1
|
Keller‐Ross ML, Sarkinen AL, Chantigian DP, Cross TJ, Johnson BD, Olson TP. Interaction of hypoxia and vascular occlusion on cardiorespiratory responses during exercise. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manda L. Keller‐Ross
- Division of Physical Therapy, Medical School University of Minnesota Minneapolis Minnesota
| | | | - Daniel P. Chantigian
- Division of Physical Therapy, Medical School University of Minnesota Minneapolis Minnesota
| | - Troy J. Cross
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
- Menzies Health Institute Queensland, Gold Coast Griffith University QLD Australia
| | - Bruce D. Johnson
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
| | - Thomas P. Olson
- Internal Medicine Mayo Clinic College of Medicine Rochester Minnesota
| |
Collapse
|
2
|
Stickland MK, Fuhr DP, Edgell H, Byers BW, Bhutani M, Wong EYL, Steinback CD. Chemosensitivity, Cardiovascular Risk, and the Ventilatory Response to Exercise in COPD. PLoS One 2016; 11:e0158341. [PMID: 27355356 PMCID: PMC4927073 DOI: 10.1371/journal.pone.0158341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED COPD is associated with elevated cardiovascular risk and a potentiated ventilatory response to exercise. Enhanced carotid chemoreceptor (CC) activity/sensitivity is present in other clinical conditions, has been shown to contribute to sympathetic vasoconstrictor outflow, and is predictive of mortality. CC activity/sensitivity, and the resulting functional significance, has not been well examined in COPD. We hypothesized that CC activity/sensitivity would be elevated in COPD, and related to increased pulse wave velocity (a marker of CV risk) and the ventilatory response to exercise. METHODS 30 COPD patients and 10 healthy age-matched controls were examined. Participants performed baseline cardiopulmonary exercise and pulmonary function testing. CC activity was later evaluated by the drop in ventilation with breathing 100% O2, and CC sensitivity was then assessed by the ventilatory response to hypoxia (ΔVE/ΔSpO2). Peripheral arterial stiffness was subsequently evaluated by measurement of pulse wave velocity (PWV) using applanation tonometry while the subjects were breathing room air, and then following chemoreceptor inhibition by breathing 100% O2 for 2 minutes. RESULTS CC activity, CC sensitivity, PWV and the ventilatory response to exercise were all increased in COPD relative to controls. CC sensitivity was related to PWV; however, neither CC activity nor CC sensitivity was related to the ventilatory response to exercise in COPD. CC inhibition by breathing 100% O2 normalized PWV in COPD, while no effect was observed in controls. CONCLUSION CC activity and sensitivity are elevated in COPD, and appear related to cardiovascular risk; however, CC activity/sensitivity does not contribute to the potentiated ventilatory response to exercise.
Collapse
Affiliation(s)
- Michael K. Stickland
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, Alberta, Canada
- * E-mail:
| | - Desi P. Fuhr
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Edgell
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Brad W. Byers
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mohit Bhutani
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Y. L. Wong
- Pulmonary Division, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D. Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Nobrega ACL, O'Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:478965. [PMID: 24818143 PMCID: PMC4000959 DOI: 10.1155/2014/478965] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022]
Abstract
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Antonio C. L. Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Donal O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruno Moreira Silva
- Section of Exercise Physiology, Department of Physiology, Federal University of São Paulo, SP, Brazil
| | - Elisabetta Marongiu
