1
|
Ciancio A, Scippa S, Finetti-Sialer M, De Candia A, Avallone B, De Vincentiis M. Redescription of Cardiosporidium cionae (Van Gaver and Stephan, 1907) (Apicomplexa: Piroplasmida), a plasmodial parasite of ascidian haemocytes. Eur J Protistol 2008; 44:181-96. [PMID: 18304788 DOI: 10.1016/j.ejop.2007.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/19/2007] [Accepted: 11/24/2007] [Indexed: 11/27/2022]
Abstract
Cardiosporidium cionae (Apicomplexa), from the ascidian Ciona intestinalis L., is redescribed with novel ultrastructural, phylogenetic and prevalence data. Ultrastructural analysis of specimens of C. intestinalis collected from the Gulf of Naples showed sporonts and plasmodia of C. cionae within the host pericardial body. Several merogonic stages and free merozoites were found in the pericardial body, together with sexual stages. All stages showed typical apicomplexan cell organelles, i.e. apicoplasts, rhoptries and subpellicular microtubules. Merogonic stages of C. cionae were also produced inside haemocytes. A fragment of the rSSU gene of C. cionae was amplified by PCR using DNA extracted from the pericardial bodies. The amplified product showed closest affinity with other apicomplexan representatives and a 66bp unique insertion, specific for C. cionae, at position 1644. Neighbour-joining phylogenetic analysis placed C. cionae in a clade with other piroplasm genera, including Cytauxzoon, Babesia and Theileria spp. The parasite was found in different populations of C. intestinalis with highest prevalence in October-November. Ultrastructural and DNA data showed that the organism, described in 1907 from the same host but not illustrated in detail, is a member of a novel marine apicomplexan radiation of tunicate parasites.
Collapse
Affiliation(s)
- A Ciancio
- CNR, Istituto per la Protezione delle Piante, Via Amendola 122/D, I-70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
2
|
Williamson DH, Preiser PR, Wilson RJ. Organelle DNAs: The bit players in malaria parasite DNA replication. ACTA ACUST UNITED AC 2005; 12:357-62. [PMID: 15275174 DOI: 10.1016/0169-4758(96)10053-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The replication mechanics of the extrachromosomal DNAs of the malaria parasite are beginning to be anravelled. At 6 kb, the mitochondrial genome is the smallest known and, unlike higher eukaryotes, its multiple copies per cell occur as polydisperse linear concatemers. Here, Don Williamson, Peter Preiser and Iain Wilson discuss recent evidence that this DNA replicates by a process akin to those of certain bacteriophages, which make use of extensive recombination coupled with rolling circles. The parasite's second extrachromosomal DNA, a 35 kb circular molecule thought to be a plastid remnant inherited from a remote photoautotroph, probably replicates in a more familiar fashion from conventional origins or D loops. Improved understanding of both organelle's replicative mechanisms could give new leads to malaria chemotherapy.
Collapse
Affiliation(s)
- D H Williamson
- Parasitology Division, National Institute for Medical Research, Mill Hill, London, UK.
| | | | | |
Collapse
|
3
|
Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.). Eur J Protistol 2004. [DOI: 10.1016/j.ejop.2004.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Bork S, Yokoyama N, Matsuo T, Claveria FG, Fujisaki K, Igarashi I. Clotrimazole, ketoconazole, and clodinafop-propargyl as potent growth inhibitors of equine Babesia parasites during in vitro culture. J Parasitol 2003; 89:604-6. [PMID: 12880264 DOI: 10.1645/0022-3395(2003)089[0604:ckacap]2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The antifungal agents clotrimazole (CLT) and ketoconazole (KC) and the herbicide clodinafop-propargyl (CP) inhibit growth of Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. In the present study, we evaluated these drugs against the in vitro growth of the equine protozoan parasites Babesia equi and B. caballi. Clotrimazole (IC50: 2 and 17 microM), KC (IC50: 6 and 22 microM), and CP (IC50: 450 and 354 microM) were effective growth inhibitors. Interestingly, intraerythrocytic KC-treated Babesia sp. were observed to be in immediate contact with the plasma fraction of the blood in electron microscopy. These results demonstrate the babesiacidial activities of these compounds and suggest their chemotherapeutic potential for the treatment of equine babesioses.
