1
|
Zhang ZN, Long L, Zhao XT, Shang SZ, Xu FC, Zhao JR, Hu GY, Mi LY, Song CP, Gao W. The dual role of GoPGF reveals that the pigment glands are synthetic sites of gossypol in aerial parts of cotton. THE NEW PHYTOLOGIST 2024; 241:314-328. [PMID: 37865884 DOI: 10.1111/nph.19331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.
Collapse
Affiliation(s)
- Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, China
| | - Ling-Yu Mi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Peng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Kaifeng, Henan, 475004, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
2
|
Chhalodia AK, Xu H, Tabekoueng GB, Gu B, Taizoumbe KA, Lauterbach L, Dickschat JS. Functional characterisation of twelve terpene synthases from actinobacteria. Beilstein J Org Chem 2023; 19:1386-1398. [PMID: 37736393 PMCID: PMC10509563 DOI: 10.3762/bjoc.19.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Fifteen type I terpene synthase homologs from diverse actinobacteria that were selected based on a phylogenetic analysis of more than 4000 amino acid sequences were investigated for their products. For four enzymes with functions not previously reported from bacterial terpene synthases the products were isolated and their structures were elucidated by NMR spectroscopy, resulting in the discovery of the first terpene synthases for (+)-δ-cadinol and (+)-α-cadinene, besides the first two bacterial (-)-amorpha-4,11-diene synthases. For other terpene synthases with functions reported from bacteria before the products were identified by GC-MS. The characterised enzymes include a new epi-isozizaene synthase with monoterpene synthase side activity, a 7-epi-α-eudesmol synthase that also produces hedycaryol and germacrene A, and four more sesquiterpene synthases that produce mixtures of hedycaryol and germacrene A. Three phylogenetically related enzymes were in one case not expressed and in two cases inactive, suggesting pseudogenisation in the respective branch of the phylogenetic tree. Furthermore, a diterpene synthase for allokutznerene and a sesterterpene synthase for sesterviolene were identified.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Georges B Tabekoueng
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Binbin Gu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Kizerbo A Taizoumbe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
3
|
Wen T, Xu X, Ren A, Zhao G, Wu J. Genome-wide identification of terpenoid synthase family genes in Gossypium hirsutum and functional dissection of its subfamily cadinene synthase A in gossypol synthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1162237. [PMID: 37180387 PMCID: PMC10169749 DOI: 10.3389/fpls.2023.1162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Plant terpenoid synthase (TPS) family genes participate in metabolite synthesis, hormones, gossypol, etc. Here, we genome-widely identified TPS family genes in 12 land plant species. Four hundred and thirty TPS-related genes were divided into seven subfamilies. The TPS-c in Bryophytes was suggested to be the earliest subfamily, followed by the TPS-e/f and TPS-h presence in ferns. TPS-a, the largest number of genes, was derived from monocotyledonous and dicotyledonous plants. Collinearity analysis showed that 38 out of the 76 TPS genes in G. hirsutum were collinear within G. arboreum and G. raimondii. Twenty-one GhTPS-a genes belong to the cadinene synthase (GhCDN) subfamily and were divided into five groups, A, B, C, D, and E. The special cis-elements in the promoters of 12 GhCDN-A genes suggested that the JA and ethylene signaling pathways may be involved in their expression regulation. When 12 GhCDN-A genes were simultaneously silenced through virus-induced gene silencing, the glandular color of GhCDN-A-silenced plants was lighter than that of the control, supported by a gossypol content decrease based on HPLC testing, suggesting that GhCDN-A subgroup genes participate in gossypol synthesis. According to RNA-seq analysis, gossypol synthesis-related genes and disease-resistant genes in the glandular variety exhibited upregulated expression compared to the glandless variety, whereas hormone signaling-related genes were downregulated. All in all, these results revealed plant TPS gene evolution rules and dissected the TPS subfamily, GhCDN-A, function in gossypol synthesis in cotton.
Collapse
Affiliation(s)
- Tianyang Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Duraiswamy A, Sneha A. NM, Jebakani K. S, Selvaraj S, Pramitha J. L, Selvaraj R, Petchiammal K. I, Kather Sheriff S, Thinakaran J, Rathinamoorthy S, Kumar P. R. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. FRONTIERS IN PLANT SCIENCE 2023; 13:1070398. [PMID: 36874916 PMCID: PMC9976781 DOI: 10.3389/fpls.2022.1070398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, β-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.
Collapse
Affiliation(s)
- Aishwarya Duraiswamy
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Nancy Mano Sneha A.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sherina Jebakani K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sellakumar Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Lydia Pramitha J.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramchander Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Indira Petchiammal K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sharmili Kather Sheriff
- Agronomy, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jenita Thinakaran
- Horticulture, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Samundeswari Rathinamoorthy
- Crop Physiology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramesh Kumar P.
