1
|
Massonneau J, Lacombe-Burgoyne C, Boissonneault G. pH-induced variations in the TK1 gene model. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503128. [PMID: 32087849 DOI: 10.1016/j.mrgentox.2019.503128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
A physiological decrease in extracellular pH (pHe) alters the efficiency of DNA repair and increases formation of DNA double-strand breaks (DSBs). Whether this could translate into genetic instability and variations, was investigated using the TK6 cell model, in which positive selection of the TK1 gene loss-of-function mutations can be achieved from resistance to trifluorothymidine. Cell exposure to suboptimal pH (down to 6.9) for 3 weeks resulted in the 100 % frequency of a stronger frameshift mutation that has spread to both TK1 alleles, whereas weaker frameshift mutations within the 3'exon were eliminated during the selection. Suboptimal pHe values were also found to alter the proportion of the TK1 splicing variant expressed as percent spliced in index values and promote selection of truncated exons as well as intron retention. Although recovery at pH 7.4 did not reverse the selected frameshift mutation, reversal of splice variants and exon truncation towards control values were observed. Hence, suboptimal pHe can induce a combination of mutational events and splicing alterations within the same gene in the resistant clones. This model of positive selection for loss-of-function clearly demonstrates that suboptimal pHe may confer a similar growth advantage when such instability occurs within tumor suppressor genes.
Collapse
Affiliation(s)
- Julien Massonneau
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chloë Lacombe-Burgoyne
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Dept of Biochemistry and Functional Genomics, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Abstract
The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.
Collapse
Affiliation(s)
- Humaira Aziz Sawal
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad
| | - Kashif Asghar
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Matthias Bureik
- Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nasir Jalal
- Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Lorge E, Moore MM, Clements J, O'Donovan M, Fellows MD, Honma M, Kohara A, Galloway S, Armstrong MJ, Thybaud V, Gollapudi B, Aardema MJ, Tanir JY. Standardized cell sources and recommendations for good cell culture practices in genotoxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 809:1-15. [PMID: 27692294 DOI: 10.1016/j.mrgentox.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Good cell culture practice and characterization of the cell lines used are of critical importance in in vitro genotoxicity testing. The objective of this initiative was to make continuously available stocks of the characterized isolates of the most frequently used mammalian cell lines in genotoxicity testing anywhere in the world ('IVGT' cell lines). This project was organized under the auspices of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing. First, cell isolates were identified that are as close as possible to the isolate described in the initial publications reporting their use in genotoxicity testing. The depositors of these cell lines managed their characterization and their expansion for preparing continuously available stocks of these cells that are stored at the European Collection of Cell Cultures (ECACC, UK) and the Japanese Collection of Research Bioresources (JCRB, Japan). This publication describes how the four 'IVGT' cell lines, i.e. L5178Y TK+/- 3.7.2C, TK6, CHO-WBL and CHL/IU, were prepared for deposit at the ECACC and JCRB cell banks. Recommendations for handling these cell lines and monitoring their characteristics are also described. The growth characteristics of these cell lines (growth rates and cell cycles), their identity (karyotypes and genetic status) and ranges of background frequencies of select endpoints are also reported to help in the routine practice of genotoxicity testing using these cell lines.
Collapse
Affiliation(s)
- E Lorge
- Servier Group, 45520, Gidy, France
| | - M M Moore
- Ramboll Environ, Little Rock, AR, 72201, USA
| | - J Clements
- Covance Laboratories Ltd, Harrogate, HG3 1PY, UK
| | - M O'Donovan
- O'Donovan GT Consulting Ltd., Epperstone, Nottingham, NG14 6AG, UK
| | - M D Fellows
- AstraZeneca, Drug Safety and Metabolism, Cambridge, CB4 0WG, UK
| | - M Honma
- National Institute of Health Sciences, Tokyo, Japan
| | - A Kohara
- JCRB Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - S Galloway
- Merck Research Laboratories, W 45-316, West Point, PA 19486, USA
| | - M J Armstrong
- Merck Research Laboratories, W 45-316, West Point, PA 19486, USA
| | - V Thybaud
- Sanofi, 94400, Vitry sur Seine, France
| | - B Gollapudi
- Exponent, Inc., 1910 St. Andrews St., Midland, MI 48640, USA
| | - M J Aardema
- Marilyn Aardema Consulting LLC, Fairfield, OH 45014, USA
| | - J Y Tanir
- ILSI Health and Environmental Sciences Institute, Washington, DC 20005, USA.