Collapse
Affiliation(s)
- Sabine Bork
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
An extrachromosomal genome of between 27 and 35 kb has been described in several apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Examination of sequence data proved the genomes to be a remnant plastid genome, from which all genes encoding photosynthetic functions had been lost. Localisation studies had shown that the genome was located within a multi-walled organelle, anterior to the nucleus. This organelle had been previously described in ultrastructural studies of several genera of apicomplexa, but no function had been attributed to it. This invited review describes the evolution of knowledge on the apicomplexan plastid, then discusses current research findings on the likely role of the plastid in the Apicomplexa. How the plastid may be used to effect better drug treatments for apicomplexan diseases, and its potential as a marker for investigating phylogenetic relationships among the Apicomplexa, are discussed.
Collapse
Affiliation(s)
- M T Gleeson
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology, Westbourne Street, Gore Hill NSW 2065, Sydney, Australia.
| |
Collapse
|
6
|
Abstract
The coccidium Cryptosporidium parvum is an obligate intracellular parasite of the phylum Apicomplexa. It infects the gastrointestinal tract of humans and livestock, and represents the third major cause of diarrhoeal disease worldwide. Scarcely considered for decades due to its apparently non-pathogenic nature, C. parvum has been studied very actively over the last 15 years, after its medical relevance as a dangerous opportunistic parasite and widespread water contaminant was fully recognised. Despite the lack of an efficient in vitro culture system and appropriate animal models, significant advances have been made in this relatively short period of time towards understanding C. parvum biology, immunology, genetics and epidemiology. Until recently, very little was known about the genome of C. parvum, with even basic issues, such as the number and size of chromosomes, being the object of a certain controversy. With the advent of pulsed field gradient electrophoresis and the introduction of molecular biology techniques, the overall structure and fine organisation of the genome of C. parvum have started to be disclosed. Organised into eight chromosomes distributed in a very narrow range of molecular masses, the genome of C. parvum is one of the smallest so far described among unicellular eukaryotic organisms. Although fewer than 30 C. parvum genes have been cloned so far, information about the overall structure of the parasite genome has increased exponentially over the last 2 years. From the first karyotypic analyses to the recent development of physical maps for individual chromosomes, this review will try to describe the state-of-the-art of our knowledge on the nuclear genome of C. parvum and will discuss the available experimental evidence concerning the presence of extra-chromosomal elements.
Collapse
Affiliation(s)
- F Spano
- Istituto di Parassitologia, Università di Roma "La Sapienza", P. le A. Moro, 5, Box 6 Roma 62, 00185, Rome, Italy
| | | |
Collapse
|
7
|
Zhu G, Marchewka MJ, Keithly JS. Cryptosporidium parvum appears to lack a plastid genome. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):315-321. [PMID: 10708370 DOI: 10.1099/00221287-146-2-315] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surprisingly, unlike most Apicomplexa, Cryptosporidium parvum appears to lack a plastid genome. Primers based upon the highly conserved plastid small- or large-subunit rRNA (SSU/LSU rRNA) and the tufA-tRNAPhe genes of other members of the phylum Apicomplexa failed to amplify products from intracellular stages of C. parvum, whereas products were obtained from the plastid-containing apicomplexans Eimeria bovis and Toxoplasma gondii, as well as the plants Allium stellatum and Spinacia oleracea. Dot-blot hybridization of sporozoite genomic DNA (gDNA) supported these PCR results. A T. gondii plastid-specific set of probes containing SSU/LSU rRNA and tufA-tRNA(Phe) genes strongly hybridized to gDNA from a diverse group of plastid-containing organisms including three Apicomplexa, two plants, and Euglena gracilis, but not to those without this organelle including C. parvum, three kinetoplastids, the yeast Saccharomyces cerevisiae, mammals and the eubacterium Escherichia coli. Since the origin of the plastid in other apicomplexans is postulated to be the result of a secondary symbiogenesis of either a red or a green alga, the most parsimonious explanation for its absence in C. parvum is that it has been secondarily lost. If confirmed, this would indicate an alternative evolutionary fate for this organelle in one member of the Apicomplexa. It also suggests that unlike the situation with other diseases caused by members of the Apicomplexa, drug development against cryptosporidiosis targeting a plastid genome or metabolic pathways associated with it may not be useful.
