1
|
Pradhan M, Kumar A, Kirti A, Pandey S, Rajaram H. NtcA, LexA and heptamer repeats involved in the multifaceted regulation of DNA repair genes recF, recO and recR in the cyanobacterium Nostoc PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194907. [PMID: 36638863 DOI: 10.1016/j.bbagrm.2023.194907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.
Collapse
Affiliation(s)
- Mitali Pradhan
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Buru AS, Neela VK, Mohandas K, Pichika MR. Microarray Analysis of the Genomic Effect of Eugenol on Methicillin-Resistant Staphylococcus aureus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103249. [PMID: 35630724 PMCID: PMC9147492 DOI: 10.3390/molecules27103249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022]
Abstract
Staphylococcus aureus is a highly adaptive human pathogen responsible for serious hospital- and community-acquired infectious diseases, ranging from skin and soft tissue infections, to complicated and life-threatening conditions such as endocarditis and toxic shock syndrome (TSS). The rapid development of resistance of this organism to available antibiotics over the last few decades has necessitated a constant search for more efficacious antibacterial agents. Eugenol (4-allyl-2-methoxyphenol) belongs to the class of chemical compounds called phenylpropanoids. It is a pure-to-pale yellow, oily liquid substance, mostly extracted as an essential oil from natural products such as clove, cinnamon, nutmeg, basil, and bay leaf. Eugenol has previously been shown to have antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). However, the mechanism of action of eugenol against MRSA has not, as yet, been elucidated; hence, the necessity of this study. Global gene expression patterns in response to challenge from subinhibitory concentrations of eugenol were analysed using the Agilent DNA microarray system to identify genes that can be used as drug targets—most importantly, essential genes involved in unique metabolic pathways elicited for bacterial survival. Transcriptomic analysis of fluctuating genes revealed those involved in amino acid metabolism, fatty acid metabolism, translational, and ribosomal pathways. In amino acid metabolism, for instance, the argC gene encodes for N-acetyl-gamma-glutamyl-phosphate reductase. The argC gene plays an important role in the biosynthesis of arginine from glutamate in the amino acid metabolic pathway. It is the enzyme that catalyses the third step in the latter reaction, and without this process the production of N-acetylglutamate 5-semialdehyde cannot be completed from the NADP-dependent reduction of N-acetyl-5-glutamyl phosphate, which is essential for the survival of some microorganisms and plants. This study enables us to examine complete global transcriptomic responses in MRSA when challenged with eugenol. It reveals novel information with the potential to further benefit the exploratory quest for novel targets against this pathogen, with a view to the development of efficacious antimicrobial agents for the treatment of associated infections.
Collapse
Affiliation(s)
- Ayuba Sunday Buru
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria
- Correspondence:
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kavitha Mohandas
- Department of Microbiology, Faculty of Medicine, MAHSA University College, Kuala Lumpur 59100, Malaysia;
| | - Mallikarjuna Rao Pichika
- Department of Medicinal Chemistry, International Medical University, No. 126, Jalan 19/155B, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
3
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
5
|
Pal P, Modi M, Ravichandran S, Yennamalli RM, Priyadarshini R. DNA-Binding Properties of YbaB, a Putative Nucleoid-Associated Protein From Caulobacter crescentus. Front Microbiol 2021; 12:733344. [PMID: 34777284 PMCID: PMC8581549 DOI: 10.3389/fmicb.2021.733344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) or histone-like proteins (HLPs) are DNA-binding proteins present in bacteria that play an important role in nucleoid architecture and gene regulation. NAPs affect bacterial nucleoid organization via DNA bending, bridging, or forming aggregates. EbfC is a nucleoid-associated protein identified first in Borrelia burgdorferi, belonging to YbaB/EbfC family of NAPs capable of binding and altering DNA conformation. YbaB, an ortholog of EbfC found in Escherichia coli and Haemophilus influenzae, also acts as a transcriptional regulator. YbaB has a novel tweezer-like structure and binds DNA as homodimers. The homologs of YbaB are found in almost all bacterial species, suggesting a conserved function, yet the physiological role of YbaB protein in many bacteria is not well understood. In this study, we characterized the YbaB/EbfC family DNA-binding protein in Caulobacter crescentus. C. crescentus has one YbaB/EbfC family gene annotated in the genome (YbaBCc) and it shares 41% sequence identity with YbaB/EbfC family NAPs. Computational modeling revealed tweezer-like structure of YbaBCc, a characteristic of YbaB/EbfC family of NAPs. N-terminal–CFP tagged YbaBCc localized with the nucleoid and is able to compact DNA. Unlike B. burgdorferi EbfC protein, YbaBCc protein is a non-specific DNA-binding protein in C. crescentus. Moreover, YbaBCc shields DNA against enzymatic degradation. Collectively, our findings reveal that YbaBCc is a small histone-like protein and may play a role in bacterial chromosome structuring and gene regulation in C. crescentus.
