1
|
Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 2021; 11:514181. [PMID: 33536992 PMCID: PMC7848788 DOI: 10.3389/fneur.2020.514181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic “motor level.” Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.
Collapse
Affiliation(s)
- Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Francisco D Benavides
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Pedro M Saraiva
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Kimberly D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,Miller School of Medicine, The Interdisciplinary Stem Cell Institute, The University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| |
Collapse
|
2
|
Luu BL, McBain RA, Taylor JL, Gandevia SC, Butler JE. Reflex response to airway occlusion in human inspiratory muscles when recruited for breathing and posture. J Appl Physiol (1985) 2019; 126:132-140. [DOI: 10.1152/japplphysiol.00841.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Briefly occluding the airway during inspiration produces a short-latency reflex inhibition in human inspiratory muscles. This occlusion reflex seems specific to respiratory muscles; however, it is not known whether the reflex inhibition has a uniform effect across a motoneuron pool when a muscle is recruited concurrently for breathing and posture. In this study, participants were seated and breathed through a mouthpiece that occluded inspiratory airflow for 250 ms at a volume threshold of 0.2 liters. The reflex response was measured in the scalene and sternocleidomastoid muscles during 1) a control condition with the head supported in space and the muscles recruited for breathing only, 2) a postural condition with the head unsupported and the neck flexors recruited for both breathing and to maintain head posture, and 3) a large-breath condition with the head supported and the volume threshold raised to between 0.8 and 1.0 liters to increase inspiratory muscle activity. When normalized to its preocclusion mean, the reflex response in the scalene muscles was not significantly different between the large-breath and control conditions, whereas concomitant recruitment of these muscles for posture control reduced the reflex response by half compared with the control condition. A reflex response occurred in sternocleidomastoid when it contracted phasically as an accessory muscle for inspiration during the large-breath condition. These results indicate that the occlusion reflex does not produce a uniform effect across the motoneuron pool and that afferent inputs for this reflex most likely act via intersegmental networks of premotoneurons rather than at a motoneuronal level. NEW & NOTEWORTHY In this study, we investigated the effect of nonrespiratory activity on the reflex response to brief sudden airway occlusions in human inspiratory muscles. We show that the reflex inhibition in the scalene muscles was not uniform across the motoneuron pool when the muscle was recruited concurrently for breathing and postural control. The reflex had a larger effect on respiratory-driven motoneurons than those recruited to maintain head posture.
Collapse
Affiliation(s)
- Billy L. Luu
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Rachel A. McBain
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- The University of New South Wales, Sydney, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- The University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Somatotopy of corticospinal tract fibres of the intercostal muscles: report of a case and review of literature. Brain Struct Funct 2018; 224:515-520. [PMID: 30460554 DOI: 10.1007/s00429-018-1796-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/14/2018] [Indexed: 02/04/2023]
Abstract
This study aimed at describing the first case of subcortical stimulation of the corticospinal tract leading to selective contraction of the intercostal muscles during surgery for removal of a tumour centred in the right central lobule/supplementary motor area. A 53-year-old male presented with partial motor seizures. Imaging demonstrated a low-grade glioma affecting the posterior aspect of the superior and middle frontal gyri and invading the precentral gyrus. Preoperative motor Transcranial Magnetic Stimulation and advanced diffusion tractography were performed to establish the relationship of the tumour with the motor cortex and corticospinal tract. Intraoperative motor mapping and monitoring were performed with monopolar stimulation ("train of 5" technique). At the posterior margin of resection, subcortical stimulation demonstrated a selective response from intercostal muscles, medial to responses from the lower limb and lateral to responses from the upper limb. PubMed literature search was performed to identify any case reporting similar findings. There were no cases previously reported in the literature. The location of the subcortical response for intercostal muscles confirms the somatotopy of the corticospinal tract. Intercostal muscles are controlled by selective fibres within the corticospinal tract. Damage to these fibres can lead to paralysis of voluntary respiratory muscles. Further studies are needed to define the cortico-subcortical network controlling voluntary respiratory muscles.
Collapse
|
4
|
Shirakawa K, Yunoki T, Afroundeh R, Lian CS, Matsuura R, Ohtsuka Y, Yano T. Voluntary breathing increases corticospinal excitability of lower limb muscle during isometric contraction. Respir Physiol Neurobiol 2015; 217:40-5. [DOI: 10.1016/j.resp.2015.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/04/2015] [Accepted: 07/04/2015] [Indexed: 11/26/2022]
|
5
|
Luu BL, Saboisky JP, Taylor JL, Gandevia SC, Butler JE. TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing. Respir Physiol Neurobiol 2015; 216:15-22. [DOI: 10.1016/j.resp.2015.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
6
|
Morawiec E, Raux M, Kindler F, Laviolette L, Similowski T. Expiratory load compensation is associated with electroencephalographic premotor potentials in humans. J Appl Physiol (1985) 2015; 118:1023-30. [PMID: 25663669 DOI: 10.1152/japplphysiol.00201.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
In normal humans during quiet breathing, expiration is mostly driven by elastic recoil of the lungs. Expiration becomes active when ventilation must be increased to meet augmented metabolic demands, or in response to expiratory loading, be it experimental or disease-related. The response to expiratory loading is considered to be mediated by both reflex and cortical mechanisms, but the latter phenomenon have not been neurophysiologically characterized. We recorded the EEG in 20 healthy volunteers (9 men, 11 women, age: 22 to 50 yr) during unloaded breathing, voluntary expirations, and in response to 50 cmH2O·l(-1)·s expiratory resistive load (ERL), 20 cmH2O expiratory threshold load (high ETL), and 10 cmH2O expiratory threshold load (low ETL). EEGs were processed by ensemble averaging expiratory time-locked segments and examined for pre-expiratory potentials, defined as a slow negative shift from the baseline signal preceding expiration, and suggestive of cortical preparation of expiration involving the supplementary motor area. Four subjects were excluded because of technical EEG problems. Pre-expiratory potentials were present in one subject at baseline and in all subjects during voluntary expirations. They were present in eight subjects during low ETL, in 15 subjects during high ETL, and in 13 subjets during ERL (control vs. low ETL, P = 0.008; control vs. high ETL, P < 0.001; and control vs. ERL, P < 0.001). Respiratory discomfort was more intense in the presence of pre-expiratory potentials (P < 0.001). These results provide a neurophysiological substrate to a cortical component of the physiological response to experimental expiratory loads in humans.