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department, Guglielmo da Saliceto Polichirurgico Hospital, Piacenza, Italy
| | - Antonio Crisafulli
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| |
Collapse
|
4
|
Stickland MK, Fuhr DP, Haykowsky MJ, Jones KE, Paterson DI, Ezekowitz JA, McMurtry MS. Carotid chemoreceptor modulation of blood flow during exercise in healthy humans. J Physiol 2011; 589:6219-30. [PMID: 22025661 DOI: 10.1113/jphysiol.2011.218099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Carotid chemoreceptor (CC) inhibition reduces sympathetic nervous outflow in exercising dogs and humans. We sought to determine if CC suppression increases muscle blood flow in humans during exercise and hypoxia. Healthy subjects (N = 13) were evaluated at rest and during constant-work leg extension exercise while exposed to either normoxia or hypoxia (inspired O(2) tension, F(IO(2)), ≈ 0.12, target arterial O(2) saturation = 85%). Subjects breathed hyperoxic gas (F(IO(2)) ≈ 1.0) and/or received intravenous dopamine to inhibit the CC while femoral arterial blood flow data were obtained continuously with pulsed Doppler ultrasound. Exercise increased heart rate, mean arterial pressure, femoral blood flow and conductance compared to rest. Transient hyperoxia had no significant effect on blood flow at rest, but increased femoral blood flow and conductance transiently during exercise without changing blood pressure. Similarly, dopamine had no effect on steady-state blood flow at rest, but increased femoral blood flow and conductance during exercise. The transient vasodilatory response observed by CC inhibition with hyperoxia during exercise could be blocked with simultaneous CC inhibition with dopamine. Despite evidence of dopamine reducing ventilation during hypoxia, no effect on femoral blood flow, conductance or mean arterial pressure was observed either at rest or during exercise with CC inhibition with dopamine while breathing hypoxia. These findings indicate that the carotid chemoreceptor contributes to skeletal muscle blood flow regulation during normoxic exercise in healthy humans, but that the influence of the CC on blood flow regulation in hypoxia is limited.
Collapse
Affiliation(s)
- Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
5
|
Querido JS, Kennedy PM, Sheel AW. Hyperoxia attenuates muscle sympathetic nerve activity following isocapnic hypoxia in humans. J Appl Physiol (1985) 2010; 108:906-12. [PMID: 20150566 DOI: 10.1152/japplphysiol.01228.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia may sensitize the carotid chemoreceptors, resulting in a sustained elevation of muscle sympathetic nerve activity (MSNA) that outlasts the hypoxic stimulus. To test this hypothesis, we determined the effect of carotid body inhibition on the sustained elevation of MSNA following isocapnic hypoxia in humans. Seven healthy subjects (5 male, 2 female) breathed 100% O(2) (hyperoxia) for 1 min before (2 interventions) and after (2-3 interventions) 20 min of isocapnic hypoxia (80% arterial oxyhemoglobin saturation). MSNA was continuously recorded from the common peroneal nerve with microneurography. There was no effect of hyperoxia on MSNA before exposure to isocapnic hypoxia. During the isocapnic hypoxia exposure, there was an increase in minute ventilation and heart rate that subsided once hypoxia was terminated. In contrast, there was an increase in MSNA burst frequency that persisted for approximately 25 min after cessation of the stimulus. Hyperoxia resulted in a transient reduction in MSNA burst frequency of 28% (P < 0.05), 15% (P < 0.05), and 9% (P > 0.05) in the three posthypoxia interventions, respectively. Our results suggest that input from the carotid chemoreceptors is obligatory for the sustained elevation of MSNA initiated by chemoreflex stimulation. We attribute the decrease in MSNA to a transient hyperoxia-induced attenuation of carotid chemoreceptor sensitivity.