| |
Collapse
|
4
|
Miles MA, Shekhar TM, Hall NE, Hawkins CJ. TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells. Mutat Res 2016; 787:15-31. [PMID: 26943263 DOI: 10.1016/j.mrfmmm.2016.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022]
Abstract
When chemotherapy and radiotherapy are effective, they function by inducing DNA damage in cancerous cells, which respond by undergoing apoptosis. Some adverse effects can result from collateral destruction of non-cancerous cells, via the same mechanism. Therapy-related cancers, a particularly serious adverse effect of anti-cancer treatments, develop due to oncogenic mutations created in non-cancerous cells by the DNA damaging therapies used to eliminate the original cancer. Physiologically achievable concentrations of direct apoptosis inducing anti-cancer drugs that target Bcl-2 and IAP proteins possess negligible mutagenic activity, however death receptor agonists like TRAIL/Apo2L can provoke mutations in surviving cells, probably via caspase-mediated activation of the nuclease CAD. In this study we compared the types of mutations sustained in the HPRT and TK1 loci of clonogenically competent cells following treatment with TRAIL or the alkylating agent ethyl methanesulfonate (EMS). As expected, the loss-of-function mutations in the HPRT or TK1 loci triggered by exposure to EMS were almost all transitions. In contrast, only a minority of the mutations identified in TRAIL-treated clones lacking HPRT or TK1 activity were substitutions. Almost three quarters of the TRAIL-induced mutations were partial or complete deletions of the HPRT or TK1 genes, consistent with sub-lethal TRAIL treatment provoking double strand breaks, which may be mis-repaired by non-homologous end joining (NHEJ). Mis-repair of double-strand breaks following exposure to chemotherapy drugs has been implicated in the pathogenesis of therapy-related cancers. These data suggest that TRAIL too may provoke oncogenic damage to the genomes of surviving cells.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Tanmay M Shekhar
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Nathan E Hall
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Melbourne, Victoria, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
5
|
Revollo J, Petibone DM, McKinzie P, Knox B, Morris SM, Ning B, Dobrovolsky VN. Whole genome and normalized mRNA sequencing reveal genetic status of TK6, WTK1, and NH32 human B-lymphoblastoid cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 795:60-9. [PMID: 26774668 DOI: 10.1016/j.mrgentox.2015.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/05/2023]
Abstract
Closely related TK6, WTK1, and NH32 human B-lymphoblastoid cell lines differ in their p53 functional status. These lines are used frequently in genotoxicity studies and in studies aimed at understanding the role of p53 in DNA repair. Despite their routine use, little is known about the genetic status of these cells. To provide insight into their genetic composition, we sequenced and analyzed the entire genome of TK6 cells, as well as the normalized transcriptomes of TK6, WTK1, and NH32 cells. Whole genome sequencing (WGS) identified 21,561 genes and 5.17×10(6) small variants. Within the small variants, 50.54% were naturally occurring single nucleotide polymorphisms (SNPs) and 49.46% were mutations. The mutations were comprised of 92.97% single base-pair substitutions and 7.03% insertions or deletions (indels). The number of predicted genes, SNPs, and small mutations are similar to frequencies observed in the human population in general. Normalized mRNA-seq analysis identified the expression of transcripts bearing SNPs or mutations for TK6, WTK1, and NH32 as 2.88%, 2.04%, and 1.71%, respectively, and several of the variant transcripts identified appear to have important implications in genetic toxicology. These include a single base deletion mutation in the ferritin heavy chain gene (FTH1) resulting in a frame shift and protein truncation in TK6 that impairs iron metabolism. SNPs in the thiopurine S-methyltransferase (TPMT) gene (TPMT*3A SNP), and in the xenobiotic metabolizing enzyme, NADPH quinine oxidoreductase 1 (NQO1) gene (NQO1*2 SNP), are both associated with decreased enzyme activity. The clinically relevant TPMT*3A and NQO1*2 SNPs can make these cell lines useful in pharmacogenetic studies aimed at improving or tailoring drug treatment regimens that minimize toxicity and enhance efficacy.
Collapse
Affiliation(s)
- Javier Revollo
- Division of Genetic and Molecular Toxicology, FDA/NCTR, Jefferson, AR 72079, United States
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, FDA/NCTR, Jefferson, AR 72079, United States.
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, FDA/NCTR, Jefferson, AR 72079, United States
| | - Bridgett Knox
- Division of Systems Biology, FDA/NCTR, Jefferson, AR 72079, United States
| | - Suzanne M Morris
- Division of Genetic and Molecular Toxicology, FDA/NCTR, Jefferson, AR 72079, United States
| | - Baitang Ning
- Division of Systems Biology, FDA/NCTR, Jefferson, AR 72079, United States
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, FDA/NCTR, Jefferson, AR 72079, United States
| |
Collapse
|
6
|
Sassa A, Kamoshita N, Kanemaru Y, Honma M, Yasui M. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome. PLoS One 2015; 10:e0142218. [PMID: 26559182 PMCID: PMC4641734 DOI: 10.1371/journal.pone.0142218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.
