1
|
Zhou S, Zhang L, Feng Y, Li H, Chen M, Pan W, Hao J. Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry 2018; 24:16609-16619. [DOI: 10.1002/chem.201803612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Shengju Zhou
- State Key Laboratory of Solid Lubrication and Laboratory of, Clean Energy Chemistry and Materials; Lanzhou Institute of, Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Linwen Zhang
- State Key Laboratory of Solid Lubrication and Laboratory of, Clean Energy Chemistry and Materials; Lanzhou Institute of, Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Yongqiang Feng
- State Key Laboratory of Solid Lubrication and Laboratory of, Clean Energy Chemistry and Materials; Lanzhou Institute of, Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Hongguang Li
- State Key Laboratory of Solid Lubrication and Laboratory of, Clean Energy Chemistry and Materials; Lanzhou Institute of, Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
- Key Laboratory of Colloid and Interface Chemistry and; Key Laboratory of Special Aggregated Materials; Ministry of Education, Shandong University; Jinan 250100 P.R. China
| | - Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry and; Key Laboratory of Special Aggregated Materials; Ministry of Education, Shandong University; Jinan 250100 P.R. China
| | - Wei Pan
- College of Chemistry; Chemical Engineering and Materials Science; Shandong Normal University; Jinan 250014 P.R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry and; Key Laboratory of Special Aggregated Materials; Ministry of Education, Shandong University; Jinan 250100 P.R. China
| |
Collapse
|
2
|
Premkumar T, Mezzenga R, Geckeler KE. Carbon nanotubes in the liquid phase: addressing the issue of dispersion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1299-1313. [PMID: 22431156 DOI: 10.1002/smll.201101786] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/01/2011] [Indexed: 05/31/2023]
Abstract
The inherent size and hollow geometry with extraordinary electronic and optical properties make carbon nanotubes (CNTs) promising building blocks for molecular or nanoscale devices. Unfortunately, their hydrophobic nature and their existence in the form of agglomerated and parallel bundles make this interesting material inadequately soluble or dispersible in most of the common solvents, which is crucial to their processing. Therefore, various ingenious techniques have been reported to disperse the CNTs in various solvents with different experimental conditions. However, by analyzing the published scientific research articles, it is evident that there is an important issue or misunderstanding between the term "dispersion" and "solubilization". As a result many researchers use the terms interchangeably, particularly when stating the interaction of CNTs with liquids, which causes confusion among the readers, students, and researchers. In this article, this fundamental issue is addressed in order to give basic insight to the researchers who are working with CNTs, as well as to the scientists who deal with nano-related research domains.
Collapse
Affiliation(s)
- Thathan Premkumar
- Laboratory of Applied Macromolecular Chemistry, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, South Korea
| | | | | |
Collapse
|
3
|
Uhlendorf V. Fatty acid contamination and dielectric relaxation in phospholipid vesicle suspensions. Biophys Chem 2008; 20:261-73. [PMID: 17005152 DOI: 10.1016/0301-4622(84)87030-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1984] [Accepted: 06/05/1984] [Indexed: 10/17/2022]
Abstract
Aqueous vesicle or micelle suspensions from various synthetic lecithins or surfactants - most of them purified by a simple ion-exchange procedure in methanol - were investigated, some with ionic admixtures. The dielectric permittivity '(nu) between 5 kHz and 100 MHz was determined by different time-and frequency-domain methods, with attention given to electrode polarization below 1 MHz. Pure ether lecithins (used to reduce hydrolysis during preparation) as well as ester lecithins showed no dielectric dispersion below 10 MHz (Delta' 3). In contrast, even dilute colloidal solutions containing about 1 mol% (with respect to solute) ionic amphiphiles normally exhibited large dielectric dispersion (10 < Delta' < 700), especially with electrolyte present. This low-frequency dispersion is sensitive to vesicle coagulation or fusion. Underlying relaxation mechanisms are discussed, and the main relaxation is shown to be the same as for other charged colloids. This conclusion suggest a new interpretation of measurements, previously reported by other authors, who gave an interpretation in terms of correlated zwitterionic head group orientation in multilamellar lecithin liposomes. Possible effects from traces of impurities in lipids are discussed.