Collapse
Affiliation(s)
- Jordan S Querido
- School of Human Kinetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
6
|
Stickland MK, Smith CA, Soriano BJ, Dempsey JA. Sympathetic restraint of muscle blood flow during hypoxic exercise. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1538-46. [PMID: 19297541 DOI: 10.1152/ajpregu.90918.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Control of exercising muscle blood flow is a balance between local vasodilatory factors and the increase in global sympathetic vasoconstrictor outflow. Hypoxia has been shown to potentiate the muscle sympathetic nerve response to exercise, potentially limiting the increase in muscle blood flow. Accordingly, we investigated sympathetic restraint to exercising muscle during whole body exercise in hypoxia. Six dogs chronically instrumented with ascending aortic and hindlimb flow probes and a terminal aortic catheter were studied at rest and mild [2.5 miles/h (mph), 5% grade] and moderate (4.0 mph, 10% grade) exercise while breathing room air or hypoxia (Pa(O(2)) approximately 45 mmHg) in the intact control condition and following systemic alpha-adrenergic blockade (phentolamine). Hypoxia caused an increase in cardiac output (CO), hindlimb flow (Flow(L)), and blood pressure (BP), while total (Cond(T)) and hindlimb conductance (Cond(L)) were unchanged at rest and mild exercise but increased with moderate exercise. During both mild and moderate exercise, alpha-blockade in normoxia resulted in significant vasodilation as evidenced by increases in CO (10%), Flow(L) (17%), Cond(T) (33%), Cond(L) (43%), and a decrease in BP (-18%), with the increase in Cond(L) greater than the increase in Cond(T) during mild exercise. Compared with the normoxic response, alpha-blockade in hypoxia during exercise resulted in a significantly greater increase in Cond(T) (59%) and Cond(L) (74%) and a correspondingly greater decrease in BP (-34%) from baseline. These findings indicate that there is considerable hypoxia-induced sympathetic restraint of muscle blood flow during both mild and moderate exercise, which helps to maintain arterial blood pressure in hypoxia.
Collapse
Affiliation(s)
- Michael K Stickland
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
7
|
Stickland MK, Morgan BJ, Dempsey JA. Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans. J Physiol 2008; 586:1743-54. [PMID: 18202096 DOI: 10.1113/jphysiol.2007.147421] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, we have shown that specific, transient carotid chemoreceptor (CC) inhibition in exercising dogs causes vasodilatation in limb muscle. The purpose of the present investigation was to determine if CC suppression reduces muscle sympathetic nerve activity (MSNA) in exercising humans. Healthy subjects (N = 7) breathed hyperoxic gas (F(IO(2)) approximately 1.0) for 60 s at rest and during rhythmic handgrip exercise (50% maximal voluntary contraction, 20 r.p.m.). Microneurography was used to record MSNA in the peroneal nerve. End-tidal P(CO(2)) was maintained at resting eupnoeic levels throughout and breathing rate was voluntarily fixed. Exercise increased heart rate (67 versus 77 beats min(-1)), mean blood pressure (81 versus 97 mmHg), MSNA burst frequency (28 versus 37 bursts min(-1)) and MSNA total minute activity (5.7 versus 9.3 units), but did not change blood lactate (0.7 versus 0.7 mm). Transient hyperoxia had no significant effect on MSNA at rest. In contrast, during exercise both MSNA burst frequency and total minute activity were significantly reduced with hyperoxia. MSNA burst frequency was reduced within 9-23 s of end-tidal P(O(2)) exceeding 250 mmHg. The average nadir in MSNA burst frequency and total minute activity was -28 +/- 2% and -39 +/- 7%, respectively, below steady state normoxic values. Blood pressure was unchanged with hyperoxia at rest or during exercise. CC stimulation with transient hypoxia increased MSNA with a similar time delay to that obtained with CC inhibition via hyperoxia. Consistent with previous animal work, these data indicate that the CC contributes to exercise-induced increases in sympathetic vasoconstrictor outflow.