Collapse
Affiliation(s)
- Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- * E-mail: (MY); (AS)
| | - Nagisa Kamoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
- * E-mail: (MY); (AS)
| |
Collapse
|
7
|
Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair (Amst) 2014; 15:11-20. [DOI: 10.1016/j.dnarep.2014.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/25/2022]
|
8
|
Fotouhi A, Hagos WW, Ilic M, Wojcik A, Harms-Ringdahl M, de Gruijl F, Mullenders L, Jansen JG, Haghdoost S. Analysis of mutant frequencies and mutation spectra in hMTH1 knockdown TK6 cells exposed to UV radiation. Mutat Res 2013; 751-752:8-14. [PMID: 24144844 DOI: 10.1016/j.mrfmmm.2013.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/04/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Ultraviolet radiation is a highly mutagenic agent that damages the DNA by the formation of mutagenic photoproducts at dipyrimidine sites and by oxidative DNA damages via reactive oxygen species (ROS). ROS can also give rise to mutations via oxidation of dNTPs in the nucleotide pool, e.g. 8-oxo-dGTP and 2-OH-dATP and subsequent incorporation during DNA replication. Here we show that expression of human MutT homolog 1 (hMTH1) which sanitizes the nucleotide pool by dephosphorylating oxidized dNTPs, protects against mutagenesis induced by long wave UVA light and by UVB light but not by short wave UVC light. Mutational spectra analyses of UVA-induced mutations at the endogenous Thymidine kinase gene in human lymphoblastoid cells revealed that hMTH1 mainly protects cells from transitions at GC and AT base pairs.
Collapse
Affiliation(s)
- Asal Fotouhi
- Center for Radiation Protection Research, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yatagai F, Umebayashi Y, Honma M, Sugasawa K, Takayama Y, Hanaoka F. Mutagenic radioadaptation in a human lymphoblastoid cell line. Mutat Res 2007; 638:48-55. [PMID: 17919664 DOI: 10.1016/j.mrfmmm.2007.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 08/15/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
Abstract
We investigated the mutagenic radioadaptive response of human lymphoblastoid TK6 cells by pretreating them with a low dose (5 cGy) of X-rays followed by a high (2 Gy) dose 6h later. Pretreatment reduced the 2-Gy-induced mutation frequency (MF) of the thymidine kinase (TK) gene (18.3 x 10(-6)) to 62% of the original level (11.4 x 10(-6)). A loss of heterozygosity (LOH) detection analysis applied to the isolated TK(-) mutants revealed the mutational events as non-LOH (resulting mostly from a point mutation in the TK gene), hemizygous LOH (resulting from a chromosomal deletion), or homozygous LOH (resulting from homologous recombination (HR) between chromosomes). For non-LOH events, pretreatment decreased the frequency to 27% of the original level (from 7.1 x 10(-6) to 1.9 x 10(-6)). cDNAs prepared from the non-LOH mutants revealed that the decrease was due mainly to the repression of base substitutions. The frequency of hemizygous LOH events, however, was not significantly altered by pretreatment. Mapping analysis of chromosome 17 demonstrated that the distribution and the extent of hemizygous LOH events were also not significantly influenced by pretreatment. For homozygous LOH events, pretreatment reduced the frequency to 61% of the original level (from 5.1 x 10(-6) to 3.1 x 10(-6)), reflecting an enhancement in HR repair of DNA double-strand breaks. Our findings suggest that the radioadaptive response in TK6 cells follows mainly from mutations at the base-sequence level, not the chromosome level.
Collapse
Affiliation(s)
- Fumio Yatagai
- Advanced Development and Support Center, The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Neuwirth EAH, Honma M, Grosovsky AJ. Interchromosomal crossover in human cells is associated with long gene conversion tracts. Mol Cell Biol 2007; 27:5261-74. [PMID: 17515608 PMCID: PMC1952082 DOI: 10.1128/mcb.01852-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 11/02/2006] [Accepted: 04/23/2007] [Indexed: 11/20/2022] Open
Abstract
Crossovers have rarely been observed in specific association with interchromosomal gene conversion in mammalian cells. In this investigation two isogenic human B-lymphoblastoid cell lines, TI-112 and TSCER2, were used to select for I-SceI-induced gene conversions that restored function at the selectable thymidine kinase locus. Additionally, a haplotype linkage analysis methodology enabled the rigorous detection of all crossover-associated convertants, whether or not they exhibited loss of heterozygosity. This methodology also permitted characterization of conversion tract length and structure. In TI-112, gene conversion tracts were required to be complex in tract structure and at least 7.0 kb in order to be selectable. The results demonstrated that 85% (39/46) of TI-112 convertants extended more than 11.2 kb and 48% also exhibited a crossover, suggesting a mechanistic link between long tracts and crossover. In contrast, continuous tracts as short as 98 bp are selectable in TSCER2, although selectable gene conversion tracts could include a wide range of lengths. Indeed, only 16% (14/95) of TSCER2 convertants were crossover associated, further suggesting a link between long tracts and crossover. Overall, these results demonstrate that gene conversion tracts can be long in human cells and that crossovers are observable when long tracts are recoverable.