Collapse
Affiliation(s)
- Elise Morawiec
- Sorbonne Universités, Pierre and Marie Curie University, Univ Paris 06, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Assistance Publique-Hópitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), Paris, France
| | - Mathieu Raux
- Sorbonne Universités, Pierre and Marie Curie University, Univ Paris 06, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Département d'Anesthésie-Réanimation, Paris, France; and Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Felix Kindler
- Sorbonne Universités, Pierre and Marie Curie University, Univ Paris 06, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Département d'Anesthésie-Réanimation, Paris, France; and Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Louis Laviolette
- Sorbonne Universités, Pierre and Marie Curie University, Univ Paris 06, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, Pierre and Marie Curie University, Univ Paris 06, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Institut National de la Santé et de la Recherche Médicale, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France; Assistance Publique-Hópitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département R3S), Paris, France;
| |
Collapse
|
7
|
Abstract
As a result of recent progress in brain imaging techniques, a number of studies have been able to identify anatomical correlates of various emotions (Pujol et al., 2013; Tettamanti et al., 2012; van der Zwaag et al., 2012). However, emotions are not solely a phenomenon within the brain-they are also composed of body responses. These include autonomic and behavioral responses, such as changes in heart rate, blood pressure, skin conductance, and respiration. Among these physiological responses, respiration has a unique relationship to emotion. While the primary role of respiration concerns metabolism and homeostasis, emotions such as disgust, anger, and happiness also influence respiratory activities (Boiten et al., 1994). While respiratory change that accompanies emotions can occur unconsciously, respiration can also be voluntarily altered associating with an activation of the motor cortex. There may be no physiological expression for the association between the three areas of the brain that regulate respiration: the brainstem, the limbic system, and the cerebral cortex. The brainstem works to maintain homeostasis, the limbic system is responsible for emotional processing, and the cerebral cortex controls intention. Investigating the interaction between these brain regions may lead to an explanation about why they are so widely dispersed in the brain, despite their common role in the regulation of respiration. In this chapter, we review our findings on breathing behavior and discuss the mechanisms underlying the relationship between emotion and respiration.
Collapse
|
8
|
Segizbaeva MO, Pogodin MA, Aleksandrova NP. Effects of body positions on respiratory muscle activation during maximal inspiratory maneuvers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 756:355-63. [PMID: 22836654 DOI: 10.1007/978-94-007-4549-0_43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
We evaluated the maximal mouth inspiratory pressure and the EMG patterns of major respiratory and accessory muscles used in the generation of voluntary inspiratory maneuvers during different body positions. Ten healthy subjects (F/M-4/6), the mean age 22.000B10.6 years, participated in the study. The maximal inspiratory mouth pressure (MIP) during Müller's maneuver was measured from residual volume in the standing, sitting, right-sided (RSL) and left-sided lying (LSL), supine, and head-down-tilt (HDT) (3000B0; relatively horizon) positions. EMG of the diaphragmatic (D), parasternal (PS), sternocleidomastoid (SM), and genioglossus (GG) muscles were assessed in each body position. The baseline MIP was 105.3 00B1; 12.0 in men and 59.9 00B110.1 cmH(2)O in women in the standing position and did not appreciable differ in the other positions, except the HDT where it was lower by 23 and 27% in men and women, respectively (P003C0.05). During Müllers maneuver, diaphragmatic EMG activity also was similar in all the body positions, but it was significantly enhanced in the HDT. In contrast, PS EMG showed the highest level of activation in the standing position, taken as the control, reference level, and was lower in the HDT. Activation of SM during the maneuver was near the control in the sitting position, lower in the supine (79%), RSL (85%), LSL (80%), and HDT (72%) positions (P 003C0.05). GG EMG was significantly greater during maximal inspiratory effort in the supine and HDT positions (125and 130%, respectively), while it was lower in the sitting, LRS, and LLS positions (76, 57, and 43%) compared with standing (P 003C; 0.05). We conclude that the inspiratory pressure generated during Muller maneuver is a reflection of complex interactions between several muscle groups during changes in body positions.
Collapse
Affiliation(s)
- M O Segizbaeva
- I.P. Pavlov Institute of Physiology RAN, St. Petersburg, Russia.
| | | | | |
Collapse
|
9
|
Hudson AL, Taylor JL, Anand A, Gandevia SC, Butler JE. Evoked corticospinal output to the human scalene muscles is altered by lung volume. Respir Physiol Neurobiol 2012; 180:263-8. [DOI: 10.1016/j.resp.2011.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022]
|
10
|
Abstract
STUDY DESIGN Cross-sectional design. OBJECTIVE To investigate whether recurrent low back pain (LBP) is associated with changes in motor cortical representation of different paraspinal muscle fascicles. SUMMARY OF BACKGROUND DATA Fascicles of the lumbar paraspinal muscles are differentially activated during function. Human studies indicate this may be associated with a spatially separate array of neuronal networks at the motor cortex. Loss of discrete control of paraspinal muscle fascicles in LBP may be because of changes in cortical organization. METHODS Data were collected from 9 individuals with recurrent unilateral LBP and compared with 11 healthy participants from an earlier study. Fine-wire electrodes selectively recorded myoelectric activity from short/deep fascicles of deep multifidus (DM) and long/superficial fascicles of longissimus erector spinae (LES), bilaterally. Motor cortical organization was investigated using transcranial magnetic stimulation at different scalp sites to evoke responses in paraspinal muscles. Location of cortical representation (center of gravity; CoG) and motor excitability (map volume) were compared between healthy and LBP groups. RESULTS Individuals with LBP had a more posterior location of LES center of gravity, which overlapped with that for DM on both hemispheres. In healthy individuals, LES center of gravity was located separately at a more anterior location to that for DM. Map volume was reduced in LBP compared to healthy individual across muscles. CONCLUSION The findings highlight that LBP is associated with a loss of discrete cortical organization of inputs to back muscles. Increased overlap in motor cortical representation of DM and LES may underpin loss of differential activation in this group. The results further unravel the neurophysiological mechanisms of motor changes in recurrent LBP and suggest motor rehabilitation that includes training of differential activation of the paraspinal muscles may be required to restore optimal control in LBP.
