1
|
Bai Y, Brillinger M, Karlinsky A, Poliakoff E, Welsh TN, Gowen E. Speed-accuracy trade-offs in action perception, motor imagery, and execution of hand movements in autistic and non-autistic adults. Sci Rep 2025; 15:13255. [PMID: 40247000 PMCID: PMC12006536 DOI: 10.1038/s41598-025-97036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Action perception, execution, and imagery share motor-cognitive processes. Given prevalent sensory and motor coordination difficulties in autism, the processes of action perception and imagery may also be altered. This study investigated whether autistic adults can engage in motor imagery by testing potential differences in executing, perceiving, and imagining hand movements between autistic and non-autistic adults. Twenty autistic individuals and twenty age- and IQ-matched controls completed execution, imagination, and perception tasks using a Fitts' Law paradigm in an online session. For the execution and imagination tasks, participants performed or imagined making aiming movements between two targets. For the action perception task, participants indicated whether they could perform as accurately as the movements in presented videos. Target size and distance were manipulated into three difficulty levels and systematically varied across all tasks. Results showed Fitts' Law relationships for all tasks for both groups, with significant positive correlations between movement times and difficulty level. Movement times were longest in the imagination task and shortest in the perception task for both groups. These findings suggest motor imagery processes are relatively intact in autistic adults, highlighting that further investigation of motor imagery as a therapy for motor coordination difficulties in autistic individuals is warranted.
Collapse
Affiliation(s)
- Ying Bai
- Division of Psychology Communication and Human Neuroscience, The University of Manchester, Manchester, UK
| | - Molly Brillinger
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - April Karlinsky
- Department of Kinesiology, California State University-San Bernardino, San Bernardino, CA, USA
| | - Ellen Poliakoff
- Division of Psychology Communication and Human Neuroscience, The University of Manchester, Manchester, UK
| | - Timothy N Welsh
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Emma Gowen
- Division of Psychology Communication and Human Neuroscience, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Luo TJ, Li J, Li R, Zhang X, Wu SR, Peng H. Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials. J Integr Neurosci 2024; 23:218. [PMID: 39735964 DOI: 10.31083/j.jin2312218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding. METHODS To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms. To compare subject-specific variations of different visual stimuli, a novel cross-subject MI-EEG classification method was proposed for the three visual stimuli. The proposed method employed a covariance matrix centroid alignment for preprocessing of EEG samples, followed by a model agnostic meta-learning method for cross-subject MI-EEG classification. RESULTS AND CONCLUSION The experimental results showed that robot stimulus materials were better than arrow or human stimulus materials, with an optimal cross-subject motion cognitive decoding accuracy of 79.04%. Moreover, the proposed method produced robust classification of cross-subject MI-EEG signal decoding, showing superior results to conventional methods on collected EEG signals.
Collapse
Affiliation(s)
- Tian-Jian Luo
- College of Computer and Cyber Security, Fujian Normal University, 350117 Fuzhou, Fujian, China
| | - Jing Li
- Academy of Arts, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Rui Li
- National Engineering Laboratory for Educational Big Data, Central China Normal University, 430079 Wuhan, Hubei, China
| | - Xiang Zhang
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Shen-Rui Wu
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| | - Hua Peng
- Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Saran A, Marotta JJ. Implicit motor imagery: examining motor vs. visual strategies in laterality judgments among older adults. Front Psychol 2024; 15:1445152. [PMID: 39417018 PMCID: PMC11481337 DOI: 10.3389/fpsyg.2024.1445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive states like motor imagery (MI; simulating actions without overtly executing them) share a close correspondence with action execution, and hence, activate the motor system in a similar way. However, as people age, reduction in specific cognitive abilities like motor action simulation and action planning/prediction are commonly experienced. The present study examined the effect of visual-spatial processing for both typical and challenging upper-limb movements using the Hand Laterality Judgment Task (HLJT), in which participants were asked to judge whether the depicted hand is a left or right hand. Several main findings emerged: (1) Compared to younger adults, older adults exhibited slower responses and greater error rates in both Experiment 1 and 2. This suggests that visual-spatial transformations undergo alterations with age; (2) Older adults displayed higher error rates with realistic hands at both back and palm viewpoints of the hands compared to younger adults. However, this pattern did not hold for response times; (3) Participants responded faster to medial hand orientations (i.e., closer to the midline of the body) compared to lateral hand orientations (i.e., farther from the midline of the body) for palm-views in both Experiment 1 and Experiment 2. Given that we observed better performance on medial orientations compared to lateral orientations, this suggests that participants follow the same motor rules and biomechanical constraints of the represented movement. Novel information is provided about differences in individuals' use of strategies (visual vs. motor imagery) to solve the HLJT for both mannequin and real hands.
Collapse
Affiliation(s)
- Aneet Saran
- Faculty of Arts, Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
4
|
Frank C, Guillot A, Vogt S. Imagery and motor learning: a special issue on the neurocognitive mechanisms of imagery and imagery practice of motor actions. PSYCHOLOGICAL RESEARCH 2024; 88:1785-1789. [PMID: 38940823 PMCID: PMC11315741 DOI: 10.1007/s00426-024-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Human beings are able to imagine actions with the aim to change movement coordination and to learn particular movements. Meta-analyses to date have shown that when individuals systematically engage in imagery of a motor action without overt behavior this can improve motor performance and facilitate motor learning. Despite a considerable body of research in neuroscience, psychology, and sport science, however, there is at present no consensus on the neurocognitive mechanisms of imagery, and the mechanisms that lead to learning via imagined action are still being debated. In particular, the differences between imagined and overt action, and respective learning effects, remain to be fully explained. The present collection of manuscripts is a result of compiling both theoretical advances in the field of motor control and motor learning and those in imagery research to better understand imagery and learning. It is structured alongside five position papers from leading experts in the field, each of which is followed by a series of short commentaries written by experts from various disciplines. This collection demonstrates (a) that conceptualizations of imagery are manifold, vary highly and depend on the perspective chosen, (b) that existing approaches to the neurocognitive mechanisms of imagery and imagery practice of motor actions draw on distinct motor control and learning perspectives, (c) that perspectives from the wider fields of motor control and learning stimulate new approaches to explain imagery and imagery practice, (d) and that future research is needed to investigate and compare different perspectives and conceptualizations of the neurocognitive mechanisms of imagery and imagery practice of motor actions.
Collapse
Affiliation(s)
- Cornelia Frank
- Sports and Movement Research Group, Department of Sports and Movement Science, School of Educational and Cultural Studies, Osnabrück University, Jahnstraße 75, 49080, Osnabrück, Germany.
| | - Aymeric Guillot
- Inter-university Laboratory of Human Movement Sciences, Universite Lyon 1, UCBL-Lyon 1, Villeurbanne, 7424, F-69622, UR, France
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
5
|
Krüger B, Hegele M, Rieger M. The multisensory nature of human action imagery. PSYCHOLOGICAL RESEARCH 2024; 88:1870-1882. [PMID: 36441293 PMCID: PMC11315721 DOI: 10.1007/s00426-022-01771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
Imagination can appeal to all our senses and may, therefore, manifest in very different qualities (e.g., visual, tactile, proprioceptive, or kinesthetic). One line of research addresses action imagery that refers to a process by which people imagine the execution of an action without actual body movements. In action imagery, visual and kinesthetic aspects of the imagined action are particularly important. However, other sensory modalities may also play a role. The purpose of the paper will be to address issues that include: (i) the creation of an action image, (ii) how the brain generates images of movements and actions, (iii) the richness and vividness of action images. We will further address possible causes that determine the sensory impression of an action image, like task specificity, instruction and experience. In the end, we will outline open questions and future directions.
Collapse
Affiliation(s)
- Britta Krüger
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.
| | - Mathias Hegele
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University, Giessen, Germany
| | - Martina Rieger
- Institute for Psychology, UMIT Tirol-University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| |
Collapse
|
6
|
Frank C, Kraeutner SN, Rieger M, Boe SG. Learning motor actions via imagery-perceptual or motor learning? PSYCHOLOGICAL RESEARCH 2024; 88:1820-1832. [PMID: 36680584 PMCID: PMC11315805 DOI: 10.1007/s00426-022-01787-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
It is well accepted that repeatedly imagining oneself acting without any overt behavior can lead to learning. The prominent theory accounting for why imagery practice is effective, motor simulation theory, posits that imagined action and overt action are functionally equivalent, the exception being activation of the end effector. If, as motor simulation theory states, one can compile the goal, plan, motor program and outcome of an action during imagined action similar to overt action, then learning of novel skills via imagery should proceed in a manner equivalent to that of overt action. While the evidence on motor simulation theory is both plentiful and diverse, it does not explicitly account for differences in neural and behavioural findings between imagined and overt action. In this position paper, we briefly review theoretical accounts to date and present a perceptual-cognitive theory that accounts for often observed outcomes of imagery practice. We suggest that learning by way of imagery reflects perceptual-cognitive scaffolding, and that this 'perceptual' learning transfers into 'motor' learning (or not) depending on various factors. Based on this theory, we characterize consistently reported learning effects that occur with imagery practice, against the background of well-known physical practice effects and show that perceptual-cognitive scaffolding is well-suited to explain what is being learnt during imagery practice.
Collapse
Affiliation(s)
- Cornelia Frank
- Department of Sports and Movement Science, School of Educational and Cultural Studies, Osnabrück University, Osnabrück, Germany.