Collapse
Affiliation(s)
- Efrem A H Neuwirth
- University of California, Department of Cell Biology and Neuroscience and Environmental Toxicology Graduate Program, 2211 Biological Sciences Building, Riverside, CA 92521, USA
| | | | | |
Collapse
|
11
|
Umebayashi Y, Honma M, Suzuki M, Suzuki H, Shimazu T, Ishioka N, Iwaki M, Yatagai F. Mutation induction in cultured human cells after low-dose and low-dose-rate gamma-ray irradiation: detection by LOH analysis. JOURNAL OF RADIATION RESEARCH 2007; 48:7-11. [PMID: 17132913 DOI: 10.1269/jrr.06054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To study the genetic effects of low-doses and low-dose-rate ionizing radiation (IR), human lymphoblastoid TK6 cells were exposed to 30 mGy of gamma-rays at a dose-rate of 1.2 mGy/hr. The frequency of early mutations (EMs) in the thymidine kinase (TK) gene locus was determined to be 1.7 x 10(-6), or 1.9-fold higher than the level seen in unirradated controls. These mutations were analyzed with a loss of heterozygosity (LOH) detection system, a methodology which has been shown to be sensitive to the effects of radiation. Among the 15 EMs observed after IR exposure, 8 were small interstitial-deletion events restricted to the TK gene locus. However, this specific type of event was not found in unirradiated controls. Although these results were observed under the limited conditions, they strongly suggest that the LOH detection system can be used for estimating the genetic effects of a low-dose IR exposure delivered at a low-dose-rate.
Collapse
Affiliation(s)
- Yukihiro Umebayashi
- Advanced Development and Support Center, The Institute of Physical and Chemical Research, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Honma M. Generation of loss of heterozygosity and its dependency on p53 status in human lymphoblastoid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:162-176. [PMID: 15688360 DOI: 10.1002/em.20113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Loss of heterozygosity (LOH) is a critical event in the development of human cancers. LOH is thought to result from either a large deletion or recombination between homologous alleles during repair of DNA double-strand breaks (DSBs). These types of genetic alterations produce mutations in the TK gene mutation assay, which detects a wide mutational spectrum, ranging from point mutations to LOH-type mutations. TK6, a human lymphoblastoid cell line, is heterozygous for the thymidine kinase (TK) gene and has a wild-type p53 gene. The related cell lines, TK6-E6 and WTK-1, which are p53-deficient and p53-mutant (Ile237), respectively, are also heterozygous for the TK gene and LOH-type mutation can be detected in these cells. Therefore, comparative studies of TK mutation frequency and spectrum with these cell lines are useful for elucidating the role of p53 in generating LOH and maintaining genomic stability in human cells. We demonstrate here that LOH and its associated genomic instability strongly depend on the p53 status in these cells. TK6-E6 and WTK-1 are defective in the G1/S checkpoint and in apoptosis. Unrepaired DSBs that escape from the checkpoint can potentially initiate genomic instability after DNA replication, resulting in LOH and a variety of chromosome changes. Moreover, genomic instability is enhanced in WTK-1 cells. It is likely that the mutant p53 protein in WTK-1 cells increases LOH in a dominant-negative manner due to its abnormal recombination capacity. We discuss the mutator phenotype and genomic instability associated with p53 inactivation with the goal of elucidating the mechanisms of mutation and DNA repair in untargeted mutagenesis.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, Japan.
| |
Collapse
|
13
|
Akerman GS, Rosenzweig BA, Domon OE, Tsai CA, Bishop ME, McGarrity LJ, Macgregor JT, Sistare FD, Chen JJ, Morris SM. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:188-205. [PMID: 15657912 DOI: 10.1002/em.20091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Identifying genes that are differentially expressed in response to DNA damage may help elucidate markers for genetic damage and provide insight into the cellular responses to specific genotoxic agents. We utilized cDNA microarrays to develop gene expression profiles for ionizing radiation-exposed human lymphoblastoid TK6 cells. In order to relate changes in the expression profiles to biological responses, the effects of ionizing radiation on cell viability, cloning efficiency, and micronucleus formation were measured. TK6 cells were exposed to 0.5, 1, 5, 10, and 20 Gy ionizing radiation and cultured for 4 or 24 hr. A significant (P < 0.0001) decrease in cloning efficiency was observed at all doses at 4 and 24 hr after exposure. Flow cytometry revealed significant decreases in cell viability at 24 hr in cells exposed to 5 (P < 0.001), 10 (P < 0.0001), and 20 Gy (P < 0.0001). An increase in micronucleus frequency occurred at both 4 and 24 hr at 0.5 and 1 Gy; however, insufficient binucleated cells were present for analysis at the higher doses. Gene expression profiles were developed from mRNA isolated from cells exposed to 5, 10, and 20 Gy using a 350 gene human cDNA array platform. Overall, more genes were differentially expressed at 24-hr than at the 4-hr time point. The genes upregulated (> 1.5-fold) or downregulated (< 0.67-fold) at 4 hr were those primarily involved in the cessation of the cell cycle, cellular detoxification pathways, DNA repair, and apoptosis. At 24 hr, glutathione-associated genes were induced in addition to genes involved in apoptosis. Genes involved in cell cycle progression and mitosis were downregulated at 24 hr. Real-time quantitative PCR was used to confirm the microarray results and to evaluate expression levels of selected genes at the low doses (0.5 and 1.0 Gy). The expression profiles reflect the cellular and molecular responses to ionizing radiation related to the recognition of DNA damage, a halt in progression through the cell cycle, activation of DNA-repair pathways, and the promotion of apoptosis.