Collapse
Affiliation(s)
- V Uhlendorf
- Drittes Physikalisches Institut, Universität Göttingen, Bürgerstr, 42-44, D-3400 Göttingen, F.R.G
| |
Collapse
|
4
|
Sabín J, Prieto G, Ruso JM, Messina P, Sarmiento F. Aggregation of liposomes in presence of La3+: a study of the fractal dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:011408. [PMID: 17677442 DOI: 10.1103/physreve.76.011408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Indexed: 05/16/2023]
Abstract
A study of the fractal dimension of the aggregation of three different types of large unilamellar vesicles, formed by egg yolk phosphatidylcholine (EYPC), dimyristoyl-phosphocholine (DMPC), and dipalmitoyl-phosphocholine (DPPC), in the presence of La3+, is presented. Aggregate liposome fractal dimensions were calculated by two methods, aggregation kinetics, using the approaches diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA) and angle-scattering light dispersion. Electrophoretic measurements show a similar variation of the zeta potential (zeta potential) for EYPC and DPPC, with a small increase of initial positive values. However, the zeta potential of DMPC changes from a initial negative value to near zero with increasing La3+ concentration. The evolution of the aggregate sizes was followed by light scattering. DPPC and DMPC show a RLCA regimen growth at low La3+ concentrations and a DLCA regimen at higher concentrations. In the case of EYPC, the final size of aggregation strongly depends on La3+ concentration. The calculated fractal dimension is in the range 1.8 to 2.1.
Collapse
Affiliation(s)
- Juan Sabín
- Biophysics and Interfaces Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
5
|
JIA X, WILLIAMS R, GREEN M. THE FEASIBILITY OF SELECTIVE SEPARATION OF COLLOIDAL PARTICLES AT A SOLID/LIQUID INTERFACE. CHEM ENG COMMUN 2007. [DOI: 10.1080/00986449008940707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- X. JIA
- a Department of Chemical Engineering , University of Manchester Institute of Science & Technology , P.O. Box 88, Manchester, M601QD, U.K
| | - R.A. WILLIAMS
- a Department of Chemical Engineering , University of Manchester Institute of Science & Technology , P.O. Box 88, Manchester, M601QD, U.K
| | - M. GREEN
- a Department of Chemical Engineering , University of Manchester Institute of Science & Technology , P.O. Box 88, Manchester, M601QD, U.K
| |
Collapse
|
6
|
Lynch ML, Kodger T, Weaver MR. Anticipating colloidal instabilities in cationic vesicle dispersions by measuring collective motions with dynamic light scattering. J Colloid Interface Sci 2006; 296:599-607. [PMID: 16300775 DOI: 10.1016/j.jcis.2005.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Vesicle dispersions are useful for many applications from medicinal to consumer products. However, using these dispersions requires some knowledge of and control over their colloidal properties. Measuring interparticle interactions between vesicles should allow framing the problem in terms of Smoluchowski kinetic models and consequently anticipating time-dependent aggregation and coalescence for the dispersions. However, this can be a difficult task for many complex mixtures. A primary goal of this paper is to show that it is possible to measure interparticle potential between small vesicles by measuring the concentration-dependent collective motion using dynamic light scattering. These measurements allow determination of the second virial coefficient for the dispersion, providing a convenient platform for summing all contributions to the interaction potential over all vesicle conformations, thus making the analysis of complex mixtures more tractable. As a verification of the approach, a comparison is made to dispersions in which the stability is governed solely by electrostatics, using existing techniques to anticipate instabilities. A second goal of this paper is to build a simple potential model in which the Smoluchowski model can be used to quantitatively anticipate the aggregation behavior of the small vesicle dispersion. Together, these observations constitute a convenient approach to anticipating the behavior of vesicle (and other) dispersions in complex mixtures.
Collapse
Affiliation(s)
- Matthew L Lynch
- The Procter & Gamble Company, Corporate Research Division, Miami Valley Laboratories, 11810 East Miami River Road, Cincinnati, OH 45252-1038, USA.