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia, Okanagan, Kelowna, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Martina Rieger
- Institute for Psychology, UMIT Tirol - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Department of Psychology and Neuroscience, School of Health and Human Performance, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
7
|
Furuta T, Morita T, Miura G, Naito E. Structural and functional features characterizing the brains of individuals with higher controllability of motor imagery. Sci Rep 2024; 14:17243. [PMID: 39060339 PMCID: PMC11282224 DOI: 10.1038/s41598-024-68425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Motor imagery is a higher-order cognitive brain function that mentally simulates movements without performing the actual physical one. Although motor imagery has attracted the interest of many researchers, and mental practice utilizing motor imagery has been widely used in sports training and post-stroke rehabilitation, neural bases that determine individual differences in motor imagery ability are not well understood. In this study, using controllability of motor imagery (CMI) test that can objectively evaluate individual ability to manipulate one's imaginary postures, we examined structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, by analyzing T1-weighted structural MRI data obtained from 89 participants and functional MRI data obtained from 28 of 89 participants. The higher CMI test scorers had larger volume in the bilateral superior frontoparietal white matter regions. The CMI test activated the bilateral dorsal premotor cortex (PMD) and superior parietal lobule (SPL); specifically, the left PMD and/or the right SPL enhanced functional coupling with the visual body, somatosensory, and motor/kinesthetic areas in the higher scorers. Hence, controllability of motor imagery is higher for those who well-develop superior frontoparietal network, and for those whose this network accesses these sensory areas to predict the expected multisensory experiences during motor imagery. This study elucidated for the first time the structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, and advanced understanding of individual differences in motor imagery ability.
Collapse
Affiliation(s)
- Tomoya Furuta
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gen Miura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Mguidich H, Zoudji B, Khacharem A. An expertise reversal effect of imagination in learning from basketball tactics. PSYCHOLOGICAL RESEARCH 2024; 88:1691-1701. [PMID: 38597970 DOI: 10.1007/s00426-024-01954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
The imagination effect occurs when participants learn better from imagining procedures or concepts rather than from studying them. The aim of the present study was to examine the effects of imagination and level of expertise on memorization of a tactical basketball system. Thirty-six expert and thirty-six novice learners were asked to imagine the functioning of a tactical scene in basketball (imagination condition) or simply study the scene (study condition). Results showed that novice learners benefited more from the study condition as they achieved better recall and recognition performances, invested less cognitive load (i.e., mental effort and perceived difficulty) and had higher levels of motivational aspects (i.e., self-efficacy and perceived competence). However, this effect was totally reversed for expert learners who, benefited more from the imagination condition, indicating therefore an expertise reversal effect. The results suggest that the effectiveness of the imagination technique depends on level of expertise of the learners.
Collapse
Affiliation(s)
- Hajer Mguidich
- Laboratoire de Recherche Sociétés & Humanités (LARSH), Département De Visu, Université Polytechnique Hauts-de-France (UPHF), Mont Houy, INSA Hauts-de-France, 59300, Valenciennes, France.
| | - Bachir Zoudji
- Laboratoire de Recherche Sociétés & Humanités (LARSH), Département De Visu, Université Polytechnique Hauts-de-France (UPHF), Mont Houy, INSA Hauts-de-France, 59300, Valenciennes, France
| | - Aïmen Khacharem
- UFR SESS-STAPS, Paris-East Créteil University, LIRTES (EA 7313), Créteil, France
| |
Collapse
|
9
|
Binks JA, Wilson CJ, Van Schaik P, Eaves DL. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 68:102468. [PMID: 37665909 DOI: 10.1016/j.psychsport.2023.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 09/06/2023]
Abstract
In this study we explored training effects for combined action observation and motor imagery (AO + MI) instructions on a complex cup-stacking task, without physical practice. Using a Graeco-Latin Square design, we randomly assigned twenty-six participants into four groups. This counterbalanced the within-participant factor of practice condition (AO + MI, AO, MI, Control) across four cup-stacking tasks, which varied in their complexity. On each of the three consecutive practice days participants experienced twenty trials under each of the three mental practice conditions. On each trial, a first-person perspective video depicted bilateral cup-stacking performed by an experienced model. During AO, participants passively observed this action, responding only to occasional colour cues. For AO + MI, participants imagined performing the observed action and synchronised their concurrent MI with the display. For MI, a sequence of pictures cued imagery of each stage of the task. Analyses revealed a significant main effect of practice condition both at the 'surprise' post-test (Day 3) and at the one-week retention test. At both time points movement execution times were significantly shorter for AO + MI compared with AO, MI and the Control. Execution times were also shorter overall at the retention compared with the post-test. These results demonstrate that a complex novel motor task can be acquired without physical training. Practitioners can therefore use AO + MI practice to supplement physical practice and optimise skill learning.
Collapse
Affiliation(s)
- J A Binks
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK.
| | - C J Wilson
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - P Van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - D L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
10
|
Gäumann S, Aksöz EA, Behrendt F, Wandel J, Cappelletti L, Krug A, Mörder D, Bill A, Parmar K, Gerth HU, Bonati LH, Schuster-Amft C. The challenge of measuring physiological parameters during motor imagery engagement in patients after a stroke. Front Neurosci 2023; 17:1225440. [PMID: 37583419 PMCID: PMC10423937 DOI: 10.3389/fnins.2023.1225440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction It is suggested that eye movement recordings could be used as an objective evaluation method of motor imagery (MI) engagement. Our investigation aimed to evaluate MI engagement in patients after stroke (PaS) compared with physical execution (PE) of a clinically relevant unilateral upper limb movement task of the patients' affected body side. Methods In total, 21 PaS fulfilled the MI ability evaluation [Kinaesthetic and Visual Imagery Questionnaire (KVIQ-10), body rotation task (BRT), and mental chronometry task (MC)]. During the experiment, PaS moved a cup to distinct fields while wearing smart eyeglasses (SE) with electrooculography electrodes integrated into the nose pads and electrodes for conventional electrooculography (EOG). To verify MI engagement, heart rate (HR) and oxygen saturation (SpO2) were recorded, simultaneously with electroencephalography (EEG). Eye movements were recorded during MI, PE, and rest in two measurement sessions to compare the SE performance between conditions and SE's psychometric properties. Results MI and PE correlation of SE signals varied between r = 0.12 and r = 0.76. Validity (cross-correlation with EOG signals) was calculated for MI (r = 0.53) and PE (r = 0.57). The SE showed moderate test-retest reliability (intraclass correlation coefficient) with r = 0.51 (95% CI 0.26-0.80) for MI and with r = 0.53 (95% CI 0.29 - 0.76) for PE. Event-related desynchronization and event-related synchronization changes of EEG showed a large variability. HR and SpO2 recordings showed similar values during MI and PE. The linear mixed model to examine HR and SpO2 between conditions (MI, PE, rest) revealed a significant difference in HR between rest and MI, and between rest and PE but not for SpO2. A Pearson correlation between MI ability assessments (KVIQ, BRT, MC) and physiological parameters showed no association between MI ability and HR and SpO2. Conclusion The objective assessment of MI engagement in PaS remains challenging in clinical settings. However, HR was confirmed as a reliable parameter to assess MI engagement in PaS. Eye movements measured with the SE during MI did not resemble those during PE, which is presumably due to the demanding task. A re-evaluation with task adaptation is suggested.
Collapse
Affiliation(s)
- Szabina Gäumann
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
| | - Efe Anil Aksöz
- School of Engineering and Information Technology, Bern University of Applied Sciences, Biel, Switzerland
| | - Frank Behrendt
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
- School of Engineering and Information Technology, Bern University of Applied Sciences, Biel, Switzerland
| | - Jasmin Wandel
- Institute for Optimisation and Data Analysis, Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Letizia Cappelletti
- Department of Health Professions, Bern University of Applied Science, Bern, Switzerland
| | - Annika Krug
- Institute for Physiotherapy, School of Health Professions, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Daniel Mörder
- Department of Sport Science, Faculty of Humanities, University of Konstanz, Konstanz, Germany
| | - Annika Bill
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Katrin Parmar
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Hans Ulrich Gerth
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Medicine, University Hospital Münster, Münster, Germany
| | - Leo H. Bonati
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Corina Schuster-Amft
- Department of Research, Reha Rheinfelden, Rheinfelden, Switzerland
- School of Engineering and Information Technology, Bern University of Applied Sciences, Biel, Switzerland
- Department of Sport, Physical Activity, and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Gwon D, Won K, Song M, Nam CS, Jun SC, Ahn M. Review of public motor imagery and execution datasets in brain-computer interfaces. Front Hum Neurosci 2023; 17:1134869. [PMID: 37063105 PMCID: PMC10101208 DOI: 10.3389/fnhum.2023.1134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
The demand for public datasets has increased as data-driven methodologies have been introduced in the field of brain-computer interfaces (BCIs). Indeed, many BCI datasets are available in various platforms or repositories on the web, and the studies that have employed these datasets appear to be increasing. Motor imagery is one of the significant control paradigms in the BCI field, and many datasets related to motor tasks are open to the public already. However, to the best of our knowledge, these studies have yet to investigate and evaluate the datasets, although data quality is essential for reliable results and the design of subject- or system-independent BCIs. In this study, we conducted a thorough investigation of motor imagery/execution EEG datasets recorded from healthy participants published over the past 13 years. The 25 datasets were collected from six repositories and subjected to a meta-analysis. In particular, we reviewed the specifications of the recording settings and experimental design, and evaluated the data quality measured by classification accuracy from standard algorithms such as Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) for comparison and compatibility across the datasets. As a result, we found that various stimulation types, such as text, figure, or arrow, were used to instruct subjects what to imagine and the length of each trial also differed, ranging from 2.5 to 29 s with a mean of 9.8 s. Typically, each trial consisted of multiple sections: pre-rest (2.38 s), imagination ready (1.64 s), imagination (4.26 s, ranging from 1 to 10 s), the post-rest (3.38 s). In a meta-analysis of the total of 861 sessions from all datasets, the mean classification accuracy of the two-class (left-hand vs. right-hand motor imagery) problem was 66.53%, and the population of the BCI poor performers, those who are unable to reach proficiency in using a BCI system, was 36.27% according to the estimated accuracy distribution. Further, we analyzed the CSP features and found that each dataset forms a cluster, and some datasets overlap in the feature space, indicating a greater similarity among them. Finally, we checked the minimal essential information (continuous signals, event type/latency, and channel information) that should be included in the datasets for convenient use, and found that only 71% of the datasets met those criteria. Our attempts to evaluate and compare the public datasets are timely, and these results will contribute to understanding the dataset's quality and recording settings as well as the use of using public datasets for future work on BCIs.