- Plant Biochemistry, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
5
|
Pandeya D, Campbell LM, Puckhaber L, Suh C, Rathore KS. Gossypol and related compounds are produced and accumulate in the aboveground parts of the cotton plant, independent of roots as the source. PLANTA 2022; 257:21. [PMID: 36538120 DOI: 10.1007/s00425-022-04049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Use of Ultra-low gossypol cottonseed event as a scion in a graft combination confirmed that roots are not a source of terpenoids in the aboveground parts of a cotton plant. Gossypol and related terpenoids, derived from the same basic biosynthetic pathway, are present in the numerous lysigenous glands in the aboveground parts of a cotton plant. Roots, with sparse presence of such glands, do produce significant amount of gossypol and a different set of terpenoids. These compounds serve a defensive function against various pests and pathogens. This investigation was undertaken to examine whether gossypol produced in the roots can replenish the gossypol content of the cottonseed-glands that are largely devoid of this terpenoid in a genetically engineered event. Graft unions between a scion derived from the RNAi-based, Ultra-low gossypol cottonseed (ULGCS) event, TAM66274, and a rootstock derived from wild-type parental genotype, Coker 312 (Coker), were compared with various other grafts that served as controls. The results showed that the seeds developing within the scion of test grafts (ULGCS/Coker) continued to maintain the ultra-low gossypol levels found in the TAM66274 seeds. Molecular analyses confirmed that while the key gene involved in gland development showed normal activity in the developing embryos in the scion, two genes encoding the enzymes involved in gossypol biosynthesis were suppressed. Thus, the gene expression data confirmed the results obtained from biochemical measurements and collectively demonstrated that roots are not a source of gossypol for the aboveground parts of the cotton plant. These findings, combined with the results from previous investigations, support the assertion that gossypol and related terpenoids are produced in a highly localized manner in various organs of the cotton plant and are retained therein.
Collapse
Affiliation(s)
- Devendra Pandeya
- Department of Soil & Crop Sciences, Texas A & M University, College Station, TX, USA
| | - LeAnne M Campbell
- Department of Soil & Crop Sciences, Texas A & M University, College Station, TX, USA
| | - Lorraine Puckhaber
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Charles Suh
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Keerti S Rathore
- Department of Soil & Crop Sciences, Texas A & M University, College Station, TX, USA.
| |
Collapse
|
6
|
Zhang CP, Zhang JL, Sun ZR, Liu XY, Shu LZ, Wu H, Song Y, He DH. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene X 2022; 828:146462. [PMID: 35413394 DOI: 10.1016/j.gene.2022.146462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Terpenoids are widely distributed in plants and play important roles in the regulation of plant growth and development and in the interactions between plants and both the environment and other organisms. However, terpene synthase (TPS) genes have not been systematically investigated in the tetraploid Gossypium hirsutum. In this study, whole genome identification and characterization of the TPS family from G. hirsutum were carried out. Eighty-five TPS genes, including 47 previously unidentified genes, were identified in the G. hirsutum genome and classified into 5 subfamilies according to protein sequence similarities, as follows: 43 GhTPS-a, 29 GhTPS-b, 4 GhTPS-c, 7 GhTPS-e/f, and 2 GhTPS-g members. These 85 TPS genes were mapped onto 19 chromosomes of the G. hirsutum genome. Segmental duplications and tandem duplications contributed greatly to the expansion of TPS genes in G. hirsutum and were followed by intense purifying selection during evolution. Indentification of cis-acting regulatory elements suggest that the expression of TPS genes is regulated by a variety of hormones. RNA sequencing (RNA-seq) expression profile analysis revealed that the TPS genes had distinct spatiotemporal expression patterns, and several genes were highly and preferentially expressed in the leaves of cotton with gossypol glands (glanded cotton) versus a glandless strain. Virus-induced gene silencing (VIGS) of three TPS genes yielded plants characterized by fewer, smaller, and lighter gossypol glands, which indicated that these three genes were responsible for gland activity. Taken together, our results provide a solid basis for further elucidation of the biological functions of TPS genes in relation to gland activity and gossypol biosynthesis to develop cotton cultivars with low cottonseed gossypol contents.
Collapse
Affiliation(s)
- Cui-Ping Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jin-Li Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zheng-Ran Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiu-Yan Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Li-Zhe Shu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yin Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dao-Hua He
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Taxonomic Insights and Its Type Cyclization Correlation of Volatile Sesquiterpenes in Vitex Species and Potential Source Insecticidal Compounds: A Review. Molecules 2021; 26:molecules26216405. [PMID: 34770814 PMCID: PMC8587464 DOI: 10.3390/molecules26216405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Sesquiterpenes (SS) are secondary metabolites formed by the bonding of 3 isoprene (C5) units. They play an important role in the defense and signaling of plants to adapt to the environment, face stress, and communicate with the outside world, and their evolutionary history is closely related to their physiological functions. This review considers their presence and extensively summarizes the 156 sesquiterpenes identified in Vitextaxa, emphasizing those with higher concentrations and frequency among species and correlating with the insecticidal activities and defensive responses reported in the literature. In addition, we classify the SS based on their chemical structures and addresses cyclization in biosynthetic origin. Most relevant sesquiterpenes of the Vitex genus are derived from the germacredienyl cation mainly via bicyclogermacrene and germacrene C, giving rise to aromadrendanes, a skeleton with the highest number of representative compounds in this genus, and 6,9-guaiadiene, respectively, indicating the production of 1.10-cyclizing sesquiterpene synthases. These enzymes can play an important role in the chemosystematics of the genus from their corresponding routes and cyclizations, constituting a new approach to chemotaxonomy. In conclusion, this review is a compilation of detailed information on the profile of sesquiterpene in the Vitex genus and, thus, points to new unexplored horizons for future research.
