1
|
Ng L, Liu H, Liu Y, Forrest D. Biphasic expression of thyroid hormone receptor TRβ1 in mammalian retina and anterior ocular tissues. Front Endocrinol (Lausanne) 2023; 14:1174600. [PMID: 37033230 PMCID: PMC10076699 DOI: 10.3389/fendo.2023.1174600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The retina is increasingly recognized as a target of thyroid hormone. We previously reported critical functions for thyroid hormone receptor TRβ2, encoded by Thrb, in cones, the photoreceptors that mediate color vision. TRβ1, another Thrb receptor isoform, is widely expressed in other tissues but little studied in the retina. Here, we investigate these N-terminal isoforms by RNA-sequencing analysis and reveal a striking biphasic profile for TRβ1 in mouse and human retina. In contrast to the early TRβ2 peak, TRβ1 peaks later during retinal maturation or later differentiation of human retinal organoids. This switch in receptor expression profiles was confirmed using lacZ reporter mice. TRβ1 localized in cones, amacrine cells and ganglion cells in contrast to the restricted expression of TRβ2 in cones. Intriguingly, TRβ1 was also detected in the retinal pigmented epithelium and in anterior structures in the ciliary margin zone, ciliary body and iris, suggesting novel functions in non-retinal eye tissues. Although TRβ1 was detected in cones, TRβ1-knockout mice displayed only minor changes in opsin photopigment expression and normal electroretinogram responses. Our results suggest that strikingly different temporal and cell-specific controls over TRβ1 and TRβ2 expression may underlie thyroid hormone actions in a range of ocular cell types. The TRβ1 expression pattern suggests novel functions in retinal and non-neural ocular tissues.
Collapse
Affiliation(s)
- Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, MD, United States
| | - Hong Liu
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, MD, United States
| | - Ye Liu
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, MD, United States
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Edwards G, Olson CG, Euritt CP, Koulen P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front Neurosci 2022; 16:890021. [PMID: 35600628 PMCID: PMC9114494 DOI: 10.3389/fnins.2022.890021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
The eye is particularly susceptible to oxidative stress and disruption of the delicate balance between oxygen-derived free radicals and antioxidants leading to many degenerative diseases. Attention has been called to all isoforms of vitamin E, with α-tocopherol being the most common form. Though similar in structure, each is diverse in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology and survival through several signaling pathways by activating kinases and transcription factors relevant for uptake, transport, metabolism, and cellular action to promote neuroprotective effects. In the clinical setting, population-based studies on vitamin E supplementation have been inconsistent at times and follow-up studies are needed. Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this review is to recognize the importance of vitamin E’s role in guarding against gradual central vision loss observed in age-related macular degeneration (AMD). The therapeutic role and molecular mechanisms of vitamin E’s function in the retina, clinical implications, and possible toxicity are collectively described in the present review.
Collapse
|
3
|
Henning Y, Szafranski K. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina. Front Cell Neurosci 2016; 10:205. [PMID: 27616981 PMCID: PMC4999454 DOI: 10.3389/fncel.2016.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022] Open
Abstract
The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in adult retinae, our findings suggest a pivotal role of MCT8 especially during postnatal maturation. The present study provides novel insights into age-dependent retinal TH supply, which might help to understand different aspects regarding retinal development, function, and disorders.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen Essen, Germany
| | - Karol Szafranski
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute Jena, Germany
| |
Collapse
|
4
|