Collapse
Affiliation(s)
- Gregory S Akerman
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pongsaensook P, Ritter LE, Parks KK, Grosovsky AJ. Cis-acting transmission of genomic instability. Mutat Res 2004; 568:49-68. [PMID: 15530539 DOI: 10.1016/j.mrfmmm.2004.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 05/01/2023]
Abstract
Genomic instability is a highly pleiotropic phenotype, which may reflect a variety of underlying mechanisms. Destabilization has been shown in some cases to involve mutational alteration or inactivation of trans-acting cellular factors, for example, p53 or mismatch repair functions. However, aspects of instability are not well explained by mutational inactivation of trans-acting factors, and other epigenetic and cis-acting mechanisms have recently been proposed. The trans and cis models result in divergent predictions for the distribution of instability-associated genetic alterations within the genome, and for the inheritance of genomic instability among sibling sub-clones of unstable parents. These predictions have been tested in this study primarily by tracking the karyotypic distribution of chromosomal rearrangements in clones and sub-clones exhibiting radiation-induced genomic instability; inheritance of mutator phenotypes was also analyzed. The results indicate that genomic instability is unevenly transmitted to sibling sub-clones, that chromosomal rearrangements within unstable clones are non-randomly distributed throughout the karyotype, and that the majority of chromosomal rearrangements associated with instability affect trisomic chromosomal segments. Observations of instability in trisomic regions suggests that in addition to promoting further alterations in chromosomal number, aneuploidy can affect the recovery of structural rearrangements. In summary, these findings cannot be fully explained by invoking a homogeneously distributed factor acting in trans, but do provide support for previous suggestions that genomic instability may in part be driven by a cis-acting mechanism.
Collapse
Affiliation(s)
- Punnajit Pongsaensook
- Department of Cell Biology and Neuroscience and Environmental Toxicology Graduate Program, University of California, 5445 Boyce Hall, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
15
|
Akerman GS, Rosenzweig BA, Domon OE, McGarrity LJ, Blankenship LR, Tsai CA, Culp SJ, MacGregor JT, Sistare FD, Chen JJ, Morris SM. Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells. Mutat Res 2004; 549:43-64. [PMID: 15120962 DOI: 10.1016/j.mrfmmm.2003.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/21/2003] [Accepted: 11/25/2003] [Indexed: 12/23/2022]
Abstract
Microarray analysis is a powerful tool to identify the biological effects of drugs or chemicals on cellular gene expression. In this study, we compare the relationships between traditional measures of genetic toxicology and mutagen-induced alterations in gene expression profiles. TK6 cells were incubated with 0.01, 0.1, or 1.0 microM +/-anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) for 4 h and then cultured for an additional 20 h. Aliquots of the exposed cells were removed at 4 and 24 h in order to quantify DNA adduct levels by 32P post-labeling and measure cell viability by cloning efficiency and flow cytometry. Gene expression profiles were developed by extracting total RNA from the control and exposed cells at 4 and 24 h, labeling with Cy3 or Cy5 and hybridizing to a human 350 gene array. Mutant frequencies in the Thymidine Kinase and Hypoxanthine Phosphoribosyl Transferase genes were also determined. The 10alpha-(deoxyguanosin-N(2)-yl)-7alpha,8beta,9beta-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene (dG-N(2)-BPDE) adduct increased as a function of dose and was the only adduct identified. A dose-related decrease in cell viability was evident at 24 h, but not at 4 h. Cell death occurred by apoptosis. At 4 h, analysis of the gene expression profiles revealed that Glutathione Peroxidase and Gadd45 were consistently upregulated (greater than 1.5-fold and significantly (P < 0.001) greater than the control in two experiments) in response to 1.0 microM BPDE exposure. Fifteen genes were consistently down-regulated (less than 0.67-fold and significantly (P < 0.001) lower than the control in two experiments) at 4 h in cultures exposed to 1.0 microM BPDE. Genes with altered expression at 4 h included genes important in the progression of the cell-cycle and those that inhibit apoptosis. At 24 h post-exposure, 16 genes, involved in cell-cycle control, detoxification, and apoptosis were consistently upregulated; 10 genes were repressed in cultures exposed to the high dose of BPDE. Real-time quantitative PCR confirmed the differential expression of selected genes. These data suggest that changes in gene expression will help to identify effects of drugs and chemicals on molecular pathways in cells, and will provide useful information about the molecular responses associated with DNA damage. Of the endpoints evaluated, DNA adduct formation was the most sensitive indicator of DNA damage. DNA adduct formation was clearly evident at low doses, but the number of genes with significantly altered expression (P < 0.001) was minimal. Alterations in gene expression were more robust at doses associated with cellular toxicity and induction of mutations.