Collapse
Affiliation(s)
- Guan Zhu
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| | - Mary J Marchewka
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| | - Janet S Keithly
- Wadsworth Center, New York State Department of Health, PO Box 22002, Albany, NY 12201-2002, USA1
| |
Collapse
|
8
|
|
9
|
Yap MW, Kara UA, ten Heggeler-Bordier B, Ting RC, Tan TM. Partial nucleotide sequence and organisation of extrachromosomal plastid-like DNA in Plasmodium berghei. Gene 1997; 200:91-8. [PMID: 9373142 DOI: 10.1016/s0378-1119(97)00385-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The murine malaria parasite Plasmodium berghei contains a plastid-like extrachromosomal genome. This genome is 30.7 kb in size and is transcriptionally active as shown by RT-PCR. DNA sequence analysis of the genome reveals 69.9-95.5% homology to sequences of the 35-kb extrachromosomal circle found in the human malaria species Plasmodium falciparum. Homologous sequences include regions of genes for the ssu-rRNA, lsu-rRNA, rpo B and clusters of t-RNAs. Sequence variation between the two Plasmodium species exists in the non-coding interspacing regions. A physical map has been constructed for the P. berghei circle, indicating the EcoRI and HindIII restriction sites as well as the arrangement of the rRNA, rpo B and tRNA genes. Arrangement of these genes is similar to that found on the P. falciparum 35-kb circle. The P. berghei circular element is distinct from the mitochondrial 6-kb DNA of both the murine and the human Plasmodium species. Preliminary results indicate that the circle may be a useful target for drug therapy.
Collapse
Affiliation(s)
- M W Yap
- Molecular Parasitology Laboratory, School of Biological Sciences, Singapore, Singapore
| | | | | | | | | |
Collapse
|
10
|
Abstract
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.
Collapse
Affiliation(s)
- R J Wilson
- National Institute for Medical Research, London, United Kingdom.
| | | |
Collapse
|
11
|
McConkey GA, Rogers MJ, McCutchan TF. Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 1997; 272:2046-9. [PMID: 8999899 DOI: 10.1074/jbc.272.4.2046] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum has two extrachromosomal DNAs associated with organelles whose function is unclear. Both genomes encode ribosomal RNAs (rRNAs) that are distinct from the nuclear-encoded rRNAs. Secondary structure analysis of all the P. falciparum rRNAs indicates that only the large subunit (LSU) rRNA encoded by the plastid-like genome is the target for thiostrepton. Indeed we find that thiostrepton inhibits growth of the parasite in the micromolar range which is 10-fold below concentrations with observable effects on total protein synthesis. We have further examined selective effects of thiostrepton on the plastid function by comparing differential effects of the drug on cytoplasmic and organellar encoded transcripts. Treatment with either thiostrepton or rifampin, an inhibitor of organellar and eubacterial RNA polymerase, both showed disappearance of organellar-encoded RNA transcripts within 6 h of treatment while transcripts of a nuclear-encoded mRNA remained constant for at least 8 h of treatment. Hence, we show a selective effect on organelle function that is suggestive of interference in the protein synthesis apparatus of the plastid. Sensitivity of P. falciparum to thiostrepton confirms that the plastid-like genome is essential for the erythrocytic cycle and presents a novel therapeutic site for this class of antibiotics.
Collapse
Affiliation(s)
- G A McConkey
- Growth and Development Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
12
|
Abstract
Organisms in the phylum Apicomplexa possess, in addition to their mitochondrial genome, an extrachromosomal DNA that possesses significant similarities with the extrachromosomal genomes of plastids. To date, the majority of data on these plastid-like DNAs have been obtained from the human malarial organism, Plasmodium falciparum. In common with plastid DNAs, the plastid-like DNA of P. falciparum possesses genes for DNA-dependent RNA polymerase subunits beta and beta 1 and for organellar-like large- and small-subunits ribosomal RNAs. Both the polymerase subunit and ribosomal RNA gene sequences share a number of features with those from plastid DNAs. In addition, the ribosomal RNA genes are organised in an inverted repeat arrangement, reminiscent of plastid DNAs. Additional molecular features shared between the 2 genomes are discussed. Plastid-like DNAs have also been identified in other Plasmodium species as well as Toxoplasma gondii, Eimeria tenella, Babesia bovis and a number of Sarcocystis species. A cryptic organelle often observed in apicomplexans has been proposed as the organelle that harbours the plastid-like DNAs, but conclusive evidence for this has not yet been obtained. Although approximately 1/2 of the plastid-like DNA of P. falciparum has been sequenced to date, no function has yet been ascribed to this DNA or its putative organelle. Phylogenetic inferences based on sequence data from this DNA have indicated an evolutionary origin from photosynthetic organisms, but the true provenance of the plastid-like DNAs remains to be determined. Because of the specific nature of the plastid-like DNAs, they may prove useful as effective targets for chemotherapeutics.
Collapse
Affiliation(s)
- A C Jeffries
- Department of Cell and Molecular Biology, University of Technology Sydney, NSW, Australia
| | | |
Collapse
|