Collapse
|
8
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Kumeta Y, Ito M. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture. J Nat Med 2016. [PMID: 27180085 DOI: 10.1007/s11418-016-0999-8#citeas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The resinous portions of Aquilaria and Gyrinops plants are known as 'agarwood' and have a distinctive fragrance. To examine the biosynthesis of these fragrant compounds, we previously established cell cultures of Aquilaria crassna in which the production of three sesquiterpenes (α-guaiene, α-humulene, and δ-guaiene) could be induced by methyl jasmonate (MJ), and showed that cloned δ-guaiene synthase from MJ-treated cells is involved in the synthesis of these three compounds, although only very small amounts of α-humulene are produced. In the present study, cDNAs encoding α-humulene synthases were also isolated. Three putative sesquiterpene synthase clones (AcHS1-3) isolated from the MJ-treated cells had very similar amino acid sequences and shared 52 % identity with δ-guaiene synthases. The recombinant enzymes catalyzed the formation of α-humulene as a major product. Expression of transcripts of the α-humulene synthase and δ-guaiene synthase genes in cultured cells increased after treatment with MJ. These results revealed that these α-humulene and δ-guaiene synthases are involved in the synthesis of three sesquiterpenes induced by MJ treatment.
Collapse
Affiliation(s)
- Yukie Kumeta
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture. J Nat Med 2016; 70:452-9. [DOI: 10.1007/s11418-016-0999-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
11
|
Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C. Gossypol: phytoalexin of cotton. SCIENCE CHINA-LIFE SCIENCES 2016; 59:122-9. [PMID: 26803304 DOI: 10.1007/s11427-016-5003-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/30/2022]
Abstract
Sesquiterpenoids are a class of 15-carbon secondary metabolites that play diverse roles in plant adaptation to environment. Cotton plants accumulate a large amount of sesquiterpene aldehydes (including gossypol) as phytoalexins against pathogens and herbivores. They are stored in pigment glands of aerial organs and in epidermal layers of roots. Several enzymes of gossypol biosynthesis pathway have been characterized, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and farnesyl diphosphate synthase (FPS) that catalyze the formation of the precursor farnesyl diphosphate (FPP), (+)-δ-cadinene synthase (CDN) which is the first enzyme committed to gossypol biosynthesis, and the downstream enzymes of CYP706B1 and methyltransferase. Expressions of these genes are tightly regulated during cotton plants development and induced by jasmonate and fungi elicitors. The transcription factor GaWRKY1 has been shown to be involved in gossypol pathway regulation. Recent development of new genomic platforms and methods and releases of diploid and tetraploid cotton genome sequences will greatly facilitate the elucidation of gossypol biosynthetic pathway and its regulation.
Collapse
Affiliation(s)
- Xiu Tian
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Juxin Ruan
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingbo Mao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602, China
| | - Changqing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
12
|
Abstract
This review summarises the characterised bacterial terpene cyclases and their products and discusses the enzyme mechanisms.
Collapse
Affiliation(s)
- Jeroen S. Dickschat
- University of Bonn
- Kekulé-Institute of Organic Chemistry and Biochemistry
- 53121 Bonn
- Germany
| |
Collapse
|
13
|
Tao T, Zhao L, Lv Y, Chen J, Hu Y, Zhang T, Zhou B. Transcriptome sequencing and differential gene expression analysis of delayed gland morphogenesis in Gossypium australe during seed germination. PLoS One 2013; 8:e75323. [PMID: 24073262 PMCID: PMC3779162 DOI: 10.1371/journal.pone.0075323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Gossypium is a globally important crop that is used to produce textiles, oil and protein. However, gossypol, which is found in cultivated cottonseed, is toxic to humans and non-ruminant animals. Efforts have been made to breed improved cultivated cotton with lower gossypol content. The delayed gland morphogenesis trait possessed by some Australian wild cotton species may enable the widespread, direct usage of cottonseed. However, the mechanisms about the delayed gland morphogenesis are still unknown. Here, we sequenced the first Australian wild cotton species (Gossypiumaustrale) and a diploid cotton species (Gossypiumarboreum) using the Illumina Hiseq 2000 RNA-seq platform to help elucidate the mechanisms underlying gossypol synthesis and gland development. Paired-end Illumina short reads were de novo assembled into 226,184, 213,257 and 275,434 transcripts, clustering into 61,048, 47,908 and 72,985 individual clusters with N50 lengths of 1,710 bp, 1544 BP and 1,743 bp, respectively. The clustered Unigenes were searched against three public protein databases (TrEMBL, SwissProt and RefSeq) and the nucleotide and protein sequences of Gossypiumraimondii using BLASTx and BLASTn. A total of 21,987, 17,209 and 25,325 Unigenes were annotated. Of these, 18,766 (85.4%), 14,552 (84.6%) and 21,374 (84.4%) Unigenes could be assigned to GO-term classifications. We identified and analyzed 13,884 differentially expressed Unigenes by clustering and functional enrichment. Terpenoid-related biosynthesis pathways showed differentially regulated expression patterns between the two cotton species. Phylogenetic analysis of the terpene synthases family was also carried out to clarify the classifications of TPSs. RNA-seq data from two distinct cotton species provide comprehensive transcriptome annotation resources and global gene expression profiles during seed germination and gland and gossypol formation. These data may be used to further elucidate various mechanisms and help promote the usage of cottonseed.