| | | | | |
Collapse
|
7
|
Rossetto M. A colloid perspective of hair cell cilia: a selective literature review. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Iampietro DJ, Brasher LL, Kaler EW, Stradner A, Glatter O. Direct Analysis of SANS and SAXS Measurements of Catanionic Surfactant Mixtures by Fourier Transformation. J Phys Chem B 1998. [DOI: 10.1021/jp973326b] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Masy JC, Cournil M, Lance M. Agglomeration of alumina powders: A turbidimetric study. Chem Eng Technol 1995. [DOI: 10.1002/ceat.270180610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
Stability of DLPA/DLPC mixed vesicles against divalent cation-induced aggregation: Importance of the hydration force. J Colloid Interface Sci 1992. [DOI: 10.1016/0021-9797(92)90050-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Shigematsu M, Fujie T, Inoue T, Murata Y, Tanaka M, Sugihara G. Abnormal aggregation behavior of acidic phospholipid vesicles in the very low concentration range of divalent cations. J Colloid Interface Sci 1992. [DOI: 10.1016/0021-9797(92)90440-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Nakashima T, Shigematsu M, Ishibashi Y, Sugihara G, Inoue T. Stopped-flow kinetic study on aggregation of dilauroylphosphatidic acid vesicles induced by divalent cations. J Colloid Interface Sci 1990. [DOI: 10.1016/0021-9797(90)90392-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Papahadjopoulos D, Nir S, Düzgünes N. Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 1990; 22:157-79. [PMID: 2139437 DOI: 10.1007/bf00762944] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reviewed studies on calcium-induced fusion of lipid bilayer membranes and the role of synexin and other calcium-binding proteins (annexins) in membrane fusion. We have also discussed the roles of other cations, lipid phase transitions, long chain fatty acids and other fusogenic molecules. Finally, we have presented a simple molecular model for the mechanism of lipid membrane fusion, consistent with the experimental evidence and incorporating various elements proposed previously.
Collapse
Affiliation(s)
- D Papahadjopoulos
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | |
Collapse
|
15
|
Allen TM, Hong K, Papahadjopoulos D. Membrane contact, fusion, and hexagonal (HII) transitions in phosphatidylethanolamine liposomes. Biochemistry 1990; 29:2976-85. [PMID: 2337577 DOI: 10.1021/bi00464a013] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The behavior of phosphatidylethanolamine (PE) liposomes has been studied as a function of temperature, pH, ionic strength, lipid concentration, liposome size, and divalent cation concentration by differential scanning calorimetry (DSC), by light scattering, by assays measuring liposomal lipid mixing, contents mixing, and contents leakage, and by a new fluorometric assay for hexagonal (HII) transitions. Liposomes were either small or large unilamellar, or multilamellar. Stable (impermeable, nonaggregating) liposomes of egg PE (EPE) could be formed in isotonic saline (NaCl) only at high pH (greater than 8) or at lower pH in the presence of low ionic strength saline (less than 50 mOsm). Bilayer to hexagonal (HII) phase transitions and gel to liquid-crystalline transitions of centrifuged multilamellar liposomes were both detectable by DSC only at pH 7.4 and below. The HII transition temperature increased, and the transition enthalpy decreased, as the pH was raised above 7.4, and it disappeared above pH 8.3 where PE is sufficiently negatively charged. HII transitions could be detected at high pH following the addition of Ca2+ or Mg2+. No changes in light scattering and no lipid mixing, mixing of contents, or leakage of contents were noted for EPE liposomes under nonaggregating conditions (pH 9.2 and 100 mM Na+ or pH 7.4 and 5 mM Na+) as the temperature was raised through the HII transition region. However, when aggregation of the liposomes was induced by addition of Ca2+ or Mg2+, or by increasing [Na+], it produced sharp increases in light scattering and in leakage of contents and also changes in fluorescent probe behavior in the region of the HII transition temperature (TH). Lipid mixing and contents mixing were also observed below TH under conditions where liposomes were induced to aggregate, but without any appreciable leakage of contents. We conclude that HII transitions do not occur in liposomes under conditions where intermembrane contacts do not take place. Moreover, fusion of PE liposomes at a temperature below TH can be triggered by H+, Na+, Ca2+, or Mg2+ or by centrifugation under conditions that induce membrane contact. There was no evidence for the participation of HII transitions in these fusion events.
Collapse
Affiliation(s)
- T M Allen
- Cancer Research Institute, University of California, San Francisco 94143
| | | | | |
Collapse
|
16
|
Gamon BL, Virden JW, Berg JC. The aggregation kinetics of an electrostatically stabilized dipalmitoyl phosphatidylcholine vesicle system. J Colloid Interface Sci 1989. [DOI: 10.1016/0021-9797(89)90223-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Sukumaran DK, Ohki S. Effect of monovalent cations on polyvalent cation-induced fusion of phosphatidylserine small unilamellar vesicles. Chem Phys Lipids 1988; 49:9-14. [PMID: 3233715 DOI: 10.1016/0009-3084(88)90059-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescence internal contents mixing assay was used to monitor the fusion of phosphatidylserine (PS) small unilamellar vesicles, initiated by metal ions (Ca2+, La3+ and Tb3+), at various concentrations of monovalent cations (Li+, Na+ and K+). The influence of ionic strength (0.02-1.0 M) on the threshold concentration of "fusogenic" cations required to induce fusion was measured. The threshold concentrations increased monotonically (1 mM at 0.1 M to 3.1 mM at 1 M) with the increasing ionic strength of the solution for Ca2+, but remained unchanged for both La3+ and Tb3+. Changes in the ionic strength of the encapsulated solution did not alter the threshold concentrations for all the ions studied, in the range 0.02-0.3 M. The results are analyzed in terms of competitive binding between the monovalent ions and the "fusogenic" ions (Ca2+, Tb3+ and La3+). It is shown that there is a critical value for calcium bound-PS, below which no massive fusion occurs. Bound and free fractions of PS are calculated based on the Gouy-Chapman model, taking activities rather than concentrations of metal ions into account. Our experiments also show that monovalent ions alone do not induce fusion even at high concentrations.