Chaker L, Buitendijk GHS, Dehghan A, Medici M, Hofman A, Vingerling JR, Franco OH, Klaver CCW, Peeters RP. Thyroid function and age-related macular degeneration: a prospective population-based cohort study--the Rotterdam Study. BMC Med 2015; 13:94. [PMID: 25903050 PMCID: PMC4407352 DOI: 10.1186/s12916-015-0329-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In animal models, lack of thyroid hormone is associated with cone photoreceptor preservation, while administration of high doses of active thyroid hormone leads to deterioration. The association between thyroid function and age-related macular degeneration (AMD) has not been investigated in the general population. METHODS Participants of age ≥ 55 years from the Rotterdam Study with thyroid-stimulating hormone (TSH) and/or free thyroxine (FT4) measurements and AMD assessment were included. We conducted age- and sex-adjusted Cox proportional hazards models to explore the association of TSH or FT4 with AMD, in the full range and in those with TSH (0.4-4.0 mIU/L) and/or FT4 in normal range (11-25 pmol/L). Cox proportional hazards models were performed for the association of TSH or FT4 with retinal pigment alterations (RPA), as an early marker of retinal changes. Multivariable models additionally included cardiovascular risk factors and thyroid peroxidase antibodies positivity. We also performed stratification by age and sex. A bidirectional look-up in genome-wide association study (GWAS) data for thyroid parameters and AMD was performed. Single nucleotide polymorphisms (SNPs) that are significantly associated with both phenotypes were identified. RESULTS We included 5,573 participants with a median follow-up of 6.9 years (interquartile range 4.4-10.8 years). During follow-up 805 people developed AMD. TSH levels were not associated with increased risk of AMD. Within normal range of FT4, participants in the highest FT4 quintile had a 1.34-fold increased risk of developing AMD, compared to individuals in the middle group (95% confidence interval [CI] 1.07-1.66). Higher FT4 values in the full range were associated with a higher risk of AMD (hazard ratio 1.04, CI, 1.01-1.06 per 1 pmol/L increase). Higher FT4 levels were similarly associated with a higher risk of RPA. Restricting analyses to euthyroid individuals, additional multivariable models, and stratification did not change estimates. We found a SNP (rs943080) in the VEGF-A gene, associated with AMD, to be significant in the TSH GWAS (P = 1.2 x 10(-4)). Adding this SNP to multivariable models did not change estimates. CONCLUSIONS Higher FT4 values are associated with increased risk of AMD - even in euthyroid individuals - and increased risk of RPA. Our data suggest an important role of thyroid hormone in pathways leading to AMD.
Collapse
Affiliation(s)
- Layal Chaker
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marco Medici
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Johannes R Vingerling
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Robin P Peeters
- Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Internal Medicine, Rotterdam Thyroid Center, Erasmus University Medical Center, Endocrinology, Erasmus University Medical Center Rotterdam, Room Ee502, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Durieux P, Rigaudière F, LeGargasson JF, Rosolen SG. ERG findings in three hypothyroid adult dogs with and without levothyroxine treatment. Vet Ophthalmol 2009; 11:406-11. [PMID: 19046283 DOI: 10.1111/j.1463-5224.2008.00656.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the effects of levothyroxine (LTh) on the electroretinogram (ERG) of adult dogs. MATERIAL AND METHODS Binocular, full field photopic and scotopic ERGs were recorded from an anesthetized Maltese Bichon cross (MB), a Yorkshire Terrier (YT) and a Shetland Sheepdog (SS) affected with hypothyroidism and treated with a daily dose of LTh at 20 microg/kg. The photopic ERGs were evoked to 12 different intensities ranging from 0.81 to -2.19 log cd.s/m(2) and presented under photopic conditions in order to assess (from the derived luminance-response curves) Vmax and b : a amplitude ratio parameters. Photopic flicker ERGs were obtained at 30 Hz. The scotopic ERGs (intensity: -3.09 log cd.s/m(2)) were recorded while the retina was dark-adapting and after 32 min of dark adaptation. This procedure was performed on two separate sessions: following a 3-day interruption of LTh treatment (S1) and following 30 days without interruption of LTh treatment (S2). RESULTS The mean photopic a-wave peak times were 9.8 ms at S1 and 5.0 ms at S2, respectively. The mean photopic b-wave peak times were 23.3 ms at S1 and 11.5 ms at S2, respectively, and the mean scotopic b-wave peak times (after 32 min of dark adaptation) were 45.2 ms at S1 and 26.0 ms at S2, respectively. No other significant ERG changes were observed. CONCLUSION Our results indicate that a dose of 20 microg/kg of LTh given to adult dogs was accompanied by a marked peak time shortening of both photopic and scotopic ERGs, without affecting other ERG parameters.