Collapse
Affiliation(s)
- Tao Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, MOE Hybrid Cotton R&D Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Zhou M, Zhang C, Wu Y, Tang Y. Metabolic engineering of gossypol in cotton. Appl Microbiol Biotechnol 2013; 97:6159-65. [PMID: 23775273 DOI: 10.1007/s00253-013-5032-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022]
Abstract
Cotton has long been known as a fiber plant. Besides the cotton fiber, the cottonseed oil and cottonseed protein are two other major products of cotton plants. However, the applications of the cottonseed oil and protein are limited because of the presence of toxic gossypol, which is unsafe for human and monogastric animal consumption. Meanwhile, gossypol in cotton increases the plant defense response to insect herbivores and pathogens. Consequently, gossypol has been extensively used in clinical trials in biomedical science. Over the last few years, major advances have occurred in both understanding and practice with regard to molecular regulation of gossypol pathway in cotton plant or hairy root culture. This review highlights a few major recent and ongoing developments in metabolic engineering of gossypol, as well as suggestions regarding further advances needed.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No 12, Haidian District, Beijing 100081, China
| | | | | | | |
Collapse
|
15
|
Faraldos JA, Miller DJ, González V, Yoosuf-Aly Z, Cascón O, Li A, Allemann RK. A 1,6-ring closure mechanism for (+)-δ-cadinene synthase? J Am Chem Soc 2012; 134:5900-8. [PMID: 22397618 DOI: 10.1021/ja211820p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recombinant (+)-δ-cadinene synthase (DCS) from Gossypium arboreum catalyzes the metal-dependent cyclization of (E,E)-farnesyl diphosphate (FDP) to the cadinane sesquiterpene δ-cadinene, the parent hydrocarbon of cotton phytoalexins such as gossypol. In contrast to some other sesquiterpene cyclases, DCS carries out this transformation with >98% fidelity but, as a consequence, leaves no mechanistic traces of its mode of action. The formation of (+)-δ-cadinene has been shown to occur via the enzyme-bound intermediate (3R)-nerolidyl diphosphate (NDP), which in turn has been postulated to be converted to cis-germacradienyl cation after a 1,10-cyclization. A subsequent 1,3-hydride shift would then relocate the carbocation within the transient macrocycle to expedite a second cyclization that yields the cadinenyl cation with the correct cis stereochemistry found in (+)-δ-cadinene. An elegant 1,10-mechanistic pathway that avoids the formation of (3R)-NDP has also been suggested. In this alternative scenario, the final cadinenyl cation is proposed to be formed through the intermediacy of trans, trans-germacradienyl cation and germacrene D. In addition, an alternative 1,6-ring closure mechanism via the bisabolyl cation has previously been envisioned. We report here a detailed investigation of the catalytic mechanism of DCS using a variety of mechanistic probes including, among others, deuterated and fluorinated FDPs. Farnesyl diphosphate analogues with fluorine at C2 and C10 acted as inhibitors of DCS, but intriguingly, after prolonged overnight incubations, they yielded 2F-germacrene(s) and a 10F-humulene, respectively. The observed 1,10-, and to a lesser extent, 1,11-cyclization activity of DCS with these fluorinated substrates is consistent with the postulated macrocyclization mechanism(s) en route to (+)-δ-cadinene. On the other hand, mechanistic results from incubations of DCS with 6F-FPP, (2Z,6E)-FDP, neryl diphosphate, 6,7-dihydro-FDP, and NDP seem to be in better agreement with the potential involvement of the alternative biosynthetic 1,6-ring closure pathway. In particular, the strong inhibition of DCS by 6F-FDP, coupled to the exclusive bisabolyl- and terpinyl-derived product profiles observed for the DCS-catalyzed turnover of (2Z,6E)-farnesyl and neryl diphosphates, suggested the intermediacy of α-bisabolyl cation. DCS incubations with enantiomerically pure [1-(2)H(1)](1R)-FDP revealed that the putative bisabolyl-derived 1,6-pathway proceeds through (3R)-nerolidyl diphosphate (NDP), is consistent with previous deuterium-labeling studies, and accounts for the cis stereochemistry characteristic of cadinenyl-derived sesquiterpenes. While the results reported here do not unambiguously rule in favor of 1,6- or 1,10-cyclization, they demonstrate the mechanistic versatility inherent to DCS and highlight the possible existence of multiple mechanistic pathways.
Collapse
Affiliation(s)
- Juan A Faraldos
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. ACTA ACUST UNITED AC 2011; 18:32-7. [PMID: 21276937 DOI: 10.1016/j.chembiol.2010.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/17/2010] [Accepted: 11/09/2010] [Indexed: 12/26/2022]
Abstract
Two presumptive terpene synthases of unknown biochemical function encoded by the sscg_02150 and sscg_03688 genes of Streptomyces clavuligerus ATCC 27074 were individually expressed in Escherichia coli as N-terminal-His₆-tag proteins, using codon-optimized synthetic genes. Incubation of recombinant SSCG_02150 with farnesyl diphosphate (1, FPP) gave (-)-δ-cadinene (2) while recombinant SSCG_03688 converted FPP to (+)-T-muurolol (3). Individual incubations of (-)-δ-cadinene synthase with [1,1-²H₂]FPP (1a), (1S)-[1-²H]-FPP (1b), and (1R)-[1-²H]-FPP (1c) and NMR analysis of the resulting samples of deuterated (-)-δ-cadinene supported a cyclization mechanism involving the intermediacy of nerolidyl diphosphate (4) leading to a helminthogermacradienyl cation 5. Following a 1,3-hydride shift of the original H-1(si) of FPP, cyclization and deprotonation will give (-)-δ-cadinene. Similar incubations with recombinant SSCG_03688 supported an analogous mechanism for the formation of (+)-T-muurolol (3), also involving a 1,3-hydride shift of the original H-1(si) of FPP.
Collapse
|
17
|
Cai Y, Xie Y, Liu J. Glandless seed and glanded plant research in cotton. A review. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2010; 30:181-190. [DOI: 10.1051/agro/2008024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
|
18
|
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. PHYTOCHEMISTRY 2009; 70:1621-37. [PMID: 19793600 DOI: 10.1016/j.phytochem.2009.07.030] [Citation(s) in RCA: 635] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 05/20/2023]
Abstract
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.