Collapse
|
11
|
Hudson AL, Gandevia SC, Butler JE. Control of human inspiratory motoneurones during voluntary and involuntary contractions. Respir Physiol Neurobiol 2011; 179:23-33. [DOI: 10.1016/j.resp.2011.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/17/2022]
|
12
|
Differential effects of low-intensity motor cortical stimulation on the inspiratory activity in scalene muscles during voluntary and involuntary breathing. Respir Physiol Neurobiol 2011; 175:265-71. [DOI: 10.1016/j.resp.2010.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/17/2022]
|
13
|
Hudson AL, Gandevia SC, Butler JE. Common rostrocaudal gradient of output from human intercostal motoneurones during voluntary and automatic breathing. Respir Physiol Neurobiol 2011; 175:20-8. [DOI: 10.1016/j.resp.2010.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
|
14
|
Murray NPS, McKenzie DK, Gandevia SC, Butler JE. Voluntary and involuntary ventilation do not alter the human inspiratory muscle loading reflex. J Appl Physiol (1985) 2010; 109:87-94. [DOI: 10.1152/japplphysiol.01128.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reflex mechanism of the short-latency inhibitory reflex to transient loading of human inspiratory muscles is unresolved. Muscle afferents mediate this reflex, but they may act via pontomedullary inspiratory centers, other bulbar networks, or spinal circuits. We hypothesized that altered chemical drive to breathe would alter the initial inhibitory reflex if the neural pathways involve inspiratory medullary centers. Inspiration was transiently loaded in 11 subjects during spontaneous hypercapnic hyperpnea and matched voluntary hyperventilation. Electromyographic activity was recorded bilaterally from scalene muscles with surface electrodes. The latencies of the initial inhibitory response (IR) onset (32 ± 0.7 and 38 ± 1 ms for spontaneous and voluntary conditions respectively, P < 0.001) and subsequent excitatory response (ER) onset (80 ± 2.9 and 78 ± 2.6 ms, respectively, P = 0.46) and the normalized sizes of IR (65 ± 2 and 67 ± 3%, respectively, P = 0.50) and ER (51 ± 8 and 69 ± 6%, respectively, P = 0.005) were measured. Mean end-tidal Pco2 was 43 ± 1.5 Torr with dead space ventilation and was 14 ± 0.6 Torr with matched voluntary hyperventilation ( P < 0.001). A mean minute volume >30 liters was achieved in both conditions. The absence of significant difference in the size of the IR suggested that the IR reflex arc does not transit the brain stem inspiratory centers and that the reflex may be integrated at a spinal level. In voluntary hyperventilation, an initial excitation occurred more frequently and, consequently, the IR onset latency was significantly longer. The size of the later ER was also greater during voluntary hyperventilation, which is consistent with it being mediated via longer, presumably cortical, pathways, which are influenced by voluntary drive.
Collapse
Affiliation(s)
- N. P. S. Murray
- Prince of Wales Medical Research Institute and University of New South Wales, and
- Department of Respiratory and Sleep Medicine, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - D. K. McKenzie
- Prince of Wales Medical Research Institute and University of New South Wales, and
- Department of Respiratory and Sleep Medicine, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - S. C. Gandevia
- Prince of Wales Medical Research Institute and University of New South Wales, and
| | - J. E. Butler
- Prince of Wales Medical Research Institute and University of New South Wales, and
| |
Collapse
|
15
|
Petersen NC, Butler JE, Taylor JL, Gandevia SC. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function. Acta Physiol (Oxf) 2010; 198:403-16. [PMID: 20003100 DOI: 10.1111/j.1748-1716.2009.02066.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of the cortex. In addition, corticospinal cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output and the output from the motoneurone pool. For example, recent studies have revealed that the efficacy of the human corticospinal connection with motoneurones undergoes activity-dependent changes which influence the size of voluntary contractions. Hence, corticospinal drives must be sculpted continuously to compensate for the changing functional efficacy of the descending systems which activate the motoneurones. This highlights the need for proprioceptive monitoring of movements to ensure their accurate execution.