Collapse
Affiliation(s)
- Daeun Gwon
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Kyungho Won
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minseok Song
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Chang S. Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
- Department of Industrial and Management Systems Engineering, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- AI Graudate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyu Ahn
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
- School of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| |
Collapse
|
12
|
Proverbio AM, Pischedda F. Measuring brain potentials of imagination linked to physiological needs and motivational states. Front Hum Neurosci 2023; 17:1146789. [PMID: 37007683 PMCID: PMC10050745 DOI: 10.3389/fnhum.2023.1146789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionWhile EEG signals reflecting motor and perceptual imagery are effectively used in brain computer interface (BCI) contexts, little is known about possible indices of motivational states. In the present study, electrophysiological markers of imagined motivational states, such as craves and desires were investigated.MethodsEvent-related potentials (ERPs) were recorded in 31 participants during perception and imagery elicited by the presentation of 360 pictograms. Twelve micro-categories of needs, subdivided into four macro-categories, were considered as most relevant for a possible BCI usage, namely: primary visceral needs (e.g., hunger, linked to desire of food); somatosensory thermal and pain sensations (e.g., cold, linked to desire of warm), affective states (e.g., fear: linked to desire of reassurance) and secondary needs (e.g., desire to exercise or listen to music). Anterior N400 and centroparietal late positive potential (LPP) were measured and statistically analyzed.ResultsN400 and LPP were differentially sensitive to the various volition stats, depending on their sensory, emotional and motivational poignancy. N400 was larger to imagined positive appetitive states (e.g., play, cheerfulness) than negative ones (sadness or fear). In addition, N400 was of greater amplitude during imagery of thermal and nociceptive sensations than other motivational or visceral states. Source reconstruction of electromagnetic dipoles showed the activation of sensorimotor areas and cerebellum for movement imagery, and of auditory and superior frontal areas for music imagery.DiscussionOverall, ERPs were smaller and more anteriorly distributed during imagery than perception, but showed some similarity in terms of lateralization, distribution, and category response, thus indicating some overlap in neural processing, as also demonstrated by correlation analyses. In general, anterior frontal N400 provided clear markers of subjects’ physiological needs and motivational states, especially cold, pain, and fear (but also sadness, the urgency to move, etc.), than can signal life-threatening conditions. It is concluded that ERP markers might potentially allow the reconstruction of mental representations related to various motivational states through BCI systems.
Collapse
|
13
|
Iwanami J, Mutai H, Sagari A, Sato M, Kobayashi M. Relationship between Corticospinal Excitability While Gazing at the Mirror and Motor Imagery Ability. Brain Sci 2023; 13:brainsci13030463. [PMID: 36979273 PMCID: PMC10046091 DOI: 10.3390/brainsci13030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mirror therapy (MT) helps stroke survivors recover motor function. Previous studies have reported that an individual's motor imagery ability is related to the areas of brain activity during motor imagery and the effectiveness of motor imagery training. However, the relationship between MT and motor imagery ability and between corticospinal tract excitability during mirror gazing, an important component of MT, and motor imagery ability is unclear. This study determined whether the motor-evoked potential (MEP) amplitude while gazing at the mirror relates to participants' motor imagery abilities. Twenty-four healthy right-handed adults (seven males) were recruited. Transcranial magnetic stimulation was performed while gazing at the mirror, and MEP of the first dorsal interosseous muscle of the right hand were measured. Motor imagery ability was measured using the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses the vividness of motor imagery ability. Additionally, a mental chronometry (MC) task was used to assess time aspects. The results showed a significant moderate correlation between changes in MEP amplitude values while gazing at the mirror, as compared with resting conditions, and assessment scores of KVIQ. This study shows that corticospinal excitability because of mirror gazing may be related to the vividness of motor imagery ability.
Collapse
Affiliation(s)
- Jun Iwanami
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hitoshi Mutai
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Akira Sagari
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masaaki Sato
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masayoshi Kobayashi
- Division of Occupational Therapy, School of Health Science, Faculty of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
14
|
Welage N, Bissett M, Coxon K, Fong KNK, Liu KPY. Development and feasibility of first- and third-person motor imagery for people with stroke living in the community. Pilot Feasibility Stud 2023; 9:33. [PMID: 36869397 PMCID: PMC9983213 DOI: 10.1186/s40814-023-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Impairment of arm movement occurs in up to 85% of people post-stroke, affecting daily living activities, and quality of life. Mental imagery effectively enhances hand and daily function in people with stroke. Imagery can be performed when people imagine themselves completing the movement or imagine another person doing it. However, there is no report on the specific use of first-person and third-person imagery in stroke rehabilitation. AIMS To develop and assess the feasibility of the First-Person Mental Imagery (FPMI) and the Third-Person Mental Imagery (TPMI) programs to address the hand function of people with stroke living in the community. METHODS This study comprises phase 1-development of the FPMI and TPMI programs, and phase 2-pilot-testing of the intervention programs. The two programs were developed from existing literature and reviewed by an expert panel. Six participants with stroke, living in the community, participated in the pilot-testing of the FPMI and TPMI programs for 2 weeks. Feedback collected included the suitability of the eligibility criteria, therapist's and participant's adherence to intervention and instructions, appropriateness of the outcome measures, and completion of the intervention sessions within the specified time. RESULTS The FPMI and TPMI programs were developed based on previously established programs and included 12 hand tasks. The participants completed four 45-min sessions in 2 weeks. The treating therapist adhered to the program protocol and completed all the steps within the specified time frame. All hand tasks were suitable for adults with stroke. Participants followed the instructions given and engaged in imagery. The outcome measures selected were appropriate for the participants. Both programs showed a positive trend towards improvement in participants' upper extremity and hand function and self-perceived performance in activities of daily living. CONCLUSIONS The study provides preliminary evidence that these programs and outcome measures are feasible for implementation with adults with stroke living in the community. This study outlines a realistic plan for future trials in relation to participant recruitment, training of therapists on the intervention delivery, and the use of outcome measures. TRIAL REGISTRATION Title: Effectiveness of first-person and third-person motor imagery in relearning daily hand tasks for people with chronic stroke: a randomised controlled trial. REGISTRATION NO SLCTR/2017/031. Date registered: 22nd September 2017.
Collapse
Affiliation(s)
- Nandana Welage
- grid.1029.a0000 0000 9939 5719School of Health Sciences, Western Sydney University, Penrith, NSW 2751 Australia ,grid.45202.310000 0000 8631 5388Present address: Department of Disability Studies, University of Kelaniya, Ragama, Sri Lanka
| | - Michelle Bissett
- grid.1031.30000000121532610Faculty of Health, Southern Cross University - Gold Coast Campus, Gold Coast QLD, Australia
| | - Kristy Coxon
- grid.1029.a0000 0000 9939 5719School of Health Sciences, Western Sydney University, Penrith, NSW 2751 Australia ,grid.1029.a0000 0000 9939 5719Translational Health Research Institute, Western Sydney University, Penrith, NSW Australia
| | - Kenneth N. K. Fong
- grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Karen P. Y. Liu
- grid.1029.a0000 0000 9939 5719School of Health Sciences, Western Sydney University, Penrith, NSW 2751 Australia ,grid.1029.a0000 0000 9939 5719Translational Health Research Institute, Western Sydney University, Penrith, NSW Australia
| |
Collapse
|
15
|
Binks JA, Emerson JR, Scott MW, Wilson C, van Schaik P, Eaves DL. Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Front Neurol 2023; 14:1097422. [PMID: 36937513 PMCID: PMC10017546 DOI: 10.3389/fneur.2023.1097422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction For people who have had a stroke, recovering upper-limb function is a barrier to independence. When movement is difficult, mental practice can be used to complement physical therapy. In this within-participants study we investigated the effects of combined action observation and motor imagery (AO + MI) therapy on upper-limb recovery in chronic stroke survivors. Methods A Graeco-Latin Square design was used to counterbalance four mental practice conditions (AO + MI, AO, MI, Control) across four cup-stacking tasks of increasing complexity. Once a week, for five consecutive weeks, participants (n = 10) performed 16 mental practice trials under each condition. Each trial displayed a 1st person perspective of a cup-stacking task performed by an experienced model. For AO, participants watched each video and responded to an occasional color cue. For MI, participants imagined the effort and sensation of performing the action; cued by a series of still-images. For combined AO + MI, participants observed a video of the action while they simultaneously imagined performing the same action in real-time. At three time points (baseline; post-test; two-week retention test) participants physically executed the three mentally practiced cup-stacking tasks, plus a fourth unpractised sequence (Control), as quickly and accurately as possible. Results Mean movement execution times were significantly reduced overall in the post-test and the retention test compared to baseline. At retention, movement execution times were significantly shorter for combined AO + MI compared to both MI and the Control. Individual participants reported clinically important changes in quality of life (Stroke Impact Scale) and positive qualitative experiences of AO + MI (social validation). Discussion These results indicate that when physical practice is unsuitable, combined AO + MI therapy could offer an effective adjunct for neurorehabilitation in chronic stroke survivors.
Collapse
Affiliation(s)
- Jack Aaron Binks
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Jonathan Reyes Emerson
- School of Health and Life Sciences, Allied Health Professions, Teesside University, Middlesbrough, United Kingdom
| | | | - Christopher Wilson
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities and Law, Teesside University, Middlesbrough, United Kingdom
| | - Daniel Lloyd Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Rizzi B, Nuresi C, Rovacchi C, Bacchini M, Savi F, Falco L, Schianchi L, Scaglioni A, Ciracì C, Costantino C, Buccino G. Motor imagery and action-observation in neurorehabilitation: A study protocol in Parkinson's disease patients. Front Neurol 2022; 13:990618. [PMID: 36267882 PMCID: PMC9577192 DOI: 10.3389/fneur.2022.990618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Action Observation Treatment (AOT) and Motor Imagery (MI) represent very promising cognitive strategies in neuro-rehabilitation. This study aims to compare the effectiveness of the two cognitive strategies, taken alone or combined, in Parkinson's disease patients. Material and methods This study is designed as a prospective randomized controlled trial, with four arms. We estimated a sample size of 64 patients (16 in each treatment group) to be able to detect an effect size of F = 0.4 with a statistical significance of 0.05. Primary outcomes will be functional gains in the FIM and UPDRS scales. Secondary outcome measure will be functional gain as revealed by kinematic parameters measured at Gait Analysis. Discussion The results of this trial will provide insights into the use of AOT and MI, taken alone or combined, in the rehabilitation of Parkinson's disease patients. Ethics and dissemination The study protocol was approved by the Ethics Committee of the Don Gnocchi Foundation. The study will be conducted in accordance with the 1996 World Medical Association guidelines and according to good clinical practice. The study has been registered on clinicaltrial.gov under the following code: AOTPRFDG. Dissemination will include both submission of the study to peer-reviewed journals and discussion of the study protocol at conferences.