Collapse
Affiliation(s)
- Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, 2E4.42 Walter C Mackenzie, Health Sciences Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
8
|
Stickland MK, Miller JD, Smith CA, Dempsey JA. Carotid chemoreceptor modulation of regional blood flow distribution during exercise in health and chronic heart failure. Circ Res 2007; 100:1371-8. [PMID: 17431189 DOI: 10.1161/01.res.0000266974.84590.d2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work has shown sensitization of carotid chemoreceptor (CC) responsiveness during exercise as well as in chronic heart failure (CHF). Accordingly, we hypothesized that the CCs contribute to the sympathetic restraint of skeletal muscle blood flow during exercise and CHF. We examined the effect of transient CC inhibition on total (Con(T)) and hindlimb (Con(L)) conductance, and blood pressure at rest and during exercise (2.5 miles per hour, 5% grade) in chronically instrumented dogs. Via a carotid arterial catheter, CCs were inhibited using dopamine (5 to 10 microg/kg) or hyperoxic lactated Ringer's solution. Although vasodilation did not occur with CC inhibition in resting healthy dogs, CC inhibition during exercise caused an immediate vasodilatory response (increase in Con(T) and Con(L) and decrease in blood pressure). When comparing the peak Con(L) response from CC inhibition versus alpha-adrenergic blockade (phentolamine), we found that the CCs accounted for approximately one-third of the total sympathetic restraint during exercise. CHF was then induced by chronic rapid cardiac pacing and characterized by impaired cardiac function, enhanced chemosensitivity, and greater sympathetic restraint at rest and during exercise. In contrast to healthy dogs, CC inhibition in resting CHF dogs produced vasodilation, whereas a similar vasodilatory response was observed during exercise in CHF as compared with healthy dogs. The vasodilation following CC inhibition during exercise and in CHF was abolished with alpha-adrenergic blockade and was absent in healthy exercising animals after carotid body denervation. These results establish an important role for the CCs in cardiovascular control in the healthy animal during exercise and in the CHF animal both at rest and during exercise.
Collapse
Affiliation(s)
- Michael K Stickland
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|
9
|
Szulczyk B, Rola R, Witkowski G, Szulczyk P. Effects of ATP and GTP on voltage-gated K+ currents in glandular and muscular sympathetic neurons. Brain Res 2005; 1068:82-93. [PMID: 16359644 DOI: 10.1016/j.brainres.2005.10.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/26/2005] [Accepted: 10/31/2005] [Indexed: 11/21/2022]
Abstract
This study assesses the effects of ATP and GTP on the kinetic properties of voltage-gated K+ currents in anatomically identified postganglionic sympathetic neurons innervating the submandibular gland and the masseter muscle in rats. Three types of K+ currents were isolated: the I(Af) steady-state inactivating at more hyperpolarized potentials, I(As) steady-state inactivating at less hyperpolarized potentials than I(Af) and the I(K) current independent of membrane potential. The kinetic properties of these currents were tested in neurons with ATP (4 mM) and GTP (0.5 mM) or without ATP and GTP in the intracellular solution. In glandular and muscular neurons in the absence of ATP and GTP in the intracellular solution, the current density of I(Af) was significantly larger (142 pA/pF and 166 pA/pF, respectively) comparing to cells with ATP and GTP (96 pA/pF and 100 pA/pF, respectively). The I(As) was larger only in glandular neurons (52 pA/pF vs. 37 pA/pF).Conversely, I(K) current density was smaller in glandular and muscular neurons without ATP and GTP (17 pA/pF and 31 pA/pF, respectively) comparing to cells with ATP and GTP (57 pA/pF and 58 pA/pF, respectively). In glandular (15.5 nA/ms vs. 6.9 nA/ms) and muscular (10.9 nA/ms vs. 7.5 nA/ms) neurons, the I(Af) activated faster in the absence of ATP and GTP. Half inactivation voltage of I(Af) in glandular (-110.0 mV vs. -119.7 mV) and muscular (-108.4 vs. -117.3 mV) neurons was shifted towards depolarization in the absence of ATP and GTP. We suggest that the kinetic properties of K+ currents in glandular and muscular sympathetic neurons change markedly in the absence of ATP and GTP in the cytoplasm. Effectiveness of steady-state inactivated currents (I(Af) and I(AS)) increased, while effectiveness of steady-state noninactivated currents decreased in the absence of ATP and GTP. The effects were more pronounced in glandular than in muscular neurons.