Collapse
Affiliation(s)
- N C Petersen
- Department of Exercise and Sport Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Hudson AL, Butler JE, Gandevia SC, De Troyer A. Interplay Between the Inspiratory and Postural Functions of the Human Parasternal Intercostal Muscles. J Neurophysiol 2010; 103:1622-9. [DOI: 10.1152/jn.00887.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parasternal intercostal muscles are obligatory inspiratory muscles. To test the hypothesis that they are also involved in trunk rotation and to assess the effect of any postural role on inspiratory drive to the muscles, intramuscular electromyographic (EMG) recordings were made from the parasternal intercostals on the right side in six healthy subjects during resting breathing in a neutral posture (“neutral breaths”), during an isometric axial rotation effort of the trunk to the right (“ipsilateral rotation”) or left (“contralateral rotation”), and during resting breathing with the trunk rotated. The parasternal intercostals were commonly active during ipsilateral rotation but were consistently silent during contralateral rotation. In addition, with ipsilateral rotation, peak parasternal inspiratory activity was 201 ± 19% (mean ± SE) of the peak inspiratory activity in neutral breaths ( P < 0.001), and activity commenced earlier relative to the onset of inspiratory flow. These changes resulted from an increase in the discharge frequency of motor units (14.3 ± 0.3 vs. 11.0 ± 0.3 Hz; P < 0.001) and the recruitment of new motor units. The majority of units that discharged during ipsilateral rotation were also active in inspiration. However, with contralateral rotation, parasternal inspiratory activity was delayed relative to the onset of inspiratory flow, and peak activity was reduced to 72 ± 4% of that in neutral breaths ( P < 0.001). This decrease resulted from a decrease in the inspiratory discharge frequency of units (10.5 ± 0.2 vs. 12.0 ± 0.2 Hz; P < 0.001) and the derecruitment of units. These observations confirm that in addition to an inspiratory function, the parasternal intercostal muscles have a postural function. Furthermore the postural and inspiratory drives depolarize the same motoneurons, and the postural contraction of the muscles alters their output during inspiration in a direction-dependent manner.
Collapse
Affiliation(s)
- Anna L. Hudson
- Prince of Wales Medical Research Institute and University of New South Wales, Sydney, New South Wales, Australia; and
| | - Jane E. Butler
- Prince of Wales Medical Research Institute and University of New South Wales, Sydney, New South Wales, Australia; and
| | - Simon C. Gandevia
- Prince of Wales Medical Research Institute and University of New South Wales, Sydney, New South Wales, Australia; and
| | - Andre De Troyer
- Laboratory of Cardiorespiratory Physiology, Brussels School of Medicine and Chest Service, Erasme University Hospital, Brussels, Belgium
| |
Collapse
|
17
|
Gray MA, Minati L, Harrison NA, Gianaros PJ, Napadow V, Critchley HD. Physiological recordings: basic concepts and implementation during functional magnetic resonance imaging. Neuroimage 2009; 47:1105-15. [PMID: 19460445 PMCID: PMC2741582 DOI: 10.1016/j.neuroimage.2009.05.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/01/2009] [Accepted: 05/09/2009] [Indexed: 12/30/2022] Open
Abstract
Combining human functional neuroimaging with other forms of psychophysiological measurement, including autonomic monitoring, provides an empirical basis for understanding brain-body interactions. This approach can be applied to characterize unwanted physiological noise, examine the neural control and representation of bodily processes relevant to health and morbidity, and index covert expression of affective and cognitive processes to enhance the interpretation of task-evoked regional brain activity. In recent years, human neuroimaging has been dominated by functional magnetic resonance imaging (fMRI) studies. The spatiotemporal information of fMRI regarding central neural activity is valuably complemented by parallel physiological monitoring, yet such studies still remain in the minority. This review article highlights fMRI studies that employed cardiac, vascular, respiratory, electrodermal, gastrointestinal and pupillary psychophysiological indices to address specific questions regarding interaction between brain and bodily state in the context of experience, cognition, emotion and behaviour. Physiological monitoring within the fMRI environment presents specific technical issues, most importantly related to safety. Mechanical and electrical hazards may present dangers to scanned subjects, operator and/or equipment. Furthermore, physiological monitoring may interfere with the quality of neuroimaging data, or itself be compromised by artefacts induced by the operation of the scanner. We review the sources of these potential problems and the current approaches and advice to enable the combination of fMRI and physiological monitoring in a safe and effective manner.
Collapse
Affiliation(s)
- Marcus A Gray
- Clinical Imaging Sciences Centre and Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Falmer Campus, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Concurrent excitation of the opposite motor cortex during transcranial magnetic stimulation to activate the abdominal muscles. J Neurosci Methods 2008; 171:132-9. [DOI: 10.1016/j.jneumeth.2008.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/03/2008] [Accepted: 02/04/2008] [Indexed: 11/24/2022]
|
19
|
Abstract
Respiration is primarily regulated for metabolic and homeostatic purposes in the brainstem. However, breathing can also change in response to changes in emotions, such as sadness, happiness, anxiety or fear. Final respiratory output is influenced by a complex interaction between the brainstem and higher centres, including the limbic system and cortical structures. Respiration is important in maintaining physiological homeostasis and co-exists with emotions. In this review, we focus on the relationship between respiration and emotions by discussing previous animal and human studies, including studies of olfactory function in relation to respiration and the piriform-amygdala in relation to respiration. In particular, we discuss oscillations of piriform-amygdala complex activity and respiratory rhythm.
Collapse
Affiliation(s)
- Ikuo Homma
- Department of Physiology, Showa University School of Medicine, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | |
Collapse
|
20
|
Sériès F, Wang W, Mélot C, Similowski T. Concomitant responses of upper airway stabilizing muscles to transcranial magnetic stimulation in normal men. Exp Physiol 2008; 93:496-502. [DOI: 10.1113/expphysiol.2007.039610] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Butler JE, Larsen TS, Gandevia SC, Petersen NT. The nature of corticospinal paths driving human motoneurones during voluntary contractions. J Physiol 2007; 584:651-9. [PMID: 17702821 PMCID: PMC2277157 DOI: 10.1113/jphysiol.2007.134205] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The properties of the human motor cortex can be studied non-invasively using transcranial magnetic stimulation (TMS). Stimulation at high intensity excites corticospinal cells with fast conducting axons that make direct connections to motoneurones of human upper limb muscles, while low-intensity stimulation can suppress ongoing EMG. To assess whether these cells are used in normal voluntary contractions, we used TMS at very low intensities to suppress the firing of single motor units in biceps brachii (n = 14) and first dorsal interosseous (FDI, n = 6). Their discharge was recorded with intramuscular electrodes and cortical stimulation was delivered at multiple intensities at appropriate times during sustained voluntary firing at approximately 10 Hz. For biceps, high-intensity stimulation produced facilitation at 17.1 +/- 2.1 ms (lasting 2.4 +/- 0.9 ms), while low-intensity stimulation (below motor threshold) produced suppression (without facilitation) at 20.2 +/- 2.1 ms (lasting 7.6 +/- 2.2 ms). For FDI, high-intensity stimulation produced facilitation at 23.3 +/- 1.2 ms (lasting 1.8 +/- 0.4 ms), with suppression produced by low-intensity stimulation at 25.2 +/- 2.6 ms (lasting 7.5 +/- 2.6 ms). The difference between the onsets of facilitation and suppression was short: 3.1 +/- 1.2 ms for biceps and 2.0 +/- 1.5 ms for FDI. This latency difference is much less than that previously reported using surface EMG recordings ( approximately 10 ms). These data suggest that low-intensity cortical stimulation inhibits ongoing activity in fast-conducting corticospinal axons through an oligosynaptic (possibly disynaptic) path, and that this activity is normally contributing to drive the motoneurones during voluntary contractions.