Collapse
Affiliation(s)
- Beatrice Rizzi
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Christian Nuresi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudio Rovacchi
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Massimo Bacchini
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Federica Savi
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Lucia Falco
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Luca Schianchi
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Augusto Scaglioni
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Chiara Ciracì
- Department of Neuromotor Rehabilitation, Santa Maria ai Servi Center, Don Carlo Gnocchi Foundation ONLUS, Parma, Italy
| | - Cosimo Costantino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Buccino
- Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele, Milan, Italy
| |
Collapse
|
17
|
Modality of Practice Modulates Resting State Connectivity During Motor Learning. Neurosci Lett 2022; 781:136659. [PMID: 35483502 DOI: 10.1016/j.neulet.2022.136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
When bookending skilled motor practice, changes in resting state functional magnetic resonance imaging (rs-fMRI; used to characterise synchronized patterns of activity when the brain is at rest) reflect functional reorganization that supports motor memory consolidation and learning. Despite its use in practice in numerous domains, the neural mechanisms underlying motor memory consolidation and learning that result from motor imagery practice (MIP) relative to physical practice are not well understood. The current study examined how rs-fMRI is modulated by skilled motor practice that results through either MIP or physical practice. Two groups of participants engaged in five days of MIP or physical practice of a dart throwing task. Performance and rs-fMRI were captured before and after training. Relative to physical practice, where focal changes in rs-fMRI within a cerebellar-cortical network were observed, MIP stimulated widespread changes in rs-fMRI within a frontoparietal network encompassing bilateral regions. Findings indicate that functional reorganization that supports motor memory consolidation and learning is not equivalent across practice modality. Ultimately, this work provides new information regarding the unique neural underpinnings MIP relies on to drive motor memory consolidation and learning.
Collapse
|
18
|
Cuenca-Martínez F, Angulo-Díaz-Parreño S, Feijóo-Rubio X, Fernández-Solís MM, León-Hernández JV, LA Touche R, Suso-Martí L. Motor effects of movement representation techniques and cross-education: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2022; 58:94-107. [PMID: 34105921 PMCID: PMC9987463 DOI: 10.23736/s1973-9087.21.06893-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The objective was to assess the impact of movement representation techniques (MRT) through motor imagery (MI), action observation (AO) and visual mirror feedback (VMF) and cross-education training (CE) on strength, range of motion (ROM), speed, functional state and balance during experimental immobilization processes in healthy individuals, in patients with injuries that did not require surgery and in those with surgical processes that did or did not require immobilization. EVIDENCE ACQUISITION MEDLINE, EMBASE, CINAHL and Google Scholar were searched. Thirteen meta-analyses were conducted. EVIDENCE SYNTHESIS Regarding the immobilized participants, in the healthy individuals, MI showed significant results regarding maintenance of strength and ROM, with low-quality evidence. Regarding the process with no immobilization, VMF and MI techniques showed significant changes in maintaining ROM in patients with injury without surgery, with very low-quality evidence. Results had shown that MI demonstrated significantly higher maintenance of strength and speed in patients undergoing surgery, with low-quality evidence. No significant results were found in ROM. Low-quality evidence showed better results in AO plus usual care compared with usual treatment in isolation with respect to maintenance of functional state and balance. CE training demonstrated maintenance of strength in patients undergoing surgery, with moderate evidence; however, not in healthy experimentally immobilized individuals. VMF did not show significant results in maintaining ROM after surgery without immobilization, nor did MI in maintaining strength after surgery and immobilization. CONCLUSIONS MRT and CE training have been shown to have a significant impact on the improvement of various motor variables and on physical maintenance in general.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Santiago Angulo-Díaz-Parreño
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | - Xosé Feijóo-Rubio
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta M Fernández-Solís
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - José V León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Roy LA Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain - .,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Institute of Neurosciences and Craniofacial Pain (INDCRAN), Madrid, Spain
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Department of Physiotherapy, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
19
|
Crotti M, Koschutnig K, Wriessnegger SC. Handedness impacts the neural correlates of kinesthetic motor imagery and execution: A FMRI study. J Neurosci Res 2022; 100:798-826. [PMID: 34981561 PMCID: PMC9303560 DOI: 10.1002/jnr.25003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
The human brain functional lateralization has been widely studied over the past decades, and neuroimaging studies have shown how activation of motor areas during hand movement execution (ME) is different according to hand dominance. Nevertheless, there is no research directly investigating the effects of the participant's handedness in a motor imagery (MI) and ME task in both right and left-handed individuals at the cortical and subcortical level. Twenty-six right-handed and 25 left-handed participants were studied using functional magnetic resonance imaging during the imagination and execution of repetitive self-paced movements of squeezing a ball with their dominant, non-dominant, and both hands. Results revealed significant statistical difference (p < 0.05) between groups during both the execution and the imagery task with the dominant, non-dominant, and both hands both at cortical and subcortical level. During ME, left-handers recruited a spread bilateral network, while in right-handers, activity was more lateralized. At the critical level, MI between-group analysis revealed a similar pattern in right and left-handers showing a bilateral activation for the dominant hand. Differentially at the subcortical level, during MI, only right-handers showed the involvement of the posterior cerebellum. No significant activity was found for left-handers. Overall, we showed a partial spatial overlap of neural correlates of MI and ME in motor, premotor, sensory cortices, and cerebellum. Our results highlight differences in the functional organization of motor areas in right and left-handed people, supporting the hypothesis that MI is influenced by the way people habitually perform motor actions.
Collapse
Affiliation(s)
- Monica Crotti
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karl Koschutnig
- Department of Psychology, MRI Lab Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
20
|
Ferrer-Peña R, Cuenca-Martínez F, Romero-Palau M, Flores-Román LM, Arce-Vázquez P, Varangot-Reille C, Suso-Martí L. Effects of motor imagery on strength, range of motion, physical function, and pain intensity in patients with total knee arthroplasty: A systematic review and meta-analysis. Braz J Phys Ther 2021; 25:698-708. [PMID: 34872869 DOI: 10.1016/j.bjpt.2021.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the early stages of total knee arthroplasty (TKA) rehabilitation, in which physical function in general can be affected, motor imagery (MI) might play a relevant role. OBJECTIVE To assess the impact of MI on strength, active range of motion (ROM), pain intensity, and physical function in patients with TKA. METHODS We conducted a systematic review and meta-analysis of randomised controlled trials. Pooled effects were calculated as standardised mean differences (SMDs) and 95% confidence intervals (CIs) for the relevant outcomes using random effects model. The certainty of evidence was assessed with GRADE approach. RESULTS This review included 7 articles. The addition of MI to standard therapy, based on low quality of evidence, showed a moderate increase in quadriceps strength (4 studies; SMD: 0.88; 95% CI: 0.42, 1.34) and a small reduction in pain intensity (SMD: 0.63; 95% CI: 0.08, 1.19). It is unclear whether MI can provide beneficial effects for active ROM and function. CONCLUSIONS There is low to very low-quality evidence that adding an MI intervention to standard rehabilitation for patients with TKA may improve quadriceps strength and pain intensity, but the effects of MI on ROM and physical function is unclear.
Collapse
Affiliation(s)
- Raúl Ferrer-Peña
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España, Spain
| | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | | | - Luis Miguel Flores-Román
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Arce-Vázquez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clovis Varangot-Reille
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Luis Suso-Martí
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
21
|
Maresch J, Mudrik L, Donchin O. Measures of explicit and implicit in motor learning: what we know and what we don't. Neurosci Biobehav Rev 2021; 128:558-568. [PMID: 34214514 DOI: 10.1016/j.neubiorev.2021.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
Adaptation tasks are a key tool in characterizing the contribution of explicit and implicit processes to sensorimotor learning. However, different assumptions and ideas underlie methods used to measure these processes, leading to inconsistencies between studies. For instance, it is still unclear explicit and implicit combine additively. Cognitive studies of explicit and implicit processes show how non-additivity and bias in measurement can distort results. We argue that to understand explicit and implicit processes in visuomotor adaptation, we need a stronger characterization of the phenomenology and a richer set of models to test it on.
Collapse
Affiliation(s)
- Jana Maresch
- Department of Brain and Cognitive Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel.
| | - Liad Mudrik
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, PO Box 39040, Tel Aviv, 69978, Israel.
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva, 8410501, Israel.
| |
Collapse
|
22
|
Greco A. Spatial and Motor Aspects in the "Action-Sentence Compatibility Effect". Front Psychol 2021; 12:647899. [PMID: 33897555 PMCID: PMC8062728 DOI: 10.3389/fpsyg.2021.647899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
The Action-sentence Compatibility Effect (ACE) is often taken as supporting the fundamental role of the motor system in understanding sentences that describe actions. This effect would be related to an internal "simulation," i.e., the reactivation of past perceptual and motor experiences. However, it is not easy to establish whether this simulation predominantly involves spatial imagery or motor anticipation. In the classical ACE experiments, where a real motor response is required, the direction and motor representations are mixed. In order to disentangle spatial and motor aspects involved in the ACE, we performed six experiments in different conditions, where the motor component was always reduced, asking participants to judge the sensibility of sentences by moving a mouse, thus requiring a purely spatial representation, compatible with nonmotor interpretations. In addition, our experiments had the purpose of taking into account the possible confusion of effects of practice and of compatibility (i.e., differences in reaction times simultaneously coming from block order and opposite motion conditions). Also, in contrast to the usual paradigm, we included no-transfer filler sentences in the analysis. The ACE was not found in any experiment, a result that failed to support the idea that the ACE could be related to a simulation where spatial aspects rather than motor ones prevail. Strong practice effects were always found and were carved out from results. A surprising effect was that no-transfer sentences were processed much slower than others, perhaps revealing a sort of participants' awareness of the structure of stimuli, i.e., their finding that some of them involved motion and others did not. The relevance of these outcomes for the embodiment theory is discussed.