Collapse
Affiliation(s)
- Parul Pal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shashank Ravichandran
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| |
Collapse
|
6
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
7
|
EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 2012; 194:3395-406. [PMID: 22544270 DOI: 10.1128/jb.00252-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly every known species of Eubacteria encodes a homolog of the Borrelia burgdorferi EbfC DNA-binding protein. We now demonstrate that fluorescently tagged EbfC associates with B. burgdorferi nucleoids in vivo and that chromatin immunoprecipitation (ChIP) of wild-type EbfC showed it to bind in vivo to sites throughout the genome, two hallmarks of nucleoid-associated proteins. Comparative RNA sequencing (RNA-Seq) of a mutant B. burgdorferi strain that overexpresses EbfC indicated that approximately 4.5% of borrelial genes are significantly impacted by EbfC. The ebfC gene was highly expressed in rapidly growing bacteria, but ebfC mRNA was undetectable in stationary phase. Combined with previous data showing that EbfC induces bends in DNA, these results demonstrate that EbfC is a nucleoid-associated protein and lead to the hypothesis that B. burgdorferi utilizes cellular fluctuations in EbfC levels to globally control transcription of numerous genes. The ubiquity of EbfC proteins in Eubacteria suggests that these results apply to a wide range of pathogens and other bacteria.
Collapse
|
8
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
9
|
Cooley AE, Riley SP, Kral K, Miller MC, DeMoll E, Fried MG, Stevenson B. DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family. BMC Microbiol 2009; 9:137. [PMID: 19594923 PMCID: PMC2720974 DOI: 10.1186/1471-2180-9-137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
Background Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Results Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Conclusion Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.
Collapse
Affiliation(s)
- Anne E Cooley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Babb K, Bykowski T, Riley SP, Miller MC, Demoll E, Stevenson B. Borrelia burgdorferi EbfC, a novel, chromosomally encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete's resident cp32 prophages. J Bacteriol 2006; 188:4331-9. [PMID: 16740939 PMCID: PMC1482946 DOI: 10.1128/jb.00005-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/03/2006] [Indexed: 11/20/2022] Open
Abstract
All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5' of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.