Collapse
|
6
|
Pinazo-Durán MD, Iborra FJ, Pons S, Sevilla-Romero E, Gallego-Pinazo R, Muñoz A. Postnatal thyroid hormone supplementation rescues developmental abnormalities induced by congenital-neonatal hypothyroidism in the rat retina. Ophthalmic Res 2005; 37:225-34. [PMID: 16006782 DOI: 10.1159/000086863] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 11/26/2004] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) play a key role in central nervous system development. We have studied the influence of congenital and neonatal hypothyroidism on retinal development and the effects of postnatal TH supplementation. An experimental model was set up using Wistar rats by inducing chemical thyroidectomy during gestation and suckling. Eyes from control (CG) and TH-depleted (THDG) groups of animals were obtained at postnatal days 10 and 25. In the THDG, there was a significant reduction in the retinal thickness and layering, retinal volume, cell number and nuclear volumes in all layers. A third group of rats, made hypothyroid during the gestational and neonatal period and then supplemented with TH (THSG), showed a recovery of both the retinal thickness [at P25: 188.5 +/- 9.2 microm (THSG) vs. 175.8 +/- 16.1 microm (THDG), p < 0.001, and 210.8 +/- 8.9 (CG)] and total retinal cell number [at P25: 6.9 x 10(6) (THSG) vs. 3.7 x 10(6) (THDG) cells, p < 0.001, and 5.3 x 10(6) cells (CG)]. Light and electron microscopy studies confirmed that TH deprivation altered the organization of the retina, which was mostly normalized by hormone administration. Our data show that TH regulates intrinsic mechanisms for controlling retinal cytoarchitecture and layering, and that alterations in retinal maturation induced by congenital-neonatal TH deficiency can be at least partially rescued by early hormonal treatment in vivo.
Collapse
Affiliation(s)
- Maria Dolores Pinazo-Durán
- Unidad Investigación Oftalmológica Santiago Grisolía, Hospital Universitario Doctor Peset, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Jones I, Srinivas M, Ng L, Forrest D. The thyroid hormone receptor beta gene: structure and functions in the brain and sensory systems. Thyroid 2003; 13:1057-68. [PMID: 14651789 DOI: 10.1089/105072503770867228] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyroid hormone profoundly influences the development of the vertebrate nervous system. The thyroid hormone receptor beta gene (Thrb) is a key mediator of many of these actions. The Thrb gene is complex, spanning up to 400 kb in mammals, and differentially expresses distinct receptor subtypes through independent tissue-specific promoters and alternative splicing. These receptors serve a range of functions in the brain as well as particularly sensitive functions in the auditory and visual sensory systems. The Thrb gene illustrates how versatility in neurodevelopmental control can be achieved at the receptor level.
Collapse
Affiliation(s)
- Iwan Jones
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
8
|
Orozco A, Linser P, Valverde C. Kinetic characterization of outer-ring deiodinase activity (ORD) in the liver, gill and retina of the killifish Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:283-90. [PMID: 11007170 DOI: 10.1016/s0305-0491(00)00186-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conversion of T4 to T3 is the first step in TH action and deiodinases are the major determinants of TH tissue availability and disposal. We here report the kinetic characterization of the outer-ring deiodinating (ORD) enzymes in the liver, gill and retina of sea water-adapted killifish, by using both rT3 and T4 as substrates. In liver, by using rT3, we detected a high Km (84 nM) and a low Km (1.3 nM) component with kinetic characteristics similar to mammalian deiodinases DI and DII. In contrast, T4-ORD only generated a low Km (0.5 nM) component. As judged by its Vmax (920 fmol 125I/mg per h) this DII enzyme is very abundant, approximately five and 20 times higher than that found in trout liver and hypothyroid rat, respectively. Kinetic analysis in killifish gill showed only one enzymatic component, with a high rT3 Km (430 nM) and a relatively low Vmax (4.3 pmol 125I/mg per h). Our results in killifish retina show the expression of a T4-low Km (0.6 nM) deiodinase with high cofactor requirements akin to the mammalian DII. The Vmax value for this enzyme is 182 fmol 125I/mg per h, five times lower than the one found in killifish liver, but comparable to that in hypothyroid rat pituitary. The biochemical similarities between fish and mammalian deiodinases could reflect their high conservation during vertebrate evolution and thus their importance in the regulation of thyroid hormone action.
Collapse
Affiliation(s)
- A Orozco
- Centro de Neurobiologia, Queretaro, Qro, Mexico.
| | | | | |
Collapse
|