Collapse
Affiliation(s)
- Alberto Greco
- Department of Educational Sciences, Cognilab, Laboratory of Psychology and Cognitive Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Amemiya K, Morita T, Hirose S, Ikegami T, Hirashima M, Naito E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav 2021; 15:656-676. [PMID: 32240463 PMCID: PMC8032591 DOI: 10.1007/s11682-020-00275-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Ikegami
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Abraham A, Duncan RP, Earhart GM. The Role of Mental Imagery in Parkinson's Disease Rehabilitation. Brain Sci 2021; 11:brainsci11020185. [PMID: 33540883 PMCID: PMC7913152 DOI: 10.3390/brainsci11020185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a disabling neurodegenerative disease whose manifestations span motor, sensorimotor, and sensory domains. While current therapies for PD include pharmacological, invasive, and physical interventions, there is a constant need for developing additional approaches for optimizing rehabilitation gains. Mental imagery is an emerging field in neurorehabilitation and has the potential to serve as an adjunct therapy to enhance patient function. Yet, the literature on this topic is sparse. The current paper reviews the motor, sensorimotor, and sensory domains impacted by PD using gait, balance, and pain as examples, respectively. Then, mental imagery and its potential for PD motor and non-motor rehabilitation is discussed, with an emphasis on its suitability for addressing gait, balance, and pain deficits in people with PD. Lastly, future research directions are suggested.
Collapse
Affiliation(s)
- Amit Abraham
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 4077625, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel 4077625, Israel
- Correspondence:
| | - Ryan P. Duncan
- Program in Physical Therapy, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (R.P.D.); (G.M.E.)
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Gammon M. Earhart
- Program in Physical Therapy, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (R.P.D.); (G.M.E.)
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
25
|
Moritz S, Gehlenborg J, Wirtz J, Ascone L, Kühn S. A dismantling study on imaginal retraining in smokers. Transl Psychiatry 2021; 11:92. [PMID: 33531467 PMCID: PMC7854587 DOI: 10.1038/s41398-020-01191-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Imaginal retraining is a noncomputerized variant of cognitive bias modification, an intervention aimed at reducing craving in substance use disorders and behavioral addictions. We conducted a dismantling study to elucidate which of its multiple components are effective and hence essential ingredients of the training and which are ineffective (and hence perhaps dispensable) in reducing craving. We randomized 187 smokers to one out of six conditions that instructed participants to perform a brief intervention. In four of these, participants were instructed to perform isolated components of the imaginal retraining protocol, and in the two other conditions participants either suppressed or simply observed (control condition) the image of a cigarette. Before and after the intervention, participants were asked to rate their level of craving and how pleasant they found three smoking-related images. We examined within-group changes by means of paired t-tests separately across conditions (trial registration: DRKS00021044). Mental distancing from cigarettes (without a corresponding actual physical movement; non-motor retraining) led to a significant decline in craving (paired t-test), which remained significant when compared to the control condition. The effects of other components of the retraining were less consistent. The present study shows that a single therapeutic "dose" of distinct components involved in imaginal retraining can reduce craving for cigarettes. Future trials should investigate the effectiveness of components of imaginal retraining not yet tested (e.g., mood induction) and whether combinations and repetition of single components strengthen or dilute efficacy.
Collapse
Affiliation(s)
- Steffen Moritz
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Josefine Gehlenborg
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Janina Wirtz
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonie Ascone
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
26
|
Pastora-Bernal JM, Estebanez-Pérez MJ, Lucena-Anton D, García-López FJ, Bort-Carballo A, Martín-Valero R. The Effectiveness and Recommendation of Motor Imagery Techniques for Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Systematic Review. J Clin Med 2021; 10:jcm10030428. [PMID: 33499316 PMCID: PMC7866187 DOI: 10.3390/jcm10030428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Motor imagery (MI) reported positive effects in some musculoskeletal rehabilitation processes. The main objective of this study was to analyze the effectiveness of MI interventions after anterior cruciate ligament (ACL) reconstruction. A systematic review was conducted from November 2018 to December 2019 in PubMed, Scopus, Web of Science, The Cochrane Library, and Physiotherapy Evidence Database (PEDro). The methodological quality, degree of recommendation, and levels of evidence were analyzed. A total of six studies were included. Selected studies showed unequal results (positive and negative) regarding pain, anxiety, fear of re-injury, function, and activities of daily living. Regarding the range of motion, anthropometric measurements, and quality of life, the results were not conclusive. Muscle activation, strength, knee laxity, time to remove external support, and neurobiological factors showed some favorable results. Nevertheless, the results were based on a limited number of studies, small sample sizes, and a moderate-weak degree of recommendation. In conclusion, our review showed a broader view of the current evidence, including a qualitative assessment to implement MI after ACL surgery. There was no clear evidence that MI added to physiotherapy was an effective intervention after ACL surgery, although some studies showed positive results in clinical outcomes. More adequately-powered long-term randomized controlled trials are necessary.
Collapse
Affiliation(s)
| | - María José Estebanez-Pérez
- Department of Physiotherapy, Faculty of Health Science, University of Malaga, 29071 Málaga, Spain; (M.J.E.-P.); (R.M.-V.)
| | - David Lucena-Anton
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Cadiz, 11009 Cadiz, Spain
- Correspondence:
| | | | | | - Rocío Martín-Valero
- Department of Physiotherapy, Faculty of Health Science, University of Malaga, 29071 Málaga, Spain; (M.J.E.-P.); (R.M.-V.)
| |
Collapse
|
27
|
Waters F, Barnby JM, Blom JD. Hallucination, imagery, dreaming: reassembling stimulus-independent perceptions based on Edmund Parish's classic misperception framework. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190701. [PMID: 33308065 DOI: 10.1098/rstb.2019.0701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Within the broad field of human perception lies the category of stimulus-independent perceptions, which draws together experiences such as hallucinations, mental imagery and dreams. Traditional divisions between medical and psychological sciences have contributed to these experiences being investigated separately. This review aims to examine their similarities and differences at the levels of phenomenology and underlying brain function and thus reassemble them within a common framework. Using Edmund Parish's historical work as a guiding tool and the latest research findings in the cognitive, clinical and computational sciences, we consider how different perspectives may be reconciled and help generate novel hypotheses for future research. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Flavie Waters
- Clinical Research Centre, Graylands Hospital, North Metropolitan Health Service-Mental Health, Perth, Western Australia, Australia.,School of Psychological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Joseph M Barnby
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jan Dirk Blom
- Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands.,Parnassia Psychiatric Institute, The Hague, The Netherlands.,Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Yang TX, Allen RJ, Waterman AH, Zhang SY, Su XM, Chan RCK. Comparing motor imagery and verbal rehearsal strategies in children's ability to follow spoken instructions. J Exp Child Psychol 2020; 203:105033. [PMID: 33278801 DOI: 10.1016/j.jecp.2020.105033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 11/15/2022]
Abstract
The ability to follow spoken instructions is critical for children's learning in school and relies on the storage and processing of information in working memory. This study compared the effects of two encoding strategies (motor imagery and verbal rehearsal) on children's ability to follow spoken instructions in a working memory paradigm. A total of 146 children aged 7-12 years completed an instruction span task. In this task, children listened to a series of action-object commands and encoded them by either motor imagery or verbal rehearsal. They then attempted to recall the sequence in serial order by either enacted recall or verbal recall. Overall, children's ability to follow spoken instructions increased with age. In all age groups, children showed superior recall of instructions when they imagined the actions compared with verbal rehearsal of the actions during encoding, and this benefit of motor imagery was similar for verbal recall and enacted recall. Younger children reported motor imagery as more helpful than verbal rehearsal for remembering instructions, whereas older children considered verbal rehearsal as more useful. The study provides novel evidence for motor imagery as a superior strategy (relative to verbal rehearsal) for remembering spoken instructions in school-age children.
Collapse
Affiliation(s)
- Tian-Xiao Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Richard J Allen
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shi-Yu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Su
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Wriessnegger SC, Müller-Putz GR, Brunner C, Sburlea AI. Inter- and Intra-individual Variability in Brain Oscillations During Sports Motor Imagery. Front Hum Neurosci 2020; 14:576241. [PMID: 33192406 PMCID: PMC7662155 DOI: 10.3389/fnhum.2020.576241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of this work was to re-evaluate electrophysiological data from a previous study on motor imagery (MI) with a special focus on observed inter- and intra-individual differences. More concretely, we investigated event-related desynchronization/synchronization patterns during sports MI (playing tennis) compared with simple MI (squeezing a ball) and discovered high variability across participants. Thirty healthy volunteers were divided in two groups; the experimental group (EG) performed a physical exercise between two imagery sessions, and the control group (CG) watched a landscape movie without physical activity. We computed inter-individual differences by assessing the dissimilarities among subjects for each group, condition, time period, and frequency band. In the alpha band, we observe some clustering in the ranking of the subjects, therefore showing smaller distances than others. Moreover, in our statistical evaluation, we observed a consistency in ranking across time periods both for the EG and for the CG. For the latter, we also observed similar rankings across conditions. On the contrary, in the beta band, the ranking of the subjects was more similar for the EG across conditions and time periods than for the subjects of the CG. With this study, we would like to draw attention to variability measures instead of primarily focusing on the identification of common patterns across participants, which often do not reflect the whole neurophysiological reality.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | | | - Andreea I Sburlea
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
30
|
Tosi G, Parmar J, Dhillon I, Maravita A, Iaria G. Body illusion and affordances: the influence of body representation on a walking imagery task in virtual reality. Exp Brain Res 2020; 238:2125-2136. [PMID: 32661651 DOI: 10.1007/s00221-020-05874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
It is well known that our body works as a fundamental reference when we perform visuo-perceptual judgements in spatial surroundings, and that body illusions can modify our perception of size and distance of objects in space. To date, however, few studies have evaluated whether or not a body illusion could have a significant impact on the way individuals perceive to move within the environment. Here, we used a full-body illusion paradigm to verify the hypothesis that an altered representation of the legs of the individuals influences their time-to-walk estimation while imaging to reach objects in a virtual environment. To do so, we asked a group of young healthy volunteers to perform a task in which they were required to imagine walking towards a previously seen target location in a virtual environment, soon after receiving the body illusion; we required participants to use a response button to time their imagined walk from start to end. We found that participants imagined walking faster following the illusion elicited by the vision of longer legs presented from an anatomical perspective, as compared to when experiencing standard legs in the same position.This difference in imagined walking distance decreased when the object to reach was displayed farther, suggesting a fading effect. Furthermore, taking into consideration the baseline error in walking time estimation in VR, we noticed a specific influence of the long anatomical legs in reducing the perceived time needed to reach an object and a general increase in the percentage of error when the same legs are presented in a non-anatomical orientation. These findings provide evidence that body illusions could influence the way individuals perceive their locomotion in the spatial surrounding.