Collapse
Affiliation(s)
- Kelly Babb
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS421 W. R. Willard Medical Education Building, Lexington, KY 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) the levels and types of DNA damage present as a function of growth conditions, (b) which types of damage and other barriers actually halt replication, (c) the structures of the stalled/collapsed replication forks, (d) the number of recombinational repair paths available and their mechanistic details, (e) the enzymology of some of the key reactions required for repair, (f) the role of certain recombination proteins that have not yet been studied, and (g) the molecular origin of certain in vivo observations associated with recombinational DNA repair during the SOS response. The current status of each of these topics is reviewed.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
12
|
Glover BP, Pritchard AE, McHenry CS. tau binds and organizes Escherichia coli replication proteins through distinct domains: domain III, shared by gamma and tau, oligomerizes DnaX. J Biol Chem 2001; 276:35842-6. [PMID: 11463787 DOI: 10.1074/jbc.m103719200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
13
|
Cox MM. Historical overview: searching for replication help in all of the rec places. Proc Natl Acad Sci U S A 2001; 98:8173-80. [PMID: 11459950 PMCID: PMC37418 DOI: 10.1073/pnas.131004998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For several decades, research into the mechanisms of genetic recombination proceeded without a complete understanding of its cellular function or its place in DNA metabolism. Many lines of research recently have coalesced to reveal a thorough integration of most aspects of DNA metabolism, including recombination. In bacteria, the primary function of homologous genetic recombination is the repair of stalled or collapsed replication forks. Recombinational DNA repair of replication forks is a surprisingly common process, even under normal growth conditions. The new results feature multiple pathways for repair and the involvement of many enzymatic systems. The long-recognized integration of replication and recombination in the DNA metabolism of bacteriophage T4 has moved into the spotlight with its clear mechanistic precedents. In eukaryotes, a similar integration of replication and recombination is seen in meiotic recombination as well as in the repair of replication forks and double-strand breaks generated by environmental abuse. Basic mechanisms for replication fork repair can now inform continued research into other aspects of recombination. This overview attempts to trace the history of the search for recombination function in bacteria and their bacteriophages, as well as some of the parallel paths taken in eukaryotic recombination research.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| |
Collapse
|
14
|
Glover BP, McHenry CS. The DnaX-binding subunits delta' and psi are bound to gamma and not tau in the DNA polymerase III holoenzyme. J Biol Chem 2000; 275:3017-20. [PMID: 10652279 DOI: 10.1074/jbc.275.5.3017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex subassembly of the DNA polymerase III holoenzyme is comprised of the DnaX proteins tau and gamma and the auxiliary subunits delta, delta', chi, and psi, which together load the beta processivity factor onto primed DNA in an ATP-dependent reaction. delta' and psi bind directly to DnaX whereas delta and chi bind to delta' and psi, respectively (Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O'Donnell, M. (1995) J. Biol. Chem. 270, 13348-13357). Until now, it has been unclear which DnaX protein, tau or gamma, in holoenzyme binds the auxiliary subunits delta, delta', chi,and psi. Treatment of purified holoenzyme with the homobifunctional cross-linker bis(sulfosuccinimidyl)suberate produces covalently cross-linked gamma-delta' and gamma-psi complexes identified by Western blot analysis. Immunodetection of cross-linked species with anti-delta' and anti-psi antibodies revealed that no tau-delta' or tau-psi cross-links had formed, suggesting that the delta' and psi subunits reside only on gamma within holoenzyme.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
15
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 727] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
16
|
Cox MM. Recombinational DNA repair in bacteria and the RecA protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:311-66. [PMID: 10506835 DOI: 10.1016/s0079-6603(08)60726-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In bacteria, the major function of homologous genetic recombination is recombinational DNA repair. This is not a process reserved only for rare double-strand breaks caused by ionizing radiation, nor is it limited to situations in which the SOS response has been induced. Recombinational DNA repair in bacteria is closely tied to the cellular replication systems, and it functions to repair damage at stalled replication forks, Studies with a variety of rec mutants, carried out under normal aerobic growth conditions, consistently suggest that at least 10-30% of all replication forks originating at the bacterial origin of replication are halted by DNA damage and must undergo recombinational DNA repair. The actual frequency may be much higher. Recombinational DNA repair is both the most complex and the least understood of bacterial DNA repair processes. When replication forks encounter a DNA lesion or strand break, repair is mediated by an adaptable set of pathways encompassing most of the enzymes involved in DNA metabolism. There