1
|
Turnaturi R, Montenegro L, Marrazzo A, Parenti R, Pasquinucci L, Parenti C. Benzomorphan skeleton, a versatile scaffold for different targets: A comprehensive review. Eur J Med Chem 2018; 155:492-502. [PMID: 29908442 DOI: 10.1016/j.ejmech.2018.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Despite the fact that the benzomorphan skeleton has mainly been employed in medicinal chemistry for the development of opioid analgesics, it is a versatile structure. Its stereochemistry, as well as opportune modifications at the phenolic hydroxyl group and at the basic nitrogen, play a pivotal role addressing the benzomorphan-based compounds to a specific target. In this review, we describe the structure activity-relationships (SARs) of benzomorphan-based compounds acting at sigma 1 receptor (σ1R), sigma 2 receptor (σ2R), voltage-dependent sodium channel, N-Methyl-d-Aspartate (NMDA) receptor-channel complex and other targets. Collectively, the SARs data have highlighted that the benzomorphan nucleus could be regarded as a useful template for the synthesis of drug candidates for different targets.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy.
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A. Doria, 6, 95100, Catania, Italy
| |
Collapse
|
2
|
Benzomorphan scaffold for opioid analgesics and pharmacological tools development: A comprehensive review. Eur J Med Chem 2018; 148:410-422. [PMID: 29477074 DOI: 10.1016/j.ejmech.2018.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
Abstract
Benzomorphan, derived by morphine skeleton simplification, has been the subject of exploration in medicinal chemistry for the development of new drugs and pharmacological tools to explore opioid pharmacology in vitro and in vivo. Building upon these evidences, the design and synthesis of benzomorphan-based compounds, appropriately modified at the basic nitrogen and/or the phenolic hydroxyl (8-OH) group, represent a valid and versatile strategy to obtain analgesics. In this review, to improve the body of information in this field, we report structure activity-relationships (SARs) of benzomorphan-based compounds analysing data literature of last 25 years. Collectively, SARs data highlighted that the benzomorphan nucleus represents a template in the achievement of a specific functional profile, by modifying N-substituent or 8-OH group.
Collapse
|
3
|
Pasquinucci L, Parenti C, Turnaturi R, Aricò G, Marrazzo A, Prezzavento O, Ronsisvalle S, Georgoussi Z, Fourla DD, Scoto GM, Ronsisvalle G. The benzomorphan-based LP1 ligand is a suitable MOR/DOR agonist for chronic pain treatment. Life Sci 2011; 90:66-70. [PMID: 22100511 DOI: 10.1016/j.lfs.2011.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/05/2011] [Accepted: 10/08/2011] [Indexed: 10/15/2022]
Abstract
AIMS Powerful analgesics relieve pain primarily through activating mu opioid receptor (MOR), but the long-term use of MOR agonists, such as morphine, is limited by the rapid development of tolerance. Recently, it has been observed that simultaneous stimulation of the delta opioid receptor (DOR) and MOR limits the incidence of tolerance induced by MOR agonists. 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1) is a centrally acting agent with antinociceptive activity comparable to morphine and is able to bind and activate MOR and DOR. The aim of this work was to evaluate and compare the induction of tolerance to antinociceptive effects from treatment with LP1 and morphine. MAIN METHODS Here, we evaluated the pharmacological effects of LP1 administered at a dose of 4 mg/kg subcutaneously (s.c.) twice per day for 9 days to male Sprague-Dawley rats. In addition, the LP1 mechanism of action was assessed by measurement of LP1-induced [(35)S]GTPγS binding to the MOR and DOR. KEY FINDINGS Data obtained from the radiant heat tail flick test showed that LP1 maintained its antinociceptive profile until the ninth day, while tolerance to morphine (10mg/kg s.c. twice per day) was observed on day 3. Moreover, LP1 significantly enhanced [(35)S]GTPγS binding in the membranes of HEK293 cells expressing either the MOR or the DOR. SIGNIFICANCE LP1 is a novel analgesic agent for chronic pain treatment, and its low tolerance-inducing capability may be correlated with its ability to bind both the MOR and DOR.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Singh N, Nolan TL, McCurdy CR. Chemical function-based pharmacophore development for novel, selective kappa opioid receptor agonists. J Mol Graph Model 2008; 27:131-9. [PMID: 18456526 DOI: 10.1016/j.jmgm.2008.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/25/2022]