Collapse
Affiliation(s)
- Giorgia Tosi
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
- Department of Psychology, Università degli Studi di Milano, Building U6, Room 3170c, Piazza dell'Ateneo Nuovo 1, 20126, Bicocca, Milan, Italy.
| | - Jassleen Parmar
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Inderpreet Dhillon
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Angelo Maravita
- Department of Psychology, Università degli Studi di Milano, Building U6, Room 3170c, Piazza dell'Ateneo Nuovo 1, 20126, Bicocca, Milan, Italy
- NeuroMi - Milan Center for Neuroscience, Università degli Studi di Milano, Bicocca, Milan, Italy
| | - Giuseppe Iaria
- NeuroLab, Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
31
|
Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms. Neuroimage 2020; 218:116981. [DOI: 10.1016/j.neuroimage.2020.116981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
|
32
|
Burianová H, Marstaller L, Rich AN, Williams MA, Savage G, Ryan M, Sowman PF. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 2020; 146:107539. [PMID: 32629033 DOI: 10.1016/j.neuropsychologia.2020.107539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Age-related decline in motor function is associated with over-activation of the sensorimotor circuitry. Using a multimodal MEG-fMRI paradigm, we investigated whether this neural over-recruitment in old age would be related to changes in movement-related beta desynchronization (MRBD), a correlate of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and whether it would characterize compensatory recruitment or a reduction in neural specialization (dedifferentiation). We used MEG to assess age-related changes in beta band oscillations in primary motor cortices, fMRI to localize age-related changes in brain activity, and the Finger Configuration Task to measure task performance during overt and covert motor processing: motor execution (ME) and motor imagery (MI). The results are threefold: first, showing age-related neuroplasticity during ME of older adults, compared to young adults, as evidenced by increased MRBD in motor cortices and over-recruitment of sensorimotor areas; second, showing similar age-related neuroplastic changes during MI; and finally, showing signs of dedifferentiation during ME in older adults whose performance negatively correlated with connectivity to bilateral primary motor cortex. Together, these findings demonstrate that elevated MRBD levels, reflecting greater GABAergic inhibitory activity, and over-activation of the sensorimotor network during ME may not be compensatory, but rather might reflect an age-related decline of the quality of the underlying neural signal.
Collapse
Affiliation(s)
- Hana Burianová
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia.
| | - Lars Marstaller
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
| | - Anina N Rich
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Mark A Williams
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Psychology, Macquarie University, Sydney, Australia
| | - Margaret Ryan
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
33
|
Bouguetoch A, Grosprêtre S, Martin A. Optimal stimulation parameters for spinal and corticospinal excitabilities during contraction, motor imagery and rest: A pilot study. PLoS One 2020; 15:e0235074. [PMID: 32569326 PMCID: PMC7307756 DOI: 10.1371/journal.pone.0235074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/07/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives It is commonly accepted that motor imagery (MI), i.e. the mental simulation of a movement, leads to an increased size of cortical motor evoked potentials (MEPs), although the magnitude of this effect differs between studies. Its impact on the spinal level is even more variable in the literature. Such discrepancies may be explained by many different experimental approaches. Therefore, the question of the optimal stimulation parameters to assess both spinal and corticospinal excitabilities remains open. Methods H-reflexes and MEPs of the triceps surae were evoked in 11 healthy subjects during MI, weak voluntary contraction (CON) and rest (REST). In each condition, the full recruitment curve from the response threshold to maximal potential was investigated. Results At stimulation intensities close to the maximal response, MEP amplitude was increased by CON compared to REST on the triceps surae. No effect of the different conditions was found on the H-reflex recruitment curve, except a small variation beyond maximal H-reflex in the soleus muscle. Conclusion Based on our results, we recommend to assess corticospinal excitability between 70% and 100% of maximal MEP intensity instead of the classical use of a percentage of the motor threshold and to elicit H-reflexes on the ascending part of the recruitment curve.
Collapse
Affiliation(s)
- Amandine Bouguetoch
- Cognition, Action and Sensorimotor Plasticity [CAPS], INSERM, University of Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| | - Sidney Grosprêtre
- EA-4660 C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, Besancon, France
| | - Alain Martin
- Cognition, Action and Sensorimotor Plasticity [CAPS], INSERM, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
34
|
Krüger B, Zabicki A, Grosse L, Naumann T, Munzert J. Sensory features of mental images in the framework of human actions. Conscious Cogn 2020; 83:102970. [PMID: 32540626 DOI: 10.1016/j.concog.2020.102970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022]
Abstract
What determines the sensory impression of a self-generated motor image? Motor imagery is a process in which subjects imagine executing a body movement with a strong kinesthetic and/or visual component from a first-person perspective. Both sensory modalities can be combined flexibly to form a motor image. 90 participants of varying ages had to freely generate motor images from a large set of movements. They were asked to rate their kinesthetic as well as their visual impression, the perceived vividness, and their personal experience with the imagined movement. Data were subjected to correlational analyses, linear regressions, and representation similarity analyses. Results showed that both action characteristics and experience drove the sensory impression of motor images with a strong individual component. We conclude that imagining actions that impose varying demands can be considered as reexperiencing actions by using one's own sensorimotor representations that represent not only individual experience but also action demands.
Collapse
Affiliation(s)
- Britta Krüger
- NemoLab - Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Germany.
| | - Adam Zabicki
- NemoLab - Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Germany
| | - Lars Grosse
- NemoLab - Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Germany
| | - Tim Naumann
- NemoLab - Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Germany
| | - Jörn Munzert
- NemoLab - Neuromotor Behavior Laboratory, Justus Liebig University Giessen, Germany
| |
Collapse
|
35
|
The role of mental imagery in pantomimes of actions towards and away from the body. PSYCHOLOGICAL RESEARCH 2020; 85:1408-1417. [PMID: 32451629 DOI: 10.1007/s00426-020-01359-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to explore the relationship between action execution and mental rotation modalities. To this end, pantomime gesture (i.e. the mime of the use of an object) was used as its execution relies on imagery processes. Specifically, we tried to clarify the role of visuo-spatial or motor and body-related mental imagery processes in pantomime gestures performed away (AB, e.g. drawing on a sheet) and towards the body (TB, e.g. brushing the teeth). We included an "actual use" condition in which participants were asked to use a toothbrush and make 3, 6, or 9 circular movements close to their mouth (as if they were brushing their teeth) or to use a pencil and make 3, 6, or 9 circular movements on a desk (as if they were drawing circles). Afterwards, participants were asked to pantomime the actual use of the same objects ("pantomime" condition). Finally, they were asked to mentally rotate three different stimuli: hands, faces, and abstract lines. Results showed that participants were faster in AB than TB pantomimes. Moreover, the more accurate and faster the mental rotation of body-related stimuli was, the more similar the temporal duration between both kinds of pantomimes and the actual use of the objects appeared. Instead, the temporal similarity between AB pantomimes and pencil actual use, as well as, the duration of AB pantomime and actual use, were associated with the ability to mentally rotate abstract lines. This was not true for TB movements. These results suggest that the execution of AB and TB pantomimes may involve different mental imagery modalities. Specifically, AB pantomimes would not only require to mentally manipulate images of body-parts in movement but also represent the spatial relations of the object with the external world.
Collapse
|
36
|
Kraeutner SN, Stratas A, McArthur JL, Helmick CA, Westwood DA, Boe SG. Neural and Behavioral Outcomes Differ Following Equivalent Bouts of Motor Imagery or Physical Practice. J Cogn Neurosci 2020; 32:1590-1606. [PMID: 32420839 DOI: 10.1162/jocn_a_01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite its reported effectiveness for the acquisition of motor skills, we know little about how motor imagery (MI)-based brain activation and performance evolves when MI (the imagined performance of a motor task) is used to learn a complex motor skill compared to physical practice (PP). The current study examined changes in MI-related brain activity and performance driven by an equivalent bout of MI- or PP-based training. Participants engaged in 5 days of either MI or PP of a dart-throwing task. Brain activity (via fMRI) and performance-related outcomes were obtained using a pre/post/retention design. Relative to PP, MI-based training did not drive robust changes in brain activation and was inferior for realizing improvements in performance: Greater activation in regions critical to refining the motor program was observed in the PP versus MI group posttraining, and relative to those driven via PP, MI led only to marginal improvements in performance. Findings indicate that the modality of practice (i.e., MI vs. PP) used to learn a complex motor skill manifests as differences in both resultant patterns of brain activity and performance. Ultimately, by directly comparing brain activity and behavioral outcomes after equivalent training through MI versus PP, this work provides unique knowledge regarding the neural mechanisms underlying learning through MI.