Collapse
Affiliation(s)
- Jörg Degenhardt
- Martin Luther University Halle-Wittenberg, Institute for Pharmacy, Halle/Saale, Germany.
| | | | | |
Collapse
|
19
|
Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry 2009; 48:6175-83. [PMID: 19489610 DOI: 10.1021/bi900483b] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+)-Delta-cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 A resolution and the structure of its complex with three putative Mg(2+) ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 A resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D(307)DTYD(311) motif on helix D that interacts with Mg(2+)(A) and Mg(2+)(C). However, DCS appears to be unique among terpenoid cyclases in that it does not contain the "NSE/DTE" motif on helix H that specifically chelates Mg(2+)(B), which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg(2+)(B) ligands). Instead, DCS contains a second aspartate-rich motif, D(451)DVAE(455), that interacts with Mg(2+)(B). In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg(2+)(B) binding motif. Analyses of DCS mutants with alanine substitutions in the D(307)DTYD(311) and D(451)DVAE(455) segments reveal the contributions of these segments to catalysis.
Collapse
Affiliation(s)
- Heather A Gennadios
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas JL, Voloudakis AE, Champion A, Clerivet A, Montillet JL, Nicole M. The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:596-606. [PMID: 17611116 DOI: 10.1016/j.plaphy.2007.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 05/16/2023]
Abstract
Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 from Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S-lipoxygenase activity (LOX) responsible for lipid peroxidation. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene (GhLOX1) and the sequencing of its promoter. GhLOX1 was found to be highly expressed during Xcm induced HR. Sequence analysis showed that GhLOX1 is a putative 9-LOX, and GhLOX1 promoter contains SA and JA responsive elements. Investigation on LOX signalisation on cotyledons infiltrated with salicylic acid (SA), or incubated with methyl-jasmonate (MeJA) revealed that both treatments induced LOX activity and GhLOX1 gene expression. HR-like symptoms were observed when LOX substrates were then injected in treated (MeJA and SA) cotyledons or when Xcm compatible race 20 was inoculated on MeJA treated cotyledons. Together these results support the fact that GhLOX1 encodes a 9 LOX whose activity would be involved in cell death during cotton HR.
Collapse
Affiliation(s)
- Philippe Marmey
- IRD, UMR RPB Résistance des Plantes aux Bioagresseurs, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci U S A 2006; 103:18054-9. [PMID: 17110445 PMCID: PMC1838705 DOI: 10.1073/pnas.0605389103] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Indexed: 11/18/2022] Open
Abstract
Global cottonseed production can potentially provide the protein requirements for half a billion people per year; however, it is woefully underutilized because of the presence of toxic gossypol within seed glands. Therefore, elimination of gossypol from cottonseed has been a long-standing goal of geneticists. Attempts were made to meet this objective by developing so-called "glandless cotton" in the 1950s by conventional breeding techniques; however, the glandless varieties were commercially unviable because of the increased susceptibility of the plant to insect pests due to the systemic absence of glands that contain gossypol and other protective terpenoids. Thus, the promise of cottonseed in contributing to the food requirements of the burgeoning world population remained unfulfilled. We have successfully used RNAi to disrupt gossypol biosynthesis in cottonseed tissue by interfering with the expression of the delta-cadinene synthase gene during seed development. We demonstrate that it is possible to significantly reduce cottonseed-gossypol levels in a stable and heritable manner. Results from enzyme activity and molecular analyses on developing transgenic embryos were consistent with the observed phenotype in the mature seeds. Most relevant, the levels of gossypol and related terpenoids in the foliage and floral parts were not diminished, and thus their potential function in plant defense against insects and diseases remained untouched. These results illustrate that a targeted genetic modification, applied to an underutilized agricultural byproduct, provides a mechanism to open up a new source of nutrition for hundreds of millions of people.
Collapse
Affiliation(s)
| | | | - Lorraine Puckhaber
- U.S. Department of Agriculture–Agricultural Research Station, Southern Plains Agricultural Research Center, College Station, TX 77845
| | - Robert D. Stipanovic
- U.S. Department of Agriculture–Agricultural Research Station, Southern Plains Agricultural Research Center, College Station, TX 77845
| | - Keerti S. Rathore
- *Institute for Plant Genomics and Biotechnology and
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843; and
| |
Collapse
|
22
|
de Carvalho CCCR, da Fonseca MMR. Biotransformation of terpenes. Biotechnol Adv 2005; 24:134-42. [PMID: 16169182 DOI: 10.1016/j.biotechadv.2005.08.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Accepted: 08/13/2005] [Indexed: 10/25/2022]
Abstract
The main application of terpenes as fragrances and flavors depends on the absolute configuration of the compounds because enantiomers present different organoleptic properties. Biotransformations allow the production of regio- and stereoselective compounds under mild conditions. These products may be labeled as "natural". Commercially useful chemical building-blocks and pharmaceutical stereo isomers can also be produced by bioconversion of terpenes. Enzymes and extracts from bacteria, cyanobacteria, yeasts, microalgae, fungi, plants, and animal cells have been used for the production and/or bioconversion of terpenes. In addition, whole cell catalysis has also been used. A variety of media and reactors have been assessed for these biotransformations and have produced encouraging results, as discussed in this review.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Lisbon, Portugal.