Collapse
Affiliation(s)
- G S Akerman
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yatagai F, Morimoto S, Kato T, Honma M. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:133-45. [PMID: 15157651 DOI: 10.1016/j.mrgentox.2004.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 02/19/2004] [Accepted: 02/19/2004] [Indexed: 11/27/2022]
Abstract
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.
Collapse
Affiliation(s)
- Fumio Yatagai
- Division of Radioisotope Technology, The Institute of Physical and Chemical Research, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
17
|
Honma M, Izumi M, Sakuraba M, Tadokoro S, Sakamoto H, Wang W, Yatagai F, Hayashi M. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:288-298. [PMID: 14673874 DOI: 10.1002/em.10201] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal double-strand breaks (DSBs) in mammalian cells are usually repaired through either of two pathways: end-joining (EJ) or homologous recombination (HR). To clarify the relative contribution of each pathway and the ensuing genetic changes, we developed a system to trace the fate of DSBs that occur in an endogenous single-copy human gene. Lymphoblastoid cell lines TSCE5 and TSCER2 are heterozygous (+/-) or compound heterozygous (-/-), respectively, for the thymidine kinase gene (TK), and we introduced an I-SceI endonuclease site into the gene. EJ for a DSB at the I-SceI site results in TK-deficient mutants in TSCE5 cells, while HR between the alleles produces TK-proficient revertants in TSCER2 cells. We found that almost all DSBs were repaired by EJ and that HR rarely contributes to the repair in this system. EJ contributed to the repair of DSBs 270 times more frequently than HR. Molecular analysis of the TK gene showed that EJ mainly causes small deletions limited to the TK gene. Seventy percent of the small deletion mutants analyzed showed 100- to 4,000-bp deletions with a 0- to 6-bp homology at the joint. Another 30%, however, were accompanied by complicated DNA rearrangements, presumably the result of sister-chromatid fusion. HR, on the other hand, always resulted in non-crossing-over gene conversion without any loss of genetic information. Thus, although HR is important to the maintenance of genomic stability in DNA containing DSBs, almost all chromosomal DSBs in human cells are repaired by EJ.
Collapse
Affiliation(s)
- Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Morimoto S, Honma M, Yatagai F. Sensitive detection of LOH events in a human cell line after C-ion beam exposure. JOURNAL OF RADIATION RESEARCH 2002; 43 Suppl:S163-S167. [PMID: 12793752 DOI: 10.1269/jrr.43.s163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A molecular analysis of the loss of heterozygosity (LOH) events in human cells after low-dose heavy-ion exposure could contribute to the sensitive detection of the genetic influences caused by high-LET radiation. We exposed human lymphoblastoid TK6-20C cells to 10 cGy of an accelerated C-ion (22 keV/microm) beam, and observed a 3.1-fold increase in the mutation frequency (MF) at the heterozygous thymidine kinase (TK) locus over the background level. This increase was due to the induction of TK mutants exhibiting hemizygous-type LOH. Surprisingly, the frequency of type-2 hemizygous LOHs (interstitial deletions) was about 23-fold, induced over the background level, and the LOH extent patterns of this type 2 induced after the irradiation were clearly different from that of the spontaneous background.. Since hemizygous-type LOH mutants are considered to be the result of the end-joining repair of DNA double-strand breaks (DSB), C-ions may more efficiently induce DSBs than X-rays in this low-dose region. In addition, an enhanced misrepair of C-ion-induced DSBs might also account for the induction of radiation-specific hemizygous-type LOH.