Collapse
Affiliation(s)
- D K Sukumaran
- Department of Biophysical Sciences, School of Medicine, State University of New York, Buffalo 14214
| | | |
Collapse
|
18
|
Webb MS, Tilcock C, Green B. Salt-mediated interactions between vesicles of the thylakoid lipid digalactosyldiacylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1988. [DOI: 10.1016/0005-2736(88)90130-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Düzgüneş N, Allen TM, Fedor J, Papahadjopoulos D. Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 1987; 26:8435-42. [PMID: 3442666 DOI: 10.1021/bi00399a061] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kinetics of lipid mixing during membrane aggregation and fusion was monitored by two assays employing resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and N-(lissamine Rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE). For the "probe mixing" assay, NBD-PE and Rh-PE were incorporated into separate populations of phospholipid vesicles. For the "probe dilution" assay, both probes were incorporated into one population of vesicles, and the assay monitored the dilution of the molecules into the membrane of unlabeled vesicles. The former assay was found to be very sensitive to aggregation, even when the internal aqueous contents of the vesicles did not intermix. Examples of this case were large unilamellar vesicles (LUV) composed of phosphatidylserine (PS) in the presence of Mg2+ and small unilamellar vesicles (SUV) composed of phosphatidylserine in the presence of high concentrations of Na+. No lipid mixing was detected in these cases by the probe dilution assay. Under conditions where membrane fusion (defined as the intermixing of aqueous contents with concomitant membrane mixing) was observed, such as LUV (PS) in the presence of Ca2+, the rate of probe mixing was faster than that of probe dilution, which in turn was faster than the rate of contents mixing. Two assays monitoring the intermixing of aqueous contents were also compared. The Tb/dipicolinic acid assay reported slower fusion rates than the 1-aminonaphthalene-3,6,8-trisulfonic acid/N,N'-p-xylylene-bis(pyridinium bromide) assay for PS LUV undergoing fusion in the presence of Ca2+. These observations point to the importance of utilizing contents mixing assays in conjunction with lipid mixing assays to obtain the rates of membrane destabilization and fusion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Düzgüneş
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
JEFFERIS V, RUUSKA R, FEKE D. MEASUREMENT OF PRIMARY- AND SECONDARY-MINIMUM COAGULATION RATES IN COLLOIDAL DISPERSIONS. CHEM ENG COMMUN 1987. [DOI: 10.1080/00986448708911810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V.M. JEFFERIS
- a Department of Chemical Engineering , Case Institute of Technology Case Western Reserve University , Cleveland , Ohio , 44106
| | - R.W. RUUSKA
- a Department of Chemical Engineering , Case Institute of Technology Case Western Reserve University , Cleveland , Ohio , 44106
| | - D.L. FEKE
- a Department of Chemical Engineering , Case Institute of Technology Case Western Reserve University , Cleveland , Ohio , 44106
| |
Collapse
|
23
|
Abstract
In many cellular functions the process of membrane fusion is of vital importance. It occurs in a highly specific and strictly controlled fashion. Proteins are likely to play a key role in the induction and modulation of membrane fusion reactions. Aimed at providing insight into the molecular mechanisms of membrane fusion, numerous studies have been carried out on model membrane systems. For example, the divalent-cation induced aggregation and fusion of vesicles consisting of negatively charged phospholipids, such as phosphatidylserine (PS) or cardiolipin (CL), have been characterized in detail. It is important to note that these systems largely lack specificity and control. Therefore conclusions derived from their investigation can not be extrapolated directly to a seemingly comparable counterpart in biology. Yet, the study of model membrane systems does reveal the general requirements of lipid bilayer fusion. The most prominent barrier to molecular contact between two apposing bilayers appears to be due to the hydration of the polar groups of the lipid molecules. Thus, dehydration of the bilayer surface and fluctuations in lipid packing, allowing direct hydrophobic interactions, are critical to the induction of membrane fusion. These membrane alterations are likely to occur only locally, at the site of intermembrane contact. Current views on the way membrane proteins may induce fusion under physiological conditions also emphasize the notion of local surface dehydration and perturbation of lipid packing, possibly through penetration of apolar amino acid segments into the hydrophobic membrane interior.