Abstract
In an effort to reduce or eliminate the centrally associated side effects produced by opioid analgesics there has been an interest in the preparation of peripherally acting opioid receptor agonists. These compounds would have very limited or no access to the central nervous system. As a first step towards developing peripheral kappa opioid receptor (KOP) agonists, we have developed a quantitatively predictive chemical function-based pharmacophore model of selective kappa opioid receptor agonists by using the HypoGen algorithm implemented in the Catalyst software. The input for HypoGen was a training set of 26 KOP agonists exhibiting K(i) values ranging between 0.015nM and 2300nM. The best output hypothesis consists of four features: one hydrophobic (HYD), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one positive ionizable (PI) function. The predictive power of the model could be demonstrated by internal and external validation of the generated hypothesis. The resulting Catalyst pharmacophore can be used concurrently for rapid virtual screening of chemical databases to identify novel, selective KOP agonists that may be easily restricted to target tissues by synthetic modification. It is anticipated that such an approach will lead to the generation of novel selective KOP agonists that are clinically useful for the treatment of pain through peripheral mechanisms.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Medicinal Chemistry, Laboratory for Applied Drug Design and Synthesis, The University of Mississippi, Mississippi 38677, USA
| | | | | |
Collapse
|
5
|
Abstract
Opioid analgesics provide outstanding benefits for relief of severe pain. The mechanisms of the analgesia accompanied with some side effects have been investigated by many scientists to shed light on the complex biological processes at the molecular level. New opioid drugs and therapies with more desirable properties can be developed on the bases of accurate insight of the opioid ligand-receptor interaction and clear knowledge of the pharmacological behavior of opioid receptors and the associated proteins. Toward this goal, recent advances in selective opioid receptor agonists and antagonists including opioid ligand-receptor interactions are summarized in this review article.
Collapse
Affiliation(s)
- Masakatsu Eguchi
- Pacific Northwest Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| |
Collapse
|
6
|
Ronsisvalle G, Marrazzo A, Pasquinucci L, Prezzavento O, Pappalardo M, Vittorio F. Specific κ opioid receptor agonists. ACTA ACUST UNITED AC 2001; 56:121-5. [PMID: 11347952 DOI: 10.1016/s0014-827x(01)01022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of studies on the design of a heterocyclic scaffold for the dynorphin A pharmacophore and on structure-affinity relationships in the MPCB/CCB series are described. The representative ligands provide insights to binding modes of benzomorphan derivatives to the kappa opioid receptor.
Collapse
Affiliation(s)
- G Ronsisvalle
- Department of Pharmaceutical Sciences, University of Catania, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Marrazzo A, Prezzavento O, Pasquinucci L, Vittorio F, Ronsisvalle G. Synthesis and pharmacological evaluation of potent and enantioselective sigma 1, and sigma 2 ligands. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2001; 56:181-9. [PMID: 11409325 DOI: 10.1016/s0014-827x(01)01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In a previous study we found that substitutions of the (+)-cis-N-normetazocine nucleus of (+)-MPCB with 1-adamantanamine provide the compound (+/-)-10 with high affinity and selectivity for sigma receptors. Starting with this result we have synthesized a new series of eight 1-phenyl-2-cyclopropylmethylamines structurally related to (+/-)-10, and binding affinities, with respect to sigma 1, sigma 2, opioid and dopaminergic D2 receptors, have been reported. All compounds showed a negligible opioid and dopaminergic affinity and high selectivity for sigma receptors. Modifications on the amino moiety and methylcarboxyester group of 10 provide compounds with different sigma 1 and sigma 2 binding affinity and selectivity. Moreover, we have also synthesized the respective enantiomers of componds (+/-)-10 and (+/-)-18 in order to evaluate the enantioselectivity for sigma 1 and sigma 2 receptors. The binding data showed that carboxymethylester on the cyclopropane ring was more critical for enantioselectivity than the hydroxymethylenic group. In fact, the (-)-10 enantiomer showed a preference for sigma 1 whereas (+)-10 showed a preference for sigma 2.