are five separate enzymatic processes involved in these repair events: (1) The replication fork assembled at OriC stalls and/or collapses when encountering DNA damage. (2) Recombination enzymes provide a complementary strand for a lesion isolated in a single-strand gap, or reconstruct a branched DNA at the site of a double-strand break. (3) The phi X174-type primosome (or repair primosome) functions in the origin-independent reassembly of the replication fork. (4) The XerCD site-specific recombination system resolves the dimeric chromosomes that are the inevitable by-product of frequent recombination associated with recombinational DNA repair. (5) DNA excision repair and other repair systems eliminate lesions left behind in double-stranded DNA. The RecA protein plays a central role in the recombination phase of the process. Among its many activities, RecA protein is a motor protein, coupling the hydrolysis of ATP to the movement of DNA branches.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
17
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res 1999. [DOI: 10.1101/gr.9.5.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the −1 (5′) direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed −1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed −1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus −1 ribosomal frameshift signals. The results demonstrated that consensus programmed −1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed −1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeastRAS1 and the human CCR5 genes were able to promote significant levels of programmed −1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
|
18
|
Abstract
The RecQ family of DNA helicases have been shown to be important for the maintenance of genomic integrity in all organisms analysed to date. In human cells, representatives of this family include the proteins defective in the cancer predisposition disorder Bloom's syndrome and the premature ageing condition, Werner's syndrome. Several pieces of evidence suggest that RecQ family helicases form associations with one or more of the cellular topoisomerases, and together these heteromeric complexes manipulate DNA structure to effect efficient DNA replication, genetic recombination, or both. Here, we propose that RecQ helicases are required for ensuring that structural abnormalities arising during replication, such as at sites where replication forks encounter DNA lesions, are corrected with high fidelity. In mutants defective in these proteins, not only is replication abnormal, but cells display aberrant responses to DNA-damaging agents or inhibitors of DNA synthesis. We suggest that RecQ helicases may be important for the integration of cellular responses to these insults, such as by linking cell cycle checkpoint responses to recombinational repair.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | |
Collapse
|
19
|
Courcelle J, Crowley DJ, Hanawalt PC. Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function. J Bacteriol 1999; 181:916-22. [PMID: 9922256 PMCID: PMC93459 DOI: 10.1128/jb.181.3.916-922.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1998] [Accepted: 11/11/1998] [Indexed: 11/20/2022] Open
Abstract
After UV doses that disrupt DNA replication, the recovery of replication at replication forks in Escherichia coli requires a functional copy of the recF gene. In recF mutants, replication fails to recover and extensive degradation of the nascent DNA occurs, suggesting that recF function is needed to stabilize the disrupted replication forks and facilitate the process of recovery. We show here that the ability of recF to promote the recovery of replication requires that the disrupting lesions be removed. In the absence of excision repair, recF+ cells protect the nascent DNA at replication forks, but replication does not resume. The classical view is that recombination proteins operate in pathways that are independent from DNA repair, and therefore the functions of Rec proteins have been studied in repair-deficient cells. However, mutations in either uvr or recF result in failure to recover replication at UV doses from which wild-type cells recover efficiently, suggesting that recF and excision repair contribute to a common pathway in the recovery of replication.
Collapse
Affiliation(s)
- J Courcelle
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
20
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
21
|
Abstract
Recombinational DNA repair is both the most complex and least understood of DNA repair pathways. In bacterial cells grown under normal laboratory conditions (without a DNA damaging treatment other than an aerobic environment), a substantial number (10-50%) of the replication forks originating at oriC encounter a DNA lesion or strand break. When this occurs, repair is mediated by an elaborate set of recombinational DNA repair pathways which encompass most of the enzymes involved in DNA metabolism. Four steps are discussed: (i) The replication fork stalls and/or collapses. (ii) Recombination enzymes are recruited to the location of the lesion, and function with nearly perfect efficiency and fidelity. (iii) Additional enzymatic systems, including the phiX174-type primosome (or repair primosome), then function in the origin-independent reassembly of the replication fork. (iv) Frequent recombination associated with recombinational DNA repair leads to the formation of dimeric chromosomes, which are monomerized by the XerCD site-specific recombination system.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA.