| | | |
Collapse
|
23
|
Townsend BJ, Poole A, Blake CJ, Llewellyn DJ. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. PLANT PHYSIOLOGY 2005; 138:516-28. [PMID: 15849309 PMCID: PMC1104203 DOI: 10.1104/pp.104.056010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/15/2005] [Accepted: 03/02/2005] [Indexed: 05/18/2023]
Abstract
In cotton (Gossypium hirsutum) the enzyme (+)-delta-cadinene synthase (CDNS) catalyzes the first committed step in the biosynthesis of cadinane-type sesquiterpenes, such as gossypol, that provide constitutive and inducible protection against pests and diseases. A cotton cDNA clone encoding CDNS (cdn1-C4) was isolated from developing embryos and functionally characterized. Southern analysis showed that CDNS genes belong to a large multigene family, of which five genomic clones were studied, including three pseudogenes and one gene that may represent another subfamily of CDNS. CDNS expression was shown to be induced in cotton infected with either the bacterial blight or verticillium wilt pathogens. Constructs for the constitutive or seed-specific antisense suppression of cdn1-C4 were introduced into cotton by Agrobacterium-mediated transformation. Gossypol levels were not reduced in the seeds of transformants with either construct, nor was the induction of CDNS expression affected in stems of the constitutive antisense plants infected with Verticillium dahliae Kleb. However, the induction of CDNS mRNA and protein in response to bacterial blight infection of cotyledons was completely blocked in the constitutive antisense plants. These results suggest that cdn1-C4 may be involved specifically in the bacterial blight response and that the CDNS multigene family comprises a complex set of genes differing in their temporal and spatial regulation and responsible for different branches of the cotton sesquiterpene pathway.
Collapse
Affiliation(s)
- Belinda J Townsend
- Commonwealth Scientific and Industrial Research Organisation-Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
24
|
Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL, Essenberg M, Nicole M. Resistance of cotton towards Xanthomonas campestris pv. malvacearum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:63-82. [PMID: 16078877 DOI: 10.1146/annurev.phyto.43.040204.140251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interactions between Gossypium spp. and the bacterial pathogen Xanthomonas campestris pv. malvacearum are understood in the context of the gene-for-gene concept. Reviewed here are the genetic basis for cotton resistance, with reference to resistance genes, resistance gene analogs, and bacterial avirulence genes, together with the physiological mechanisms involved in the hypersensitive response to the pathogen, including production of signaling hormones, synthesis of antimicrobial molecules and alteration of host cell structures. This host-pathogen interaction represents the most complex resistance gene/avr gene system yet known and is one of the few in which phytoalexins are known to be specifically localized in HR cells at anti-microbial concentrations.
Collapse
Affiliation(s)
- E Delannoy
- IRD, UMR DGPC, Résistance des Plantes, B.P. 64501, 34394 Montpellier cédex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bohlmann J, Stauber EJ, Krock B, Oldham NJ, Gershenzon J, Baldwin IT. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. PHYTOCHEMISTRY 2002; 60:109-16. [PMID: 12009313 DOI: 10.1016/s0031-9422(02)00080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three new copies of a sesquiterpenoid synthase gene encoding 5-epi-aristolochene synthase (EAS) were cloned as cDNAs from Nicotiana attenuata and functionally characterized after expression of the recombinant enzymes in E. coli. Differential patterns of EAS gene expression and formation of the antimicrobial sesquiterpenoid capsidiol were found in roots and shoots of two species of Nicotiana. EAS is expressed constitutively in roots of N. attenuata and N. sylvestris corresponding with constitutive capsidiol formation in roots. Constitutive expression of EAS and capsidiol accumulation were not detectable in shoots of rosette plants of N. attenuata, but accumulation of terpene synthase transcripts could be induced in shoots by feeding of the tobacco hornworm, Manduca sexta. Constitutive expression of EAS has not been previously reported from N. tabacum, where capsidiol is known as an elicitor- and pathogen-inducible phytoalexin. It is conceivable that capsidiol contributes not only to an inducible defense against pathogens, but also to a constitutive defense in an organ-specific manner in some species of Nicotiana.
Collapse
Affiliation(s)
- Jörg Bohlmann
- Max Planck Institute for Chemical Ecology, Winzlaer Strasse 10, Beutenberg Campus, 07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:95-104. [PMID: 11696190 DOI: 10.1046/j.1365-313x.2001.01133.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In cotton, gossypol and related sesquiterpene aldehydes are present in the glands of aerial tissues and in epidermal cells of roots. A cytochrome P450 was found to be expressed in aerial tissues of glanded cotton cultivars, but not or at an extremely low level in the aerial tissues of a glandless cultivar. Its cDNA was then isolated from Gossypium arboreum L. After expression in Saccharomyces cerevisiae, the P450 was found to catalyse the hydroxylation of (+)-delta-cadinene, forming 8-hydroxy-(+)-delta-cadinene. This P450 mono-oxygenase has been classified as CYP706B1, and is the first member of the CYP706 family for which a function has been determined. Sesquiterpene aldehydes and CYP706B1 transcripts were detected in roots of both the glanded and glandless cultivars and in aerial tissues of the glanded cultivar. In suspension cultured cells of G. arboreum, elicitors prepared from the phytopathogenic fungus Verticillium dahliae caused a dramatic induction of CYP706B1 expression. The expression pattern of CYP706B1 and the position at which it hydroxylates (+)-delta-cadinene suggest that it catalyses an early step in gossypol biosynthesis. Southern blotting revealed a single copy of CYP706B1 in the genome of G. arboreum. CYP706B1 holds good potential for manipulation of gossypol levels in cottonseed via genetic engineering.