Collapse
Affiliation(s)
- Jane E Butler
- Department of Exercise and Sport Sciences, University of Copenhagen, Blegdamvej 3, 2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
22
|
Lo YL, Chan LL, Tan CT, Chen JLT, Tan SB. Pectoralis major motor evoked potentials in cervical spondylosis. J Neurol Sci 2005; 235:55-9. [PMID: 15939436 DOI: 10.1016/j.jns.2005.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/09/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Myelopathy is a severe complication of cervical spondylosis (CS). We studied 27 consecutive patients with CS referred for evaluation for possible myelopathy using transcranial magnetic stimulation. The findings were compared with those from 20 normal controls. Magnetic resonance imaging was utilized to assess the degree of cord compromise. Central motor conduction time (CMCT) abnormalities showed equivalent diagnostic yield with pectoralis major (PM) recordings, as compared with combined first dorsal interossei and abductor hallucis recordings. Our findings show that CMCT measurement with PM recordings is of value as a diagnostic adjunct in the electrophysiological evaluation of myelopathy in CS.
Collapse
Affiliation(s)
- Y L Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Straus C, Locher C, Zelter M, Derenne JP, Similowski T. Facilitation of the diaphragm response to transcranial magnetic stimulation by increases in human respiratory drive. J Appl Physiol (1985) 2004; 97:902-12. [PMID: 15133007 DOI: 10.1152/japplphysiol.00989.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human respiratory neural drive has an automatic component (bulbospinal pathway) and a volitional component (corticospinal pathway). The aim of this study was to assess the effects of a hypercapnia-induced increase in the automatic respiratory drive on the function of the diaphragmatic corticospinal pathway as independently as possible of any other influence. Thirteen healthy volunteers breathed room air and then 5 and 7% hyperoxic CO2. Cervical (cms) and transcranial (tms) magnetic stimulations were performed during early inspiration and expiration. Transdiaphragmatic pressure (Pdi) and surface electromyogram of the diaphragm (DiEMG) and of the abductor pollicis brevis (apbEMG) were recorded in response to cms and tms. During inspiration, Pdi,cms was unaffected by CO2, but Pdi,tms increased significantly with 7% CO2. During expiration, Pdi,cms was significantly reduced by CO2, whereas Pdi,tms was preserved. DiEMG,tms latencies decreased significantly during early inspiration and expiration (air vs. 5% CO2 and air vs. 7% CO2). DiEMG,tms amplitude increased significantly in response to early expiration-tms (air vs. 5% CO2 and air vs. 7% CO2) but not in response to early inspiration-tms. DiEMG,cms latencies and amplitudes were not affected by CO2 whereas 7% CO2 significantly increased the apbEMG,cms latency. The apbEMG,tms vs. apbEMG,cms latency difference was unaffected by CO2. In conclusion, increasing the automatic drive to breathe facilitates the response of the diaphragm to tms, during both inspiration and expiration. This could allow the corticospinal drive to breathe to keep the capacity to modulate respiration in conditions under which the automatic respiratory control is stimulated.
Collapse
Affiliation(s)
- C Straus
- UPRES EA 2397, Faculté de Médecine Pitié-Salpêtrière, Université Paris VI Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
25
|
Aldrich T, Sinderby C, Mc Kenzie D, Estenne M, Gandevia S. Techniques électrophysiologiques d’évaluation fonctionnelle des muscles respiratoires. Rev Mal Respir 2004. [DOI: 10.1016/s0761-8425(04)71396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Moseley GL, Hodges PW, Gandevia SC. External perturbation of the trunk in standing humans differentially activates components of the medial back muscles. J Physiol 2003; 547:581-7. [PMID: 12562944 PMCID: PMC2342660 DOI: 10.1113/jphysiol.2002.024950] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Collapse
|
27
|
Petersen NT, Taylor JL, Gandevia SC. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J Physiol 2002; 544:277-84. [PMID: 12356898 PMCID: PMC2290554 DOI: 10.1113/jphysiol.2002.024539] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In healthy human subjects, descending motor pathways including the corticospinal tract were stimulated electrically at the level of the cervicomedullary junction to determine the effects on the discharge of motoneurones innervating the biceps brachii. Post-stimulus time histograms (PSTHs) were constructed for 15 single motor units following electrical stimulation of the corticospinal tract and for 11 units following electrical stimulation of large diameter afferents at the brachial plexus. Responses were assessed during weak voluntary contraction. Both types of stimulation produced a single peak at short latency in the PSTH (mean 8.5 and 8.7 ms, respectively) and of short duration (< 1.4 ms). In separate studies, we compared the latency of the responses to electrical stimulation of the corticospinal tract in the relaxed muscle with that in the contracting muscle. The latency was the same in the two conditions when the intensity of the stimulation was adjusted so that responses of the same size could be compared. Estimates of the descending conduction velocity and measurements of presumed peripheral conduction time suggest that there is less than 0.5 ms for spinal events (including synaptic delays). We propose that in response to electrical stimulation of the descending tract fibres, biceps motoneurones receive a large excitatory input with minimal dispersion and it presumably contains a dominant monosynaptic component.