Collapse
Affiliation(s)
- A Marrazzo
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
8
|
Ronsisvalle G, Pasquinucci L, Pittalà V, Marrazzo A, Prezzavento O, Di Toro R, Falcucci B, Spampinato S. Nonpeptide analogues of dynorphin A(1-8): design, synthesis, and pharmacological evaluation of kappa-selective agonists. J Med Chem 2000; 43:2992-3004. [PMID: 10956208 DOI: 10.1021/jm990356p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel series of kappa opioid receptor agonist analogues of MPCB-GRRI and MPCB-RRI, hybrid ligands of MPCB ((-)-cis-N-(2-phenyl-2-carbomethoxy)cyclopropylmethyl-N-normetazocine ) and of the C-terminal fragments of dynorphin A(1-8), have been synthesized. The critical functional groups of the peptide fragments of hybrid compounds were maintained, and the binding affinities and selectivities for compounds 1-40 to mu, delta, and kappa opioid receptors were analyzed. Compounds 15 and 16, MPCB-Gly-Leu-NH-(CH(2))(n)()-NH-C(=NH)-C(4)H(9) (n = 5, 6), displayed high affinity and selectivity for kappa opioid receptors (K(i)(kappa) = 6.7 and 5.3 nM, K(i)(mu)/K(i)(kappa) = 375 and 408, and K(i)(delta)/K(i)(kappa) = 408 and 424, respectively). Since kappa agonists may also cause psychotomimetic effects by interaction with sigma sites, binding assays to sigma(1) sites were performed where compounds 15 and 16 showed negligible affinity (K(i) > 10 000). Compounds 15 and 16 were further characterized in vivo and showed potent antinociceptive activity in mouse abdominal constriction tests (ED(50) = 0.88 and 1.1 mg/kg, respectively), fully prevented by nor-BNI. Thus, these novel analogues open an exciting avenue for the design of peptidomimetics of dynorphin A(1-8).
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Azocines/chemical synthesis
- Azocines/chemistry
- Azocines/metabolism
- Azocines/pharmacology
- Behavior, Animal/drug effects
- Cyclopropanes/chemical synthesis
- Cyclopropanes/chemistry
- Cyclopropanes/metabolism
- Cyclopropanes/pharmacology
- Dynorphins/chemical synthesis
- Dynorphins/chemistry
- Dynorphins/metabolism
- Dynorphins/pharmacology
- Male
- Mice
- Models, Molecular
- Molecular Mimicry
- Pain Measurement
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- G Ronsisvalle
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria, 6 - Città Universitaria, 95125 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ronsisvalle G, Marrazzo A, Prezzavento O, Pasquinucci L, Falcucci B, Di Toro RD, Spampinato S. Substituted 1-phenyl-2-cyclopropylmethylamines with high affinity and selectivity for sigma sites. Bioorg Med Chem 2000; 8:1503-13. [PMID: 10896126 DOI: 10.1016/s0968-0896(00)00072-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A series of 1-phenyl-2-cyclopropylmethylamines structurally related to (+)- and (-)-MPCB were synthesized and their binding affinities for sigma1, sigma2, opioid and dopamine (D2) receptors were evaluated. Substitution of the cis-N-normetazocine with different aminic moieties provided compounds with high affinity and selectivity for sigma binding sites with respect to opioid and dopamine (D2) receptors. The observed increase in sigma2 affinity as compared to the parent (+)-MPCB, supports the idea that the particular stereochemistry of (+)-cis-N-normetazocine affects sigma1 selectivity but does not affect sigma1 affinity. The (+/-)-cis isomers of methyl 2-[(1-adamantylamino)methyl]-1-phenylcyclopropane-1-carboxyl ate (18) displayed a higher affinity and selectivity for the sigma1 and sigma2 receptor subtypes compared to the (+/-)-trans 19. Interestingly, the enantiomer (-)-cis 18 displayed a preference for sigma1 receptor subtype whereas the (+)-cis 18 did for sigma2. These results prompt us to synthesize compounds with modification of nitrogen and carboxyl groups. The compounds obtained showed high affinities and selectivity for sigma sites. Moreover, modifications of carboxyl groups provided compounds with the highest affinities in the series. In particular, compound 25 with reverse-type ester showed a Ki of 0.6 and 4.05 nM for sigma1 and sigma2 binding sites, respectively.