Collapse
Affiliation(s)
- Bartłomiej Szulczyk
- The Faculty of Medicine, Department of Experimental and Clinical Physiology, The Medical University of Warsaw, Krakowskie Przedmieście 26/28, Warsaw 00-927, Poland.
| | | | | | | |
Collapse
|
10
|
Rola R, Szulczyk P. Quantitative differences between kinetic properties of Na(+) currents in postganglionic sympathetic neurones projecting to muscular and cutaneous effectors. Brain Res 2000; 857:327-36. [PMID: 10700587 DOI: 10.1016/s0006-8993(99)02318-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activity of muscular and cutaneous sympathetic neurones has been shown to be differentially regulated. The differences may partially stem from the different ionic channel expression and current kinetics in these neurones, particularly that of Na(+) channels, which play a critical role in action potential generation and modulation of neuronal excitability. The whole cell patch-clamp technique was used to compare the kinetic properties of Na(+) currents in two groups of sympathetic neurones identified by the fluorescent tracer Fast Blue: putative muscular sympathetic neurones (PMSN) and putative cutaneous sympathetic neurones (PSSN). The tracer was injected into the muscular part of the diaphragm (to mark PMSN) and into the skin of the ear (to mark PSSN). Both kinds of neurones expressed fast activating, fast inactivating, voltage dependent and TTX sensitive Na(+) currents. However, the electrical characteristics of the cells were markedly different: (1) The capacitance of PMSN (21.7 pF) was larger than PSSN (12.7 pF). Maximum current in PMSN (3.1 nA) was also larger than in PSSN (2.0 nA). Calculated current density was smaller in PMSN (148.0 pA/pF) than in PSSN (181.1 pA/pF). Slope conductance was larger in PMSN compared to PSSN (102.7 nS and 73.6 nS respectively). (2) V(1/2) of activation for PMSN (-20.9 mV) was more negative than the potential recorded for PSSN (-16.7 mV); the slope factors were not different. (3) V(1/2) for inactivation was more negative for PMSN than for PSSN (-66.3 vs. -60.8 mV); again, the slope factors for inactivation were not different. (4) The rate of recovery from inactivation could be described by the sum of two exponential functions. In PMSN the fast and slow recovery exponential factors tau(f) and tau(s) were 12.6 (66%) and 83.9 (34%) ms, while in PSSN they were shorter and equalled 8.2 (62%) and 41.9 (38%) ms, respectively. We conclude that the Na(+) currents of PMSN and PSSN have different kinetic properties.
Collapse
Affiliation(s)
- R Rola
- The Medical University of Warsaw, Department of Physiology, Krakowskie Przedmieście 26/28, Warsaw, Poland
| | | |
Collapse
|
11
|
Bałkowiec A, Szulczyk P. Pulmonary chemoreflex and phrenic sympathetic efferents. RESPIRATION PHYSIOLOGY 1993; 94:151-62. [PMID: 8272587 DOI: 10.1016/0034-5687(93)90044-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pulmonary chemoreflex components such as reactions of phrenic sympathetic neuron (PhSN) activity, phrenic nerve activity, heart rate and blood pressure were tested in chloralose-anesthetized, paralyzed cats. 10 micrograms to 160 micrograms phenylbiguanide (PBG) in 0.9% NaCl was injected into the pulmonary circulation. PBG injected into the right atrium (in 11 of 19 experiments) and into the pulmonary artery (in 5 of 8 experiments), evoked short-latency (1-1.4 sec) dose-dependent increase in PhSN activity accompanied by increase in blood pressure, and followed by decrease in these two variables. In all experiments, activity of the phrenic nerve was depressed, and bradycardia occurred after PBG injection. All responses to PBG injections into the pulmonary artery were abolished following bilateral vagotomy. In the same procedure related to the right atrium after vagotomy, the increases in PhSN activity and blood pressure were also abolished, although a decrease in heart rate, PhSN activity and in the amplitude of phrenic nerve discharges together with an increase in their frequency persisted. Our results suggest that short-latency increase in PhSN activity is a component of pulmonary chemoreflex.
Collapse
Affiliation(s)
- A Bałkowiec
- Department of Physiology, Faculty of Medicine, Warsaw, Poland
| | | |
Collapse
|