Collapse
Affiliation(s)
- Nicolas T Petersen
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick, Sydney, Australia
| | | | | |
Collapse
|
28
|
|
29
|
Abstract
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal "drive" based on force recordings. Some of the changes in motor cortical behavior can be dissociated from the development of this "supraspinal" fatigue. Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle. Some intrinsic adaptive properties of the motoneurons help to minimize fatigue. A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control. Human muscle fatigue does not simply reside in the muscle.
Collapse
Affiliation(s)
- S C Gandevia
- Prince of Wales Medical Research Institute, Prince of Wales Hospital and University of New South Wales, Randwick, Sydney, Australia.
| |
Collapse
|
30
|
Misawa T, Ebara S, Kamimura M, Tateiwa Y, Kinoshita T, Takaoka K. Evaluation of thoracic myelopathy by transcranial magnetic stimulation. JOURNAL OF SPINAL DISORDERS 2001; 14:439-44. [PMID: 11586145 DOI: 10.1097/00002517-200110000-00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is sometimes difficult to determine the appropriate surgical site in patients with thoracic myelopathy with diffuse or multisegmental lesions. To solve this problem, a magnetic stimulation study was carried out. Seven patients with myelopathy and 10 healthy control subjects were examined. Transcranial magnetic stimulation was applied and the motor evoked potentials (MEPs) of the intercostal muscles were recorded. The MEP latencies for the two groups were then compared. In patients with thoracic myelopathy, the MEP latencies caudal to the lesion were more extended than those of the control subjects. This method could identify the levels at which myelopathy originates in patients with a radiologically visible lesion. This method has the potential to be used for deciding the surgical site at the level responsible for myelopathy in cases with multiple or diffused compression.
Collapse
Affiliation(s)
- T Misawa
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Matsumoto, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Eisen A, Weber M. Neurophysiological evaluation of cortical function in the early diagnosis of ALS. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2000; 1 Suppl 1:S47-51. [PMID: 11464926 DOI: 10.1080/14660820052415907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The corticomotoneuronal system is selectively vulnerable in amyotrophic lateral sclerosis (ALS). In the past it has been difficult to evaluate the upper motor neuron component of this system. Recent studies using functional imaging and neurophysiological methods are now available as potential surrogate markers in the early diagnosis of ALS. We have used peristimulus time histograms (PSTHs) to evaluate the integrity of the motor cortex in ALS and in particular the cortical colonies that synapse with single anterior horn cells. The motor cortex in ALS becomes hyperexcitable early in the course of the disease and this may persist for some time. This is reflected in the PSTH by a desynchronized, complex response. Evidence indicates that this prime abnormality in ALS is supraspinal in origin and probably due to increased repetitive firing of the corticomotoneuron. The hyperexcitability is likely to be due to a combination of increased excitation at the level of the motor cortex and decreased inhibition due to dysfunction of the cortical inhibitory interneurones that modulate the output of the corticomotoneurone.
Collapse
Affiliation(s)
- A Eisen
- Department of Medicine, University of British Columbia, Vancouver General Hospital, Canada.
| | | |
Collapse
|
32
|
|
33
|
Lissens MA, Vanderstraeten GG. Motor evoked potentials of the respiratory muscles in tetraplegic patients. Spinal Cord 1996; 34:673-8. [PMID: 8918965 DOI: 10.1038/sc.1996.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We studied the respiratory muscles with magnetic transcranial stimulation (TCS) in four spinal cord injured (SCI) patients as compared to age-matched controls from a database of 40 healthy subjects. These SCI patients all had spinal cord lesions above C6 level with a clinically incomplete tetraplegia. One patient was artificially ventilated. Motor evoked potentials (MEPs) were recorded from the diaphragm, the scalenes, the parasternal intercostals and the expiratory rectus abdominis during inspiration and expiration. In patients with incomplete tetraplegia MEP latency times were significantly prolonged in the scalenes and the parasternal intercostals, both during inspiration and expiration, and were nearly normal for the diaphragm, which was found to be more or less preserved. The mean MEP amplitudes in these patients for all inspiratory muscles studied were significantly decreased in tetraplegic patients, in part due to a decreased number of innervating axons and muscle hypotrophy. No MEPs could be obtained from the abdominal muscles, except in one C3 tetraplegic patient, in whom only a very small response was seen during expiration, with a very delayed latency time. The much lower location of their innervating nerve roots (T10) and the much longer distance of their spinal exit zone from the level of injury at the cervical spinal cord might at least partially explain this phenomenon. In the ventilator-dependent tetraplegic patient no MEPs could be obtained from any of the muscles studied. Thus, magnetic TCS is a painless and easily applicable technique to investigate the central motor conduction properties of the respiratory muscles, both in healthy humans and in tetraplegic patients.
Collapse
Affiliation(s)
- M A Lissens
- Department of Physical Medicine and Rehabilitation, University Hospital Ghent, Belgium
| | | |
Collapse
|
34
|
McKenzie DK, Bellemare F. Respiratory muscle fatigue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 384:401-14. [PMID: 8585468 DOI: 10.1007/978-1-4899-1016-5_32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ventilatory failure may accompany a variety of pulmonary and neuromuscular diseases. There has been much controversy about whether this failure is due to respiratory muscle fatigue at peripheral sites or a failure of drive at sites within the central nervous system. The chapter reviews this topic.