Collapse
Affiliation(s)
- P Luo
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Benedict CR, Lu JL, Pettigrew DW, Liu J, Stipanovic RD, Williams HJ. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase. PLANT PHYSIOLOGY 2001; 125:1754-65. [PMID: 11299356 PMCID: PMC88832 DOI: 10.1104/pp.125.4.1754] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Accepted: 11/20/2000] [Indexed: 05/20/2023]
Abstract
The first step in the conversion of the isoprenoid intermediate, farnesyl diphosphate (FDP), to sesquiterpene phytoalexins in cotton (Gossypium barbadense) plants is catalyzed by delta-cadinene (CDN) synthase. CDN is the precursor of desoxyhemigossypol and hemigossypol defense sesquiterpenes. In this paper we have studied the mechanism for the cyclization of FDP and the putative intermediate, nerolidyl diphosphate, to CDN. A purified recombinant CDN synthase (CDN1-C1) expressed in Escherichia coli from CDN1-C1 cDNA isolated from Gossypium arboreum cyclizes (1RS)-[1-2H](E, E)-FDP to >98% [5-2H]and [11-2H]CDN. Enzyme reaction mixtures cyclize (3RS)-[4,4,13,13,13-2H5]-nerolidyl diphosphate to 62.1% [8,8,15,15,15-2H5]-CDN, 15.8% [6,6,15,15,15-2H5]-alpha-bisabolol, 8.1% [6,6,15,15,15-2H5]-(beta)-bisabolene, 9.8% [4,4,13,13-2H4]-(E)-beta-farnesene, and 4.2% unknowns. Competitive studies show that (3R)-nerolidyl diphosphate is the active enantiomer of (3RS)-nerolidyl diphosphate that cyclized to CDN. The kcat/Km values demonstrate that the synthase uses (E,E)-FDP as effectively as (3R)-nerolidyl diphosphate in the formation of CDN. Cyclization studies with (3R)-nerolidyl diphosphate show that the formation of CDN, (E)-beta-farnesene, and beta-bisabolene are enzyme dependent, but the formation of alpha-bisabolol in the reaction mixtures was a Mg2+-dependent solvolysis of nerolidyl diphosphate. Enzyme mechanisms are proposed for the formation of CDN from (E,E)-FDP and for the formation of CDN, (E)-beta-farnesene, and beta-bisabolene from (3RS)-nerolidyl diphosphate. The primary structures of cotton CDN synthase and tobacco epi-aristolochene synthase show 48% identity, suggesting similar three-dimensional structures. We used the SWISS-MODEL to test this. The two enzymes have the same overall structure consisting of two alpha-helical domains and epi-aristolochene synthase is a good model for the structure of CDN synthase. Several amino acids in the primary structures of both synthases superimpose. The amino acids having catalytic roles in epi-aristochene synthase are substituted in the CDN synthase and may be related to differences in catalytic properties.
Collapse
Affiliation(s)
- C R Benedict
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Bülow N, Konig WA. The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. PHYTOCHEMISTRY 2000; 55:141-68. [PMID: 11065290 DOI: 10.1016/s0031-9422(00)00266-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Germacrene D is considered as a precursor of many sesquiterpene hydrocarbons. We have investigated the acid catalyzed as well as the photochemically and thermally induced rearrangement processes of germacrene D isolated from several Solidago species, which contain both enantiomers of germacrene D. Enantiomeric mixtures of sesquiterpenes of the cadinane, eudesmane (selinane), oppositane, axane, isodaucane, and bourbonane group as well as isogermacrene D were identified as main products and made available as reference compounds for structure investigations and stereochemical assignments of plant constituents. Delta-amorphene, one of the rearrangement products, was identified as a natural product for the first time. The absolute configuration of gamma-amorphene was revised by correlation with the absolute configuration of germacrene D. The mechanisms of the rearrangement reactions are discussed.
Collapse
Affiliation(s)
- N Bülow
- Institut für Organische Chemie, Universität Hamburg, Germany.
| | | |
Collapse
|
29
|
Bianchini GM, Stipanovic RD, Bell AA. Induction of delta-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:4403-4406. [PMID: 10552825 DOI: 10.1021/jf990195y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytoalexin biosynthesis occurred earlier in the resistant cotton cultivar Seabrook Sea Island 12B2 (SBSI) (Gossypium barbadense) than in the susceptible cotton cultivar Rowden (G. hirsutum) after inoculation with a defoliating isolate of the pathogen Verticillium dahliae. This was demonstrated by significantly higher levels of phytoalexins in SBSI 12 h after inoculation. Furthermore, by 48 h after inoculation of SBSI, the phytoalexins hemigossypol and desoxyhemigossypol achieved levels (23.9 and 10.5 microgram/g of fresh tissue, respectively) sufficient to completely inhibit conidial germination. Rowden required 96 h to attain comparable levels. Similarly, the activity of delta-cadinene synthase, a key enzyme required for the biosynthesis of the terpenoid phytoalexins, increased more rapidly in the resistant cotton cultivar than in the susceptible one. The changes in phytoalexin concentrations and enzyme activity are consistent with the hypothesis that phytoalexins are an essential component in protecting the plant from infection by V. dahliae.