Collapse
|
24
|
Abstract
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.
Collapse
|
25
|
Düzgüneş N, Straubinger RM, Baldwin PA, Friend DS, Papahadjopoulos D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry 1985; 24:3091-8. [PMID: 4027231 DOI: 10.1021/bi00334a004] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.
Collapse
|
26
|
Bentz J, Düzgüneş N, Nir S. Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: evaluation of the kinetic rate constants. Biochemistry 1985; 24:1064-72. [PMID: 3994991 DOI: 10.1021/bi00325a039] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.
Collapse
|
27
|
|
28
|
Nir S. A model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles. J Colloid Interface Sci 1984. [DOI: 10.1016/0021-9797(84)90231-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Nir S, Düzgüneş N, Bentz J. Binding of monovalent cations to phosphatidylserine and modulation of Ca2+- and Mg2+-induced vesicle fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 735:160-72. [PMID: 6626545 DOI: 10.1016/0005-2736(83)90271-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of several monovalent cations on the Ca2+-induced aggregation and fusion of sonicated phosphatidylserine (PS) vesicles is studied by monitoring the mixing of internal compartments of the fusing vesicles using the Tb/dipicolinic acid assay. The dissociation of the fluorescent Tb-dipicolinate complex which accompanies Ca2+-induced vesicle fusion is determined directly and is due to leakage of contents and entry of medium into vesicles. PS vesicles do not fuse when the medium contains only monovalent cations (at pH 7.4), regardless of the cation concentration or whether there is aggregation of the vesicles. A mass-action kinetic analysis of the data provides estimates for the rate of aggregation, C11, and for the rate of fusion per se, f11. Values of f11 increase dramatically with reduction in monovalent cation concentration and are primarily determined by binding ratios of Ca2+ or Mg2+ per PS. With 300 mM of monovalent cations, the fusion per se is essentially rate-limiting to the overall fusion process and values of f11 are significantly larger with the monovalent cations which bind the least, i.e., according to the sequence tetramethylammonium greater than K+ greater than Na+ greater than Li+. With monovalent cations in concentrations of 100 mM or less, the aggregation is rate-limiting to the fusion and the overall initial fusion rates are determined by an interplay between aggregation and fusion rates. Under conditions of fast aggregation, the Ca2+-induced fusion of small PS vesicles can occur within milliseconds or less.
Collapse
|
30
|
Düzgüneş N, Wilschut J, Hong K, Fraley R, Perry C, Friend DS, James TL, Papahadjopoulos D. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:289-99. [PMID: 6688185 DOI: 10.1016/0005-2736(83)90214-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Properties of large unilamellar vesicles (LUV), composed of phosphatidylcholine and prepared by reverse-phase evaporation and subsequent extrusion through Unipore polycarbonate membranes, have been investigated and compared with those of small unilamellar vesicles (SUV) and of multilamellar vesicles (MLV). The unilamellar nature of the LUV is shown by 1H-NMR using Pr3+ as a shift reagent. The gel to liquid-crystalline phase transition of LUV composed of dipalmitoylphosphatidylcholine (DPPC) monitored by differential scanning calorimetry, fluorescence polarization of diphenylhexatriene and 90 degrees light scattering, occurs at a slight lower temperature (40.8 degrees C) than that of MLV (42 degrees C) and is broadened by about 50%. The phase transition of SUV is shifted to considerably lower temperatures (mid-point, 38 degrees C) and extends over a wide temperature range. In LUV a well-defined pretransition is not observed. The permeability of LUV (DPPC) monitored by leakage of carboxyfluorescein, increases sharply at the phase transition temperature, and the extent of release is greater than that from MLV. Leakage from SUV occurs in a wide temperature range. Freeze-fracture electron microscopy of LUV (DPPC) reveals vesicles of 0.1-0.2 micron diameter with mostly smooth fracture faces. At temperatures below the phase transition, the larger vesicles in the population have angled faces, as do extruded MLV. A banded pattern, seen in MLV at temperatures between the pretransition and the main transition, is not observed in the smaller LUV, although the larger vesicles reveal a dimpled appearance.
Collapse
|
31
|
|
32
|
Electrostatic potential between concentric surfaces: Spherical, cylindrical, and planar. J Colloid Interface Sci 1982. [DOI: 10.1016/0021-9797(82)90409-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|