Collapse
Affiliation(s)
- D K McKenzie
- Department of Respiratory Medicine, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
35
|
Urban PP, Vogt T. Conduction times of cortical projections to paravertebral muscles in controls and in patients with multiple sclerosis. Muscle Nerve 1994; 17:1348-9. [PMID: 7935559 DOI: 10.1002/mus.880171116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P P Urban
- Neurologische Klinik und Poliklinik, Johannes Gutenberg-Universität Mainz, Germany
| | | |
Collapse
|
36
|
Khater-Boidin J, Joly H, Duron B. [Postnatal development of central motor pathways. An electrophysiological study]. Neurophysiol Clin 1992; 22:207-24. [PMID: 1528176 DOI: 10.1016/s0987-7053(05)80216-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The percutaneous electrical stimulation of the brain and spinal cord has been used to study the central motor pathways in 19 healthy full-term newborns and in 19 infants. The evoked compound muscle action potential were recorded by bipolar surface electrodes fixed on the skin overlying the thenar eminence muscles and the tibialis anterior muscle. In full-term newborns, the responses of lower limb muscles to cortical stimulation are more difficult to obtain that those of upper limb muscles. At birth, the conduction velocity of central motor fibres along the spinal cord are around 10 m/s, 4 or 5 times lower that the lowest values published for adult subjects. Thus, as has been demonstrated in animals, there seems to exist in man a very clear dissociation between myelination of central motor pathways and that of peripheral motor fibres.
Collapse
Affiliation(s)
- J Khater-Boidin
- Laboratoire de neurophysiologie, URA 1331 CNRS, faculté de médecine, Amiens, France
| | | | | |
Collapse
|
37
|
Macefield G, Gandevia SC. The cortical drive to human respiratory muscles in the awake state assessed by premotor cerebral potentials. J Physiol 1991; 439:545-58. [PMID: 1895244 PMCID: PMC1180123 DOI: 10.1113/jphysiol.1991.sp018681] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. We investigated the possibility of a cortical contribution to human respiration by recording from the scalp of awake subjects the premotor cerebral potentials that are known to precede voluntary limb movements. 2. Electroencephalographic activity (EEG) was recorded from scalp electrodes and averaged for 1.8-2.0 s before the time at which airway pressure exceeded an inspiratory or expiratory threshold. Clear premotor cerebral potentials were recorded during brisk, self-paced nasal inhalations or exhalations. In ten subjects, a slow cortical negativity (Bereitschaftspotential) was apparent in the averaged EEG, commencing 1.2 +/- 0.3 s before the onset of inspiratory (scalene) or expiratory (abdominal) muscle activity (EMG). It was maximal at the vertex, with a mean slope of 12.3 +/- 5.8 microV/s, and was followed by a post-movement positivity. 3. In four subjects the inspiratory premotor potential culminated in a large negativity, the motor potential, which began 24 +/- 15 ms before the onset of scalene EMG. It is argued that such a short latency is consistent with a volitionally generated respiratory command which travels relatively directly to the respiratory muscles, having a total central delay which is no longer than that for voluntary finger movements. 4. That the respiratory premotor and motor potentials did not originate in subcortical structures was supported by their absence in a patient suffering from chronic reflexogenic hiccups, in whom cerebral activity was back-averaged from each brisk hiccup. 5. During quiet breathing, in which subjects were relaxed and distracted from thinking about their respiration, no premotor cerebral potentials preceding inspiration could be detected. This failure was not due to the slow rate of rise of inspiratory activity during quiet breathing as compared with a brisk sniff, because premotor potentials were detected when subjects intermittently generated slow active expiratory efforts. 6. These observations suggest that during quiet breathing the cerebral cortex does not contribute to respiratory drive on a breath-by-breath basis. Conversely, the presence of clear premotor cerebral potentials when subjects performed self-paced inspiratory or expiratory manoeuvres illustrates the powerful cortical projection to human respiratory muscles.
Collapse
Affiliation(s)
- G Macefield
- Department of Clinical Neurophysiology, Prince Henry Hospital, Matraville, NSW, Australia
| | | |
Collapse
|
38
|
Rothwell JC, Gandevia SC, Burke D. Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol 1990; 431:743-56. [PMID: 2151617 PMCID: PMC1181801 DOI: 10.1113/jphysiol.1990.sp018357] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Neural recordings were made from motor fascicles of the ulnar or radial nerves while the motor cortex was stimulated percutaneously using high-voltage electrical stimuli or transient magnetic pulses to determine whether human muscle spindle endings could be activated by such stimuli and, if so, whether this occurred before the recruitment of alpha-motoneurones. 2. In relaxed subjects, no evidence of muscle spindle activation could be detected in nine recordings of multiunit neural activity and four recordings from single spindle afferents using stimulus levels up to 600 V and 1.5 T. These levels produced a prominent twitch contraction of the intrinsic muscles of the hand and of forearm muscles. Passive stretch of the contracting muscle did not reveal a fusimotor action too weak to be detected under isometric circumstances. 3. With twenty-six single spindle afferents, the stimuli were delivered during a voluntary contraction of the receptor-bearing muscle. This served to 'focus' the effects of the stimulus on the relevant motoneurone pools and increased the probability that fusimotor neurones innervating the endings were active. 4. None of the twenty-six spindle afferents could be activated by stimuli subthreshold for alpha-motoneurones, even when the stimuli were delivered during passive stretch of the contracting muscle. With eighteen afferents, stimuli above threshold for alpha-motoneurones were delivered: twelve remained unaffected but the discharge of six altered. 5. Three afferents were activated at latencies of 35, 39 and 40 ms, respectively 16, 20 and 20 ms after the onset of the EMG potentials in the receptor-bearing muscles. This latency difference is too short to be attributable to activation of gamma-motoneurones: arguments are presented that the increase in spindle discharge could result from activation of beta-motoneurones. 6. The discharge of three afferents increased at latencies of 70, 75 and 85 ms, too early to be due to stretch on the falling phase of the twitch contraction of the receptor-bearing muscle. Responses at these latencies could involve activation of gamma- or beta-motoneurones. 7. These findings in human subjects suggest that transient stimulation of the motor cortex may effectively access fusimotor neurones.