Collapse
|
37
|
Daeglau M, Wallhoff F, Debener S, Condro IS, Kranczioch C, Zich C. Challenge Accepted? Individual Performance Gains for Motor Imagery Practice with Humanoid Robotic EEG Neurofeedback. SENSORS 2020; 20:s20061620. [PMID: 32183285 PMCID: PMC7146190 DOI: 10.3390/s20061620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
Abstract
Optimizing neurofeedback (NF) and brain–computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user’s control ability from neurophysiological or psychological measures. In comparison, how context factors influence NF/BCI performance is largely unexplored. We here investigate whether a competitive multi-user condition leads to better NF/BCI performance than a single-user condition. We implemented a foot motor imagery (MI) NF with mobile electroencephalography (EEG). Twenty-five healthy, young participants steered a humanoid robot in a single-user condition and in a competitive multi-user race condition using a second humanoid robot and a pseudo competitor. NF was based on 8–30 Hz relative event-related desynchronization (ERD) over sensorimotor areas. There was no significant difference between the ERD during the competitive multi-user condition and the single-user condition but considerable inter-individual differences regarding which condition yielded a stronger ERD. Notably, the stronger condition could be predicted from the participants’ MI-induced ERD obtained before the NF blocks. Our findings may contribute to enhance the performance of NF/BCI implementations and highlight the necessity of individualizing context factors.
Collapse
Affiliation(s)
- Mareike Daeglau
- Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (C.K.); (C.Z.)
- Correspondence:
| | - Frank Wallhoff
- Institute for Assistive Technologies, Jade University of Applied Science, 26389 Oldenburg, Germany; (F.W.); (I.S.C.)
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany;
- Cluster of Excellence Hearing4All, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Ignatius Sapto Condro
- Institute for Assistive Technologies, Jade University of Applied Science, 26389 Oldenburg, Germany; (F.W.); (I.S.C.)
| | - Cornelia Kranczioch
- Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (C.K.); (C.Z.)
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Catharina Zich
- Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany; (C.K.); (C.Z.)
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
| |
Collapse
|
38
|
Orlandi A, Arno E, Proverbio AM. The Effect of Expertise on Kinesthetic Motor Imagery of Complex Actions. Brain Topogr 2020; 33:238-254. [PMID: 32112306 DOI: 10.1007/s10548-020-00760-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/23/2020] [Indexed: 12/25/2022]
Abstract
The ability to mentally simulate an action by recalling the body sensations relative to the real execution is referred to as kinesthetic motor imagery (MI). Frontal and parietal motor-related brain regions are generally engaged during MI. The present study aimed to investigate the time course and neural correlates of complex action imagery and possible effects of expertise on the underlying action representation processes. Professional ballet dancers and controls were presented with effortful and effortless ballet steps and instructed to mentally reproduce each movement during EEG recording. Time-locked MI was associated with an Anterior Negativity (AN) component (400-550 ms) that was larger in dancers relative to controls. The AN was differentially modulated by the motor content (effort) as a function of ballet expertise. It was more negative in response to effortful (than effortless) movements in control participants only. This effect also had a frontal distribution in controls and a centro-parietal distribution in dancers, as shown by the topographic maps of the scalp voltage. The source reconstruction (swLORETA) of the recorded potentials in the AN time-window showed enhanced engagement of prefrontal regions in controls (BA 10/47) relative to dancers, and occipitotemporal (BA 20) and bilateral sensorimotor areas in dancers (BA6/40) compared with controls. This evidence seems to suggest that kinesthetic MI of complex action relied on visuomotor simulation processes in participants with acquired dance expertise. Simultaneously, increased cognitive demands occurred in participants lacking in motor knowledge with the specific action. Hence, professional dance training may lead to refined action representation processes.
Collapse
Affiliation(s)
- Andrea Orlandi
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy.
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| | - Elisa Arno
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| | - Alice Mado Proverbio
- Department of Psychology, Neuro-MI, Milan Center for Neuroscience, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
39
|
Daeglau M, Zich C, Emkes R, Welzel J, Debener S, Kranczioch C. Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization. Front Psychol 2020; 11:57. [PMID: 32116896 PMCID: PMC7012900 DOI: 10.3389/fpsyg.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/09/2020] [Indexed: 01/27/2023] Open
Abstract
For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI.
Collapse
Affiliation(s)
- Mareike Daeglau
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Catharina Zich
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Reiner Emkes
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Julius Welzel
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Debener
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4All, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Papitto G, Friederici AD, Zaccarella E. The topographical organization of motor processing: An ALE meta-analysis on six action domains and the relevance of Broca's region. Neuroimage 2019; 206:116321. [PMID: 31678500 DOI: 10.1016/j.neuroimage.2019.116321] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Action is a cover term used to refer to a large set of motor processes differing in domain specificities (e.g. execution or observation). Here we review neuroimaging evidence on action processing (N = 416; Subjects = 5912) using quantitative Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modeling (MACM) approaches to delineate the functional specificities of six domains: (1) Action Execution, (2) Action Imitation, (3) Motor Imagery, (4) Action Observation, (5) Motor Learning, (6) Motor Preparation. Our results show distinct functional patterns for the different domains with convergence in posterior BA44 (pBA44) for execution, imitation and imagery processing. The functional connectivity network seeding in the motor-based localized cluster of pBA44 differs from the connectivity network seeding in the (language-related) anterior BA44. The two networks implement distinct cognitive functions. We propose that the motor-related network encompassing pBA44 is recruited when processing movements requiring a mental representation of the action itself.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
41
|
Xu K, Huang YY, Duann JR. The Sensitivity of Single-Trial Mu-Suppression Detection for Motor Imagery Performance as Compared to Motor Execution and Motor Observation Performance. Front Hum Neurosci 2019; 13:302. [PMID: 31543766 PMCID: PMC6728805 DOI: 10.3389/fnhum.2019.00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) has been widely used to operate brain-computer interface (BCI) systems for rehabilitation and some life assistive devices. However, the current performance of an MI-based BCI cannot fully meet the needs of its in-field applications. Most of the BCIs utilizing a generalized feature for all participants have been found to greatly hamper the efficacy of the BCI system. Hence, some attempts have made on the exploration of subject-dependent parameters, but it remains challenging to enhance BCI performance as expected. To this end, in this study, we used the independent component analysis (ICA), which has been proved capable of isolating the pure motor-related component from non-motor-related brain processes and artifacts and extracting the common motor-related component across MI, motor execution (ME), and motor observation (MO) conditions. Then, a sliding window approach was used to detect significant mu-suppression from the baseline using the electroencephalographic (EEG) alpha power time course and, thus, the success rate of the mu-suppression detection could be assessed on a single-trial basis. By comparing the success rates using different parameters, we further quantified the extent of the improvement in each motor condition to evaluate the effectiveness of both generalized and individualized parameters. The results showed that in ME condition, the success rate under individualized latency and that under generalized latency was 90.0% and 77.75%, respectively; in MI condition, the success rate was 74.14% for individual latency and 58.47% for generalized latency, and in MO condition, the success rate was 67.89% and 61.26% for individual and generalized latency, respectively. As can be seen, the success rate in each motor condition was significantly improved by utilizing an individualized latency compared to that using the generalized latency. Moreover, the comparison of the individualized window latencies for the mu-suppression detection across different runs of the same participant as well as across different participants showed that the window latency was significantly more consistent in the intra-subject than in the inter-subject settings. As a result, we proposed that individualizing the latency for detecting the mu-suppression feature for each participant might be a promising attempt to improve the MI-based BCI performance.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Yu-Yu Huang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
42
|
Wu Q, Zhang Y, Liu J, Sun J, Cichocki A, Gao F. Regularized Group Sparse Discriminant Analysis for P300-Based Brain–Computer Interface. Int J Neural Syst 2019; 29:1950002. [DOI: 10.1142/s0129065719500023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Event-related potentials (ERPs) especially P300 are popular effective features for brain–computer interface (BCI) systems based on electroencephalography (EEG). Traditional ERP-based BCI systems may perform poorly for small training samples, i.e. the undersampling problem. In this study, the ERP classification problem was investigated, in particular, the ERP classification in the high-dimensional setting with the number of features larger than the number of samples was studied. A flexible group sparse discriminative analysis algorithm based on Moreau–Yosida regularization was proposed for alleviating the undersampling problem. An optimization problem with the group sparse criterion was presented, and the optimal solution was proposed by using the regularized optimal scoring method. During the alternating iteration procedure, the feature selection and classification were performed simultaneously. Two P300-based BCI datasets were used to evaluate our proposed new method and compare it with existing standard methods. The experimental results indicated that the features extracted via our proposed method are efficient and provide an overall better P300 classification accuracy compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Qiang Wu
- School of Information Science and Engineering, Shandong University, Jinan, Shandong, P. R. China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
| | - Yu Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Ju Liu
- School of Information Science and Engineering, Shandong University, Jinan, Shandong, P. R. China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, P. R. China
| | - Jiande Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, P. R. China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology (SKOLTECH), Skolkovo, 143026 Moscow, Russia
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China
- Department of Informatics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, 87-100 Toruń, Poland
- Systems Research Institute of the Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
| | - Feng Gao
- School of Electrical Engineering, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
43
|
Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci Rep 2019; 9:9838. [PMID: 31285468 PMCID: PMC6614413 DOI: 10.1038/s41598-019-46310-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
The understanding of neurophysiological mechanisms responsible for motor imagery (MI) is essential for the development of brain-computer interfaces (BCI) and bioprosthetics. Our magnetoencephalographic (MEG) experiments with voluntary participants confirm the existence of two types of motor imagery, kinesthetic imagery (KI) and visual imagery (VI), distinguished by activation and inhibition of different brain areas in motor-related α- and β-frequency regions. Although the brain activity corresponding to MI is usually observed in specially trained subjects or athletes, we show that it is also possible to identify particular features of MI in untrained subjects. Similar to real movement, KI implies muscular sensation when performing an imaginary moving action that leads to event-related desynchronization (ERD) of motor-associated brain rhythms. By contrast, VI refers to visualization of the corresponding action that results in event-related synchronization (ERS) of α- and β-wave activity. A notable difference between KI and VI groups occurs in the frontal brain area. In particular, the analysis of evoked responses shows that in all KI subjects the activity in the frontal cortex is suppressed during MI, while in the VI subjects the frontal cortex is always active. The accuracy in classification of left-arm and right-arm MI using artificial intelligence is similar for KI and VI. Since untrained subjects usually demonstrate the VI imagery mode, the possibility to increase the accuracy for VI is in demand for BCIs. The application of artificial neural networks allows us to classify MI in raising right and left arms with average accuracy of 70% for both KI and VI using appropriate filtration of input signals. The same average accuracy is achieved by optimizing MEG channels and reducing their number to only 13.
