapse
Affiliation(s)
- B Hu
- Department of Medical Biochemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
9
|
Kato M, Irisawa T, Ohtani M, Muramatu M. Purification and characterization of proteinase In, a trypsin-like proteinase, in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:1007-14. [PMID: 1336454 DOI: 10.1111/j.1432-1033.1992.tb17506.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously found a trypsin-like proteinase which momentarily appears immediately before DNA synthesis in the cell cycle of Escherichia coli synchronized by phosphate starvation and which is closely related to the initiation of DNA replication (Kato, M., Irisawa, T., Morimoto, Y. and Muramatu, M., unpublished results). The proteinase was named proteinase In. It was purified approximately 2880-fold with a recovery of 15%. The isolated enzyme appeared homogeneous by gel filtration and electrophoresis. Its molecular mass was estimated by analytical gel filtration and SDS/PAGE as approximately 66 kDa. The isoelectric point of proteinase In is 4.9 and its optimal pH is approximately 9. Although protein In hydrolyzes fluorogenic substrate for trypsin, its hydrolytic activity seems markedly affected by amino-acid sequence lying towards the N-terminal from the P1 (lysine, arginine) residue. The proteinase does not hydrolyze N2-benzoyl-D,L-arginine-4-nitronanilide and fluorogenic substrates for chymotrypsin and elastase. The proteinase activity is inhibited by leupeptin, antipain and 4-nitrophenyl 4-guanidinobenzoate, but the effects of tosyl-L-lysine chloromethane, diisopropylfluorophosphate, benzamidine and pentamidine isethionate on the proteinase activity are weak or not inhibitory. Its activity is strongly affected in the presence of NaCl and KCl, and at a concentration of 1.5 M, these increase the activity 14-fold and 13-fold, respectively, above that without salt. Proteinase In was strongly inhibited by various esters of trans-4-guanidinomethylcyclohexanecarboxylic acid, and their inhibitory effects were roughly correlated with those on growth of E. coli. Proteinase activity was found in the cytoplasmic fraction.
Collapse
Affiliation(s)
- M Kato
- Faculty of Pharmacy, Tokushima Bunri University, Japan
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- H Zimmermann
- AK Neurochemie, Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| |
Collapse
|