Collapse
Affiliation(s)
- J C Rothwell
- Department of Clinical Neurophysiology, Institute of Neurological Sciences, Sydney, Australia
| | | | | |
Collapse
|
39
|
Gandevia SC, McKenzie DK, Plassman BL. Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol 1990; 428:387-403. [PMID: 2231418 PMCID: PMC1181653 DOI: 10.1113/jphysiol.1990.sp018218] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. This study used three techniques (bilateral phrenic nerve stimulation, motor cortex stimulation and quantitative electromyography) to assess the degree of activation of the diaphragm, intercostal-accessory muscles and abdominal muscles during postural tasks and respiratory manoeuvres. They included maximal inspiratory and expulsive efforts. 2. Bilateral phrenic nerve stimuli at supramaximal levels produced an average change in transdiaphragmatic pressure (Pdi) of 28 cmH2O during relaxation. During maximal inspiratory or expulsive efforts, all subjects were able to activate the diaphragm fully at functional residual capacity as judged by the failure of stimuli delivered during the voluntary efforts to increase Pdi. Peak voluntary Pdi was about 30% less for inspiratory than expulsive manoeuvres. 3. By contrast, transcranial activation of motor cortical output to the diaphragm and abdominal muscles produced an increment in abdominal pressure of 25 +/- 7 cmH2O during maximal voluntary expulsive efforts. Given the lack of response to phrenic nerve stimulation at similar voluntary pressures, this suggests that abdominal muscles, and not the diaphragm, fail to generate their full contractile force during maximal voluntary expulsive manoeuvres. 4. Motor cortical stimulation during weak inspiratory efforts produced a small reduction in oesophageal pressure (i.e. increase in net inspiratory force) of 7-14 cmH2O. This response could not be extinguished during maximal voluntary inspiratory efforts in two of three subjects. This occurred despite the cortical co-activation of 'antagonist' muscles in the chest wall and abdomen, and passive transmission of pressure from the abdominal to thoracic compartments. 5. Integrated electromyographic activity (EMG) recorded from abdominal muscles (rectus abdominis, external oblique) was greater during trunk flexion than during maximal expulsive efforts. Similarly, integrated EMG of the intercostal-accessory muscles (sternomastoid, scalenes, parasternal intercostals) was greater during tasks requiring head and/or neck flexion than during the maximal inspiratory efforts. 6. These data show that the diaphragm can be fully activated by the central nervous system during voluntary respiratory tasks but that other agonist 'respiratory' muscles need not be activated fully. Given the complex actions of 'inseries' respiratory muscles revealed here, it is argued that differences in the transdiaphragmatic pressure during various postural and respiratory tasks do not necessarily imply variation in the level of diaphragmatic neural drive.
Collapse
Affiliation(s)
- S C Gandevia
- Department of Clinical Neurophysiology, Prince Henry Hospital, Sydney, Australia
| | | | | |
Collapse
|
40
|
Leinonen L, Laakso ML. Control of static pressure by expiratory muscles during expiratory effort and phonation. J Voice 1990. [DOI: 10.1016/s0892-1997(05)80021-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Gandevia SC, Macefield G. Projection of low-threshold afferents from human intercostal muscles to the cerebral cortex. RESPIRATION PHYSIOLOGY 1989; 77:203-14. [PMID: 2781163 DOI: 10.1016/0034-5687(89)90007-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Low-threshold afferents from human limb muscles are known to project to the sensorimotor cortex and to contribute to proprioception. However, there are few data on the cortical projection of afferents from human respiratory muscles. The present study employed evoked-potential techniques to determine whether low-threshold muscle afferents from the chest wall project to cortical levels in conscious human subjects. In four subjects intramuscular afferents of the second parasternal and fifth lateral intercostal muscles were selectively stimulated through an insulated microelectrode inserted percutaneously at the respective motor point. Evoked potentials were recorded and averaged from eight scalp sites. The initial cortical component of the cerebral response to intramuscular stimulation of the second and fifth interspaces was a negative potential commencing at 19.2 +/- 2.1 msec and 20.7 +/- 1.1 msec respectively. The dominant early cortical potential was largest at the vertex, and was comparable in amplitude (0.58 +/- 0.23 microV) to that for individual muscles of the upper and lower limbs. The cortical focus was distributed differently from that for cutaneous afferents of the chest wall and for both muscle and cutaneous afferents from the upper and lower limbs. This study provides direct evidence for a short-latency projection from intercostal muscle afferents (group I and/or II) to the human cerebral cortex.
Collapse
Affiliation(s)
- S C Gandevia
- Department of Neurology, Prince Henry Hospital, Sydney, Australia
| | | |
Collapse
|
42
|
Plassman BL, Gandevia SC. High-voltage stimulation over the human spinal cord: sources of latency variation. J Neurol Neurosurg Psychiatry 1989; 52:213-7. [PMID: 2539436 PMCID: PMC1032508 DOI: 10.1136/jnnp.52.2.213] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Percutaneous electrical stimuli (up to 600 V) were applied over the cervical spinal cord to evoke responses in the biceps brachii and thenar muscles. Cathodal stimulation over the C7 spinous process was more effective than anodal stimulation or stimulation over the C5 or C3 spinous process. As the stimulus intensity was increased, the response amplitude increased and the latency decreased. When progressively higher levels of supramaximal stimuli were delivered the latency often decreased further. The shortest latencies evoked by stimulation over the C7 spinous process were close to the latencies of the responses evoked by supramaximal stimulation near Erb's point. Thus, with this type of stimulation, the site of nerve activation changes with different stimulus intensities. The variability in latency introduced by distal spread of the site of activation will affect measurements of central motor conduction time and should be considered in the diagnostic use of this technique.
Collapse
Affiliation(s)
- B L Plassman
- Department of Neurology, Prince Henry Hospital, University of New South Wales, Sydney, Australia
| | | |
Collapse
|