Collapse
Affiliation(s)
- Shigeko Morimoto
- Division of Radioisotope Technology, The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan
| | | | | |
Collapse
|
19
|
Abstract
The tumor suppressor protein, p53, is often referred to as the guardian of the genome. When p53 function is impaired, its ability to preserve genomic integrity is compromised. This may result in an increase in mutation on both a molecular and chromosomal level and contribute to the progression to a malignant phenotype. In order to study the effect of p53 function on the acquisition of mutation, in vitro and in vivo models have been developed in which both the frequency and mechanism of mutation can be analyzed. In human lymphoblastoid cells in which p53 function was impaired, both the spontaneous and induced mutant frequency increased at the autosomal thymidine kinase (TK) locus. The mutant frequency increased to a greater extent in cell lines in which p53 harbored a point mutation than in those lines in which a "null" mutation had been introduced by molecular targeting or by viral degradation indicating a possible "gain-of-function" associated with the mutant protein. Further, molecular analysis revealed that the loss of p53 function was associated with a greater tendency towards loss-of-heterozygosity (LOH) within the TK gene that was due to non-homologous recombination than that found in wild-type cells. Most data obtained from the in vivo models uses the LacI reporter gene that does not efficiently detect mutation that results in LOH. However, studies that have examined the effect of p53 status on mutation in the adenine phosphoribosyl transferase (APRT) gene in transgenic mice also suggest that loss of p53 function results in an increase in mutation resulting from non-homologous recombination. The results of these studies provide clear and convincing evidence that p53 plays a role in modulating the mutant frequency and the mechanism of mutation. In addition, the types of mutation that occur within the p53 gene are also of importance in determining the mutant frequency and the pathways leading to mutation.
Collapse
Affiliation(s)
- Suzanne M Morris
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
20
|
Stettler PM, Sengstag C. Liver carcinogen aflatoxin B1 as an inducer of mitotic recombination in a human cell line. Mol Carcinog 2001; 31:125-38. [PMID: 11479921 DOI: 10.1002/mc.1047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mycotoxin aflatoxin B1 (AFB1) is one of the most potent rodent and human liver carcinogens. Upon cytochrome P450-specific metabolism, it induces mutations as well as mitotic recombination events in in vitro systems. We have found that in the lower eukaryote yeast, the recombinagenic activity of AFB1 surpasses its mutagenic activity, and we speculated on possible consequences in terms of the mechanism of liver carcinogenesis. In this study we investigated whether the recombinagenic activity of AFB1 also would be identified in human cells. To address this question, we followed the fate of a heterozygous thymidine kinase (tk) allele in the human lymphoblastoid cell line TK6 upon exposure to AFB1. Individual mutants that had lost tk activity were subjected to loss of heterozygosity analysis of the tk locus and its flanking markers. Fluorescence in situ hybridization analysis on chromosome 17 also was performed. In parallel, a similar analysis was performed on TK6 cells exposed to the alkylating agent N-nitrosomethylurea, a well-known classic point mutagen. Our analysis showed a difference in the molecular mechanism leading to inactivation of the tk allele upon exposure to these two mutagens. In AFB1-exposed cells the fraction of recombination-derived mutants predominated, whereas in N-nitrosomethylurea-exposed cells the fraction of point mutants was higher. Thus, the recombinagenic activity of AFB1 previously identified in a lower eukaryote also was found in the human cell line TK6. Our data support the hypothesis that mitotic recombination represents a central mechanism of action in AFB1-induced liver carcinogenesis.
Collapse
Affiliation(s)
- P M Stettler
- Genetics Department, Institute of Toxicology, Swiss Federal Institute of Technology Zürich, Schwerzenbach, Switzerland
| | | |
Collapse
|
21
|
Quintana PJ, Neuwirth EA, Grosovsky AJ. Interchromosomal gene conversion at an endogenous human cell locus. Genetics 2001; 158:757-67. [PMID: 11404339 PMCID: PMC1461692 DOI: 10.1093/genetics/158.2.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To examine the relationship between gene conversion and reciprocal exchange at an endogenous chromosomal locus, we developed a reversion assay in a thymidine kinase deficient mutant, TX545, derived from the human lymphoblastoid cell line TK6. Selectable revertants of TX545 can be generated through interchromosomal gene conversion at the site of inactivating mutations on each tk allele or by reciprocal exchange that alters the linkage relationships of inactivating polymorphisms within the tk locus. Analysis of loss of heterozygosity (LOH) at intragenic polymorphisms and flanking microsatellite markers was used to initially evaluate allelotypes in TK(+) revertants for patterns associated with either gene conversion or crossing over. The linkage pattern in a subset of convertants was then unambiguously established, even in the event of prereplicative recombinational exchanges, by haplotype analysis of flanking microsatellite loci in tk(-/-) LOH mutants collected from the tk(+/-) parental convertant. Some (7/38; 18%) revertants were attributable to easily discriminated nonrecombinational mechanisms, including suppressor mutations within the tk coding sequence. However, all revertants classified as a recombinational event (28/38; 74%) were attributed to localized gene conversion, representing a highly significant preference (P < 0.0001) over gene conversion with associated reciprocal exchange, which was never observed.
