1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Alemi M, Prigione A, Wong A, Schoenfeld R, DiMauro S, Hirano M, Taroni F, Cortopassi G. Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript. Free Radic Biol Med 2007; 42:32-43. [PMID: 17157191 PMCID: PMC1927835 DOI: 10.1016/j.freeradbiomed.2006.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/29/2006] [Accepted: 09/14/2006] [Indexed: 01/01/2023]
Abstract
Deletions within the mitochondrial DNA (mtDNA) cause Kearns Sayre syndrome (KSS) and chronic progressive external opthalmoplegia (CPEO). The clinical signs of KSS include muscle weakness, heart block, pigmentary retinopathy, ataxia, deafness, short stature, and dementia. The identical deletions occur and rise exponentially as humans age, particularly in substantia nigra. Deletions at >30% concentration cause deficits in basic bioenergetic parameters, including membrane potential and ATP synthesis, but it is poorly understood how these alterations cause the pathologies observed in patients. To better understand the consequences of mtDNA deletions, we microarrayed six cell types containing mtDNA deletions from KSS and CPEO patients. There was a prominent inhibition of transcripts encoding ubiquitin-mediated proteasome activity, and a prominent induction of transcripts involved in the AMP kinase pathway, macroautophagy, and amino acid degradation. In mutant cells, we confirmed a decrease in proteasome biochemical activity, significantly lower concentration of several amino acids, and induction of an autophagic transcript. An interpretation consistent with the data is that mtDNA deletions increase protein damage, inhibit the ubiquitin-proteasome system, decrease amino acid salvage, and activate autophagy. This provides a novel pathophysiological mechanism for these diseases, and suggests potential therapeutic strategies.
Collapse
Affiliation(s)
- Mansour Alemi
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Alessandro Prigione
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Alice Wong
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Robert Schoenfeld
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032
| | - Franco Taroni
- Division of Biochemistry and Genetics, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Gino Cortopassi
- Department of Molecular Biosciences, 1311 Haring Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Kösel S, Egensperger R, Schnopp NM, Graeber MB. The 'common deletion' is not increased in parkinsonian substantia nigra as shown by competitive polymerase chain reaction. Mov Disord 1997; 12:639-45. [PMID: 9380043 DOI: 10.1002/mds.870120504] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have estimated levels of mitochondrial DNA (mtDNA) carrying the 4,977-base-pair 'common deletion' in tissues from patients with Parkinson's disease (PD) by using semiquantitative techniques. The role of this deleted mtDNA species in the pathogenesis of PD has remained controversial. We have applied competitive polymerase chain reaction to achieve exact quantitation of deleted mtDNA in the substantia nigra and additional brain regions of cases with neuropathologically confirmed Lewy-body parkinsonism. In addition, genotyping was carried out for CYP2D6G1,934A and CYP2D6C2,938T alleles and the mitochondrial ND2 (nucleotide 5,460) and transfer RNA for glutamine (nucleotide 4,336) sequence variants. Parkinsonian brains showed 1-3% deleted mtDNA in the substantia nigra, that is, deletion levels were not higher than in age-matched controls. Our findings suggest that the defect in complex I of the respiratory chain observed in PD is not primarily due to the 'common deletion.'
Collapse
Affiliation(s)
- S Kösel
- Molecular Neuropathology Laboratory, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
4
|
Siciliano G, Rossi B, Manca L, Angelini C, Tessa A, Vergani L, Martinuzzi A, Muratorio A. Residual muscle cytochrome c oxidase activity accounts for submaximal exercise lactate threshold in chronic progressive external ophthalmoplegia. Muscle Nerve 1996; 19:342-9. [PMID: 8606699 DOI: 10.1002/(sici)1097-4598(199603)19:3<342::aid-mus10>3.0.co;2-u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The data from histological, biochemical, and mitochondrial DNA (mtDNA ) studies of muscle biopsies from 10 patients affected with chronic progressive external ophthalmoplegia (CPEO) were related to dynamic and metabolic parameters of incremental submaximal exercise. Maximum power output was reduced in all patients as compared to controls. Analysis of the venous lactate curve during exercise revealed a lactate threshold at exercise levels ranging from 40 to 50% of the predicted maximal power output. An earlier significant increase in lactate could be detected by calculating the mean delta lactate. Lactate values were inversely correlated with the cytochrome c oxidase (COX) activity of isolated muscle mitochondria. No relationship was found between lactate values and the number of ragged red fibers, or cytochrome c oxidase-negative fibers of the proportion of deleted mtDNA measured in muscle biopsy specimens. The discussion underscores the value of lactate kinetics in assessing skeletal muscle function, as well as the use of muscle COX levels to predict the effectiveness of wild-type complementation of deleted skeletal muscle mtDNA in in vivo contractile performance of CPEO subjects.
Collapse
|