Collapse
Affiliation(s)
- G M Bianchini
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
30
|
Schmidt CO, Bouwmeester HJ, Bülow N, König WA. Isolation, characterization, and mechanistic studies of (-)-alpha-gurjunene synthase from Solidago canadensis. Arch Biochem Biophys 1999; 364:167-77. [PMID: 10190971 DOI: 10.1006/abbi.1999.1122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The leaves of the composite Solidago canadensis (goldenrod) were shown to contain (-)-alpha-gurjunene synthase activity. This sesquiterpene is likely to be the precursor for cyclocolorenone, a sesquiterpene ketone present in high amounts in S. canadensis leaves. (-)-alpha-Gurjunene synthase was purified to apparent homogeneity (741-fold) by anion-exchange chromatography (on several matrices), dye ligand chromatography, hydroxylapatite chromatography, and gel filtration. Chromatography on a gel filtration matrix indicated a native molecular mass of 48 kDa, and SDS-PAGE showed the enzyme to be composed of one subunit with a denatured mass of 60 kDa. Its maximum activity was observed at pH 7.8 in the presence of 10 mM Mg2+ and the KM value for the substrate farnesyl diphosphate was 5.5 microM. Over a range of purification steps (-)-alpha-gurjunene and (+)-gamma-gurjunene synthase activities copurified. In addition, the product ratio of the enzyme activity under several different assay conditions was always 91% (-)-alpha-gurjunene and 9% (+)-gamma-gurjunene. This suggests that the formation of these two structurally related products is catalyzed by one enzyme. For further confirmation, we carried out a number of mechanistic studies with (-)-alpha-gurjunene synthase, in which an enzyme preparation was incubated with deuterated substrate analogues. Based on mass spectrometry analysis of the products formed, a cyclization mechanism was postulated which makes it plausible that the synthase catalyzes the formation of both sesquiterpenes.
Collapse
Affiliation(s)
- C O Schmidt
- Institut für Organische Chemie, Universität Hamburg, Hamburg, D-20146, Germany
| | | | | | | |
Collapse
|
31
|
Meng YL, Jia JW, Liu CJ, Liang WQ, Heinstein P, Chen XY. Coordinated accumulation of (+)-delta-cadinene synthase mRNAs and gossypol in developing seeds of Gossypium hirsutum and a new member of the cad1 family from G. arboreum. JOURNAL OF NATURAL PRODUCTS 1999; 62:248-252. [PMID: 10075752 DOI: 10.1021/np980314o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new member of the (+)-delta-cadinene synthase (CAD1) family was isolated from a Gossypium arboreum cDNA library. This cDNA encodes a protein that showed 97.3%, 96.9%, and 79.2% sequence identities with the proteins encoded by previously isolated cDNAs of cad1-C1, cad1-C14, and cad1-A, respectively. It may be grouped into the cad1-C subfamily as cad1-C2. Seeds of a glanded cotton cultivar, G. hirsutum cv. Sumian-6, were collected at different intervals during maturation, and the cad1 mRNA levels were analyzed by quantitative RT-PCR. The transcripts could be detected in seeds of 27 DPA (days postanthesis) and increased dramatically along with the seed maturation, which coordinated with an increase in sesquiterpene cyclase activities and subsequently the accumulation of gossypol. The transcription level detected with primers specific to cad1-C (including at least C1, C14, and cdn1) was higher than that detected with primers specific to cad1-A, and mRNA was detected also with cad1-C2-specific primers. This investigation indicates that, in developing seeds of the glanded cotton cultivar, genes of both the CAD1-C and CAD1-A subfamilies are expressed and there is an active biosynthesis of cadinene-type sesquiterpenes.
Collapse
Affiliation(s)
- Y L Meng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
de Kraker JW, Franssen, de Groot A, Konig, Bouwmeester. (+)-Germacrene A biosynthesis . The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. PLANT PHYSIOLOGY 1998; 117:1381-92. [PMID: 9701594 PMCID: PMC34902 DOI: 10.1104/pp.117.4.1381] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 04/26/1998] [Indexed: 05/18/2023]
Abstract
The leaves and especially the roots of chicory (Cichorium intybus L. ) contain high concentrations of bitter sesquiterpene lactones such as the guianolides lactupicrin, lactucin, and 8-deoxylactucin. Eudesmanolides and germacranolides are present in smaller amounts. Their postulated biosynthesis through the mevalonate-farnesyl diphosphate-germacradiene pathway has now been confirmed by the isolation of a (+)-germacrene A synthase from chicory roots. This sesquiterpene cyclase was purified 200-fold using a combination of anion-exchange and dye-ligand chromatography. It has a Km value of 6. 6 &mgr;M, an estimated molecular mass of 54 kD, and a (broad) pH optimum around 6.7. Germacrene A, the enzymatic product, proved to be much more stable than reported in literature. Its heat-induced Cope rearrangement into (-)-beta-elemene was utilized to determine its absolute configuration on an enantioselective gas chromatography column. To our knowledge, until now in sesquiterpene biosynthesis, germacrene A has only been reported as an (postulated) enzyme-bound intermediate, which, instead of being released, is subjected to additional cyclization(s) by the same enzyme that generated it from farnesyl diphosphate. However, in chicory germacrene A is released from the sesquiterpene cyclase. Apparently, subsequent oxidations and/or glucosylation of the germacrane skeleton, together with a germacrene cyclase, determine whether guaiane- or eudesmane-type sesquiterpene lactones are produced.
Collapse
Affiliation(s)
- de Kraker JW
- Department of Organic Chemistry, Wageningen Agricultural University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands (J.-W.d.K., M.C. R.F., A.d.G.)
| | | | | | | | | |
Collapse
|
33
|
Schmidt C, Bouwmeester H, de Kraker JW, König W. Biosynthese von (+)- und (−)-Germacren D inSolidago canadensis: Isolierung und Charakterisierung zweier enantioselektiver Germacren-D-Synthasen. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19980518)110:10<1479::aid-ange1479>3.0.co;2-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
|