Collapse
Affiliation(s)
- P J Quintana
- Division of Occupational and Environmental Health, Graduate School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
22
|
Domon OE, McGarrity LJ, Bishop M, Yoshioka M, Chen JJ, Morris SM. Evaluation of the genotoxicity of the phytoestrogen, coumestrol, in AHH-1 TK(+/-) human lymphoblastoid cells. Mutat Res 2001; 474:129-37. [PMID: 11239970 DOI: 10.1016/s0027-5107(00)00170-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Coumestrol, a phytoestrogen found in high levels in alfalfa and red clover, is of concern since endocrine disorders have been observed in farm animals exposed to high levels of phytoestrogens. Previous studies found that coumestrol was an effective inducer of DNA strand breaks, micronuclei, and mutations in the Hypoxanthine phosphoribosyl transferase (HPRT) gene of Chinese hamster ovary cells. In the experiments presented here, we extended the previous studies to examine the effect of coumestrol exposure on AHH-1 TK(+/-) human lymphoblastoid cells. Micronuclei were induced with the highest frequency occurring at day 2 after exposure. Flow cytometric analysis of annexin V-FITC-7-aminoactinomycin D stained cells indicated that the primary pathway of cell death was by apoptosis. Mutations were induced in the Thymidine Kinase (TK) gene and were due primarily to the induction of clones with the slow-growth phenotype. Subsequent molecular analysis revealed the loss of exon 4 in the coumestrol-induced clones, indicative of loss-of heterozygosity and consistent with a proposed inhibition of topoisomerase-II activity as a mechanism of action for coumestrol. Taken together, these results suggest that coumestrol exhibits both mutagenic and clastogenic properties in cultured human lymphoblastoid cells.
Collapse
Affiliation(s)
- O E Domon
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
23
|
Berenstein D, Christensen JF, Kristensen T, Hofbauer R, Munch-Petersen B. Valine, not methionine, is amino acid 106 in human cytosolic thymidine kinase (TK1). Impact on oligomerization, stability, and kinetic properties. J Biol Chem 2000; 275:32187-92. [PMID: 10924519 DOI: 10.1074/jbc.m005325200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic thymidine kinase (TK1) cDNA from human lymphocytes was cloned, expressed in Escherichia coli, purified, and characterized with respect to the ATP effect on thymidine affinity and oligomerization. Sequence analysis of this lymphocyte TK1 cDNA and 21 other cDNAs or genomic TK1 DNAs from healthy cells or leukemic or transformed cell lines revealed a valine at amino acid position 106. The TK1 sequence in NCBI GenBank(TM) has methionine at this position. The recombinant lymphocyte TK1(Val-106) (rLy-TK1(Val-106)) has the same enzymatic and oligomerization properties as endogenous human lymphocyte TK1 (Ly-TK1); ATP exposure induces an enzyme concentration-dependent reversible transition from a dimer to a tetramer with 20-30-fold higher thymidine affinity (K(m) about 15 and 0.5 microm, respectively). Substitution of Val-106 with methionine to give rLy-TK1(Met-106) results in a permanent tetramer with the high thymidine affinity (K(m) about 0.5 microm), even without ATP exposure. Furthermore, rLy-TK1(Met-106) is considerably less stable than rLy-TK1(Val-106) (t(12) at 15 degrees C is 41 and 392 min, respectively). Because valine with high probability is the naturally occurring amino acid at position 106 in human TK1 and because this position has high impact on the enzyme properties, the Val-106 form should be used in future investigations of recombinant human TK1.
Collapse
Affiliation(s)
- D Berenstein
- Department of Life Sciences and Chemistry, Roskilde University, DK 4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
24
|
Abstract
We and others have previously reported that the percentage of ionizing radiation-induced TK(-) mutants exhibiting loss of heterozygosity (LOH) is not significantly different from those occurring spontaneously. In order to search further for a distinguishing feature of the X-ray-induced spectrum, and to characterize mechanisms of chromosomal scale mutagenesis, we used detailed mapping information to analyze the extent of LOH along chromosome 17q. Significant differences were observed when the extent of LOH tracts was considered. The representation of very long LOH tracts (>/=41 cM) was significantly (p=0.004) more common among spontaneous mutants, while relatively local LOH events, involving only markers in a 1-10 cM region surrounding the tk locus, are significantly (p=0.018) more prevalent among X-ray-induced mutants. Our data suggests that, although large deletions are recoverable, X-ray-induced autosomal deletions are not evenly distributed over the available size range. This indicates a mechanistic rather than biological restriction to the size of radiation-induced deletions, and demonstrates that the pattern of LOH may also be useful as a distinguishing component of the mutational spectrum.
Collapse
Affiliation(s)
- C R Giver
- Department of Environmental Toxicology Graduate Program, University of California, 5419 Boyce Hall, Riverside, CA 92521, USA
| | | |
Collapse
|
25
|
Grosovsky AJ, Parks KK, Giver CR, Nelson SL. Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability. Mol Cell Biol 1996; 16:6252-62. [PMID: 8887655 PMCID: PMC231628 DOI: 10.1128/mcb.16.11.6252] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk.
Collapse
Affiliation(s)
- A J Grosovsky
- Biomedical Sciences, Graduate Program, University of California, Riverside, USA.
| | | | | | | |
Collapse
|