| |
Collapse
|
22
|
Sutton MD, Kaguni JM. Threonine 435 of Escherichia coli DnaA protein confers sequence-specific DNA binding activity. J Biol Chem 1997; 272:23017-24. [PMID: 9287298 DOI: 10.1074/jbc.272.37.23017] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Escherichia coli DnaA protein, as a sequence-specific DNA binding protein, promotes the initiation of chromosomal replication by binding to four asymmetric 9-mer sequences termed DnaA boxes in oriC. Characterization of N-terminal, C-terminal, and internal in-frame deletion mutants identified residues near the C terminus of DnaA protein required for DNA binding. Furthermore, genetic and biochemical characterization of 11 missense mutations mapping within the C-terminal 89 residues indicated that they were defective in DNA binding. Detailed biochemical characterization of one mutant protein bearing a threonine to methionine substitution at position 435 (T435M) revealed that it retained only nonspecific DNA binding activity, suggesting that threonine 435 imparts specificity in binding. Finally, T435M was inactive on its own for in vitro replication of an oriC plasmid but was able to augment limiting levels of wild type DnaA protein, consistent with the proposal that not all of the DnaA monomers in the initial complex are bound specifically to oriC and that direct interaction occurs among monomers.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
23
|
Blinkova A, Burkart MF, Owens TD, Walker JR. Conservation of the Escherichia coli dnaX programmed ribosomal frameshift signal in Salmonella typhimurium. J Bacteriol 1997; 179:4438-42. [PMID: 9209069 PMCID: PMC179275 DOI: 10.1128/jb.179.13.4438-4442.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli DNA polymerase III subunits tau and gamma are produced from one gene, dnaX, by a programmed ribosomal frameshift which generates the C terminal of gamma within the tau reading frame. To help evaluate the role of the dispensable gamma, the distribution of tau and gamma homologs in several other species and the sequence of the Salmonella typhimurium dnaX were determined. All four enterobacteria tested produce tau and gamma homologs. S. typhimurium dnaX is 83% identical to E. coli dnaX, but all four components of the frameshift signal are 100% conserved.
Collapse
Affiliation(s)
- A Blinkova
- Microbiology Department, University of Texas at Austin, 78712, USA
| | | | | | | |
Collapse
|
24
|
Courcelle J, Carswell-Crumpton C, Hanawalt PC. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:3714-9. [PMID: 9108043 PMCID: PMC20506 DOI: 10.1073/pnas.94.8.3714] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli containing a mutation in recF are hypersensitive to UV. However, they exhibit normal levels of conjugational or transductional recombination unless the major pathway (recBC) is defective. This implies that the UV sensitivity of recF mutants is not due to a defect in recombination such as occurs during conjugation or transduction. Here, we show that when replication is disrupted, at least two genes in the recF pathway, recF and recR, are required for the resumption of replication at DNA replication forks, and that in their absence, localized degradation occurs at the replication forks. Our observations support a model in which recF and recR are required to reassemble a replication holoenzyme at the site of a DNA replication fork. These results, when taken together with previous literature, suggest that the UV hypersensitivity of recF cells is due to an inability to resume replication at disrupted replication forks rather than to a defect in recombination. Current biochemical and genetic data on the conditions under which recF-mediated recombination occurs suggest that the recombinational intermediate also may mimic the structure of a disrupted replication fork.
Collapse
Affiliation(s)
- J Courcelle
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA.
| | | | | |
Collapse
|
25
|
Abstract
The Escherichia coli dnaX gene encodes both the tau and gamma subunits of DNA polymerase III. This gene is located immediately downstream of the adenine salvage gene apt and upstream of orf12-recR, htpG, and adk. The last three are involved in recombination, heat shock, and nucleotide biosynthesis, respectively. apt, dnaX, and orf12-recR all have separate promoters, and the first two are expressed predominantly from those separate promoters. However, use of an RNase E temperature-sensitive mutant allowed the detection of lesser amounts of polycistronic messengers extending from both the apt and dnaX promoters through htpG. Interestingly, transcription of the weak dnaX promoter is stimulated 4- to 10-fold by a sequence contained entirely within the dnaX reading frame. This region has been localized; at least a portion of the sequence (and perhaps the entire sequence) is located within a 31-bp region downstream of the dnaX promoter.
Collapse
Affiliation(s)
- K S Chen
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | | | |
Collapse
|