Collapse
|
44
|
Christakou A, Vasileiadis G, Kapreli E. Motor imagery as a method of maintaining performance in pianists during forced non-practice: a single case study. Physiother Theory Pract 2019; 37:540-548. [PMID: 31267825 DOI: 10.1080/09593985.2019.1636917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Musicians suffer from upper limb playing-related musculoskeletal disorders that often oblige them to periodic inactivity. Objectives: To assess the effectiveness of motor imagery as a means of practice when the physical piano practice is restricted. Methods: A 17-year-old healthy pianist participated in a single subject case study with a multiple baseline design (ABC design). Performance ability was assessed during a period of the no practice, then a period of performing motor imagery and again during a period of another no practice. Assessments were performed subjectively by a professional piano teacher and objectively by the Synthesia software. Three visual analog scales were used to record stress, fatigue, and general psychological state. The participant's motor imagery ability was recorded by the use of the Movement Imagery Questionnaire. Results: There was a statistically significant reduction in performance after no practice. There was no change in performance during motor imagery intervention. The pianist's scores moderately correlated with the general psychological state. The Synthesia scoring presented high correlations with professional piano teacher scoring. Conclusions: Motor imagery seemed to have a positive effect in maintaining the musician's performance level. Synthesia shows promise as an outcome measure for assessing music performance, although further research is needed.
Collapse
Affiliation(s)
- Anna Christakou
- Physiotherapy Department, University of Western Attica, Athens, Greece, General Hospital of Athens "Euagelismos", Greece
| | | | - Eleni Kapreli
- Physiotherapy Department, TEI of Sterea Ellada, Lamia, Greece
| |
Collapse
|
45
|
Thomas BJ, Gill DM, Pointon G, Creem-Regehr SH. What Perceivers Know About Their Own Affordance Perception: Post Hoc Evaluations of Perceptual Processes Do Not Relate to Accuracy. AMERICAN JOURNAL OF PSYCHOLOGY 2019. [DOI: 10.5406/amerjpsyc.132.2.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
In 2 studies, we sought to investigate participants’ awareness of their own cognitive process when perceiving affordances (i.e., action capabilities) and whether their evaluations of this process relate to affordance perception accuracy. In Study 1, we combined data from 8 experiments and created a coding scheme designed to capture the unique features of different affordance perception theories within these post hoc evaluations. We then tested whether the perceptual process that participants reported was related to the accuracy of their judgments. We found that evaluations were distributed fairly evenly across the themes. We also found no relationship between the evaluations and accuracy. In Study 2, we conducted an experiment that specifically addressed our hypotheses about awareness and affordance perception accuracy, while controlling for confounds in Study 1. The greater detail participants gave about their cognitive strategy produced reports that largely did not relate to affordance perception theories. Participants used one of a few strategies aimed at estimating their body dimensions. Our results suggest that awareness of the perceptual process has no influence on the accuracy of affordance perception. It is likely that subjective reports of affordance perceptual process, though clear to the perceiver, are not related to the process itself.
Collapse
|
46
|
Kanokwan S, Pramkamol W, Wipatcharee K, Warissara W, Siwarit R, Sompiya S, Onuma B, Mitra S. Age-related differences in brain activity during physical and imagined sit-to-stand in healthy young and older adults. J Phys Ther Sci 2019; 31:440-448. [PMID: 31164782 PMCID: PMC6511512 DOI: 10.1589/jpts.31.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate whether healthy young and older
people differ in self-reported movement time and brain activity pattern as indicated by
electroencephalography during physical and imagined sit-to-stand movements. [Participants
and Methods] Twenty healthy young (aged 20–29 years) and 19 older (aged 60–69)
participants performed physical and imagined sit-to-stand movements while their
self-reported movement times and electroencephalography were recorded. [Results] No
age-related differences were found in self-reported movement time for physical or imagined
sit-to-stand. In the frontal and temporal regions, electroencephalography showed a beta
wave (14–17 Hz) for all conditions in both young and older adults. In the parietal and
occipital regions, during physical sit-to-stand trials, both groups showed a beta wave in
both regions. During imagined sit-to-stand trials, however, young participants showed a
high alpha wave (10.6–13 Hz) in the parietal and a low alpha wave (8–10.5 Hz) in the
occipital region, whereas older participants showed all three (alpha and beta) waves in
the parietal and occipital regions. [Conclusion] Although no age-related differences were
found in the ability to generate motor imagery, brain activity pattern as indicated by
electroencephalography was dissimilar between young and older participants during motor
imagery.
Collapse
Affiliation(s)
- Srisupornkornkool Kanokwan
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Wongcheen Pramkamol
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Klongkhayan Wipatcharee
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Warnjing Warissara
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | | | - Somthavil Sompiya
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Boonyarom Onuma
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Suvobrata Mitra
- Division of Psychology, Nottingham Trent University, United Kingdom
| |
Collapse
|
47
|
Santoro S, Lo Buono V, Corallo F, Cartella E, Micchia K, Palmeri R, Arcadi FA, Bramanti A, Marino S. Motor imagery in stroke patients: a descriptive review on a multidimensional ability. Int J Neurosci 2019; 129:821-832. [DOI: 10.1080/00207454.2019.1567509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simona Santoro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Emanuele Cartella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Katia Micchia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Rosanna Palmeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | | | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
48
|
Iachini T, Ruggiero G, Bartolo A, Rapuano M, Ruotolo F. The Effect of Body-Related Stimuli on Mental Rotation in Children, Young and Elderly Adults. Sci Rep 2019; 9:1169. [PMID: 30718610 PMCID: PMC6362092 DOI: 10.1038/s41598-018-37729-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
This study aimed to explore the development of mental rotation ability throughout life by comparing different kinds of stimuli. Thirty-six children (6-9 years-old), 30 young (20-28 years-old) and 30 elderly people (60-82 years-old) performed mental rotation tasks with abstract (i.e. two-dimensional lines) and concrete stimuli (i.e. hands, human/animal faces). The results showed that overall young people outperformed children and elderly people, while children were less accurate than the elderly. However, the effect of age was shaped by the kinds of stimuli: (a) young people were more accurate than children and elderly people particularly with abstract stimuli; (b) elderly people improved their performance with images depicting faces; (c) children performed better with body-related stimuli than animal faces. Finally, performance was more difficult when stimuli were rotated by 180°, especially for younger and older females. We may conclude that the effects of age are modulated by the characteristics of the stimuli with a specific difficulty for abstract stimuli and a facilitation for concrete stimuli. As an innovative aspect, during childhood there appeared a specific facilitation for body-related stimuli, not just for concrete ones. These findings are interpreted according to embodied models of cognitive development and the effects of ageing on the brain.
Collapse
Affiliation(s)
- Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Bartolo
- University of Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, 59000, Lille, France
- Institut Universitaire de France, Paris, France
| | - Mariachiara Rapuano
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Ruotolo
- University of Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, 59000, Lille, France
| |
Collapse
|
49
|
Schulz L, Ischebeck A, Wriessnegger SC, Steyrl D, Müller-Putz GR. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Brain Cogn 2018; 124:37-46. [PMID: 29723681 DOI: 10.1016/j.bandc.2018.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Imagining a complex action requires not only motor-related processing but also visuo-spatial imagery. In the current study, we examined visuo-spatial complexity and action affordances in motor imagery (MI). Using functional magnetic resonance imaging, we investigated the neural activity in MI of reach-to-grasp movements of the right hand in five conditions. Thirty participants were scanned while imagining grasping an everyday object, grasping a geometrical shape, grasping next to an everyday object, grasping next to a geometrical shape, and grasping at nothing (no object involved). We found that MI of grasping next to an object recruited the visuo-spatial cognition network including posterior parietal and premotor regions more strongly than MI of grasping an object. This indicates that grasping next to an object requires additional processing resources rendering MI more complex. MI of a grasping movement involving a familiar everyday object compared to a geometrical shape yielded stronger activation in motor-related regions, including the bilateral supplementary motor area. This activation might be due to inhibitory processes preventing motor execution of motor scripts evoked by everyday objects (action affordances). Our results indicate that visuo-spatial cognition plays a significant role in MI.
Collapse
Affiliation(s)
- Laura Schulz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - David Steyrl
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| |
Collapse
|
50
|
Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors. J Neurosci 2018; 38:4521-4530. [PMID: 29650698 DOI: 10.1523/jneurosci.3601-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022] Open
Abstract
Failures to obtain reward can occur from errors in action selection or action execution. Recently, we observed marked differences in choice behavior when the failure to obtain a reward was attributed to errors in action execution compared with errors in action selection (McDougle et al., 2016). Specifically, participants appeared to solve this credit assignment problem by discounting outcomes in which the absence of reward was attributed to errors in action execution. Building on recent evidence indicating relatively direct communication between the cerebellum and basal ganglia, we hypothesized that cerebellar-dependent sensory prediction errors (SPEs), a signal indicating execution failure, could attenuate value updating within a basal ganglia-dependent reinforcement learning system. Here we compared the SPE hypothesis to an alternative, "top-down" hypothesis in which changes in choice behavior reflect participants' sense of agency. In two experiments with male and female human participants, we manipulated the strength of SPEs, along with the participants' sense of agency in the second experiment. The results showed that, whereas the strength of SPE had no effect on choice behavior, participants were much more likely to discount the absence of rewards under conditions in which they believed the reward outcome depended on their ability to produce accurate movements. These results provide strong evidence that SPEs do not directly influence reinforcement learning. Instead, a participant's sense of agency appears to play a significant role in modulating choice behavior when unexpected outcomes can arise from errors in action execution.SIGNIFICANCE STATEMENT When learning from the outcome of actions, the brain faces a credit assignment problem: Failures of reward can be attributed to poor choice selection or poor action execution. Here, we test a specific hypothesis that execution errors are implicitly signaled by cerebellar-based sensory prediction errors. We evaluate this hypothesis and compare it with a more "top-down" hypothesis in which the modulation of choice behavior from execution errors reflects participants' sense of agency. We find that sensory prediction errors have no significant effect on reinforcement learning. Instead, instructions influencing participants' belief of causal outcomes appear to be the main factor influencing their choice behavior.
Collapse
|