Collapse
Affiliation(s)
- G Ronsisvalle
- Department of Pharmaceutical Sciences, University of Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ferrara G, Santagati NA, Aturki Z, Fanali S. Optical isomer separation of potential analgesic drug candidates by using capillary electrophoresis. Electrophoresis 1999; 20:2432-7. [PMID: 10499336 DOI: 10.1002/(sici)1522-2683(19990801)20:12<2432::aid-elps2432>3.0.co;2-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic potential analgesic drug diastereoisomer candidates 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[(2'-methoxycarbonyl-2'-phenylc yclopropyl)methyl]-2,6-methano-3-benzazocin-8-ol (MPCB) and 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[[2'-methoxycarbonyl-2'(4-chloroph enyl)cyclopropyl]methyl]-2,6-methano-3-benzazocin-8-ol (CCB) was achieved. Among the cyclodextrins tested (hydroxypropyl-, carboxymethyl- and sulfobutyl-beta-cyclodextrin (HP-beta-CD, CM-beta-CD and SBE-beta-CD)) SBE-beta-CD was found to be the most effective complexing agent, allowing good optical isomer separation. Resolution was also influenced by the CD concentration, pH of the buffer and presence of organic modifier in the background electrolyte. The optimum experimental conditions for the separation of studied analgesic drugs were found using 25 mM borate buffer at pH 9 containing 40 mM of SBE-beta-CD and 20% v/v of methanol. Using the above-mentioned background electrolyte, it was also possible to separate, in the same run, the enantiomers of normetazocine (NMZ) as well as the optical isomers of (+/-)-cis-2-chloromethyl-1-phenyl cyclopropancarboxylic acid methyl ester (PCE) or (+/-)-cis-2-chloromethyl-1-(4-chlorophenyl)cyclopropancarboxylic acid methyl ester (CPCE) reagents used in the synthesis of the studied analgesic drugs).
Collapse
Affiliation(s)
- G Ferrara
- Istituto di Cromatografia del CNR, Area della Ricerca Di Roma, Monterotondo Scalo, Roma, Italy
| | | | | | | |
Collapse
|
11
|
Quaglia W, Giannella M, Piergentili A, Pigini M, Brasili L, Di Toro R, Rossetti L, Spampinato S, Melchiorre C. 1'-Benzyl-3,4-dihydrospiro[2H-1- benzothiopyran-2,4'-piperidine] (spipethiane), a potent and highly selective sigma1 ligand. J Med Chem 1998; 41:1557-60. [PMID: 9572880 DOI: 10.1021/jm970740r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- W Quaglia
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino (MC), Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ronsisvalle G, Marrazzo A, Prezzavento O, Pasquinucci L, Vittorio F, Pittalà V, Pappalardo MS, Cacciaguerra S, Spampinato S. (+)-cis-N-ethyleneamino-N-normetazocine derivatives. Novel and selective sigma ligands with antagonist properties. J Med Chem 1998; 41:1574-80. [PMID: 9572883 DOI: 10.1021/jm970333f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of (+)-cis-N-normetazocine derivatives has been described, and their affinities for sigma1, sigma2, and phencyclidine (PCP) sites and opioid, muscarinic (M2), dopamine (D2), and serotonin (5-HT2) receptors were evaluated. The effect of the N-substitution with a substituted ethylamino spacer was investigated. Compounds 8c-11c displayed high affinities for sigma1 sites and for opioid receptors. Substitution of the second basic nitrogen either with alkyl or cycloalkyl substituents give compounds (1a-6a) with high affinity and selectivity for sigma1 binding sites. Compounds 1a-5a were further characterized in vivo, and their agonist/antagonist activity was evaluated. In mouse, compound 1a and 2a as well as haloperidol suppressed in a dose-related manner the stereotyped behavior induced by (+)-SKF 10,047. Compounds 3a-5a and (+)-pentazocine do not affect the stereotyped behavior induced by ip injection of (+)-SKF 10,047. Therefore, from this series of compounds we identified potent and selective sigma1 ligands which might prove useful to unveil the functional role of sigma1 sites.
Collapse
Affiliation(s)
- G Ronsisvalle
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carboni L, Campana G, Cacciaguerra S, Murari G, Speroni E, Pappalardo MS, Ronsisvalle G, Spampinato S. Agonist binding properties for recombinant kappa opioid receptors expressed in CHO-K1 cells. Ann N Y Acad Sci 1997; 812:203-4. [PMID: 9186743 DOI: 10.1111/j.1749-6632.1997.tb48174.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Carboni
- Department of Pharmacology, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|