1
|
Kodirov SA, Psyrakis D, Brachmann J, Zhuravlev VL. Limulus and heart rhythm. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:61-79. [PMID: 30251467 DOI: 10.1002/jez.2235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Great interest in the comparative physiology of hearts and their functions in Animalia has emerged with classic papers on Limulus polyphemus and mollusks. The recurrent cardiac activity-heart rate-is the most important physiological parameter and when present the kardia (Greek) is vital to the development of entire organs of the organisms in the animal kingdom. Extensive studies devoted to the regulation of cardiac rhythm in invertebrates have revealed that the basics of heart physiology are comparable to mammals. The hearts of invertebrates also beat spontaneously and are supplied with regulatory nerves: either excitatory or inhibitory or both. The distinct nerves and the source of excitation/inhibition at the level of single neurons are described for many invertebrate genera. The vertebrates and a majority of invertebrates have myogenic hearts, whereas the horseshoe crab L. polyphemus and a few other animals have a neurogenic cardiac rhythm. Nevertheless, the myogenic nature of heartbeat is precursor, because the contraction of native and stem-cell-derived cardiomyocytes does occur in the absence of any neural elements. Even in L. polyphemus, the heart rhythm is myogenic at embryonic stages.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of General Physiology, Saint Petersburg University, Saint Petersburg, Russia.,Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia.,Department of Molecular Biology and Genetics, Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, Russia.,Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Department of Cardiology, University Hospital, Heidelberg, Germany
| | - Dimitrios Psyrakis
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany
| | - Johannes Brachmann
- Department of Cardiology, Klinikum Coburg, Teaching Hospital of the University of Würzburg, Coburg, Germany.,Department of Cardiology, University Hospital, Heidelberg, Germany
| | - Vladimir L Zhuravlev
- Department of General Physiology, Saint Petersburg University, Saint Petersburg, Russia.,Department of Cardiology, University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Neumann T, Fauver M, Pollack GH. Elastic properties of isolated thick filaments measured by nanofabricated cantilevers. Biophys J 1998; 75:938-47. [PMID: 9675194 PMCID: PMC1299767 DOI: 10.1016/s0006-3495(98)77582-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using newly developed nanofabricated cantilever force transducers, we have measured the mechanical properties of isolated thick filaments from the anterior byssus retractor muscle of the blue mussel Mytilus edulis and the telson levator muscle of the horseshoe crab Limulus polyphemus. The single thick filament specimen was suspended between the tip of a flexible cantilever and the tip of a stiff reference beam. Axial stress was placed on the filament, which bent the flexible cantilever. Cantilever tips were microscopically imaged onto a photodiode array to extract tip positions, which could be converted into force by using the cantilever stiffness value. Length changes up to 23% initial length (Mytilus) and 66% initial length (Limulus) were fully reversible and took place within the physiological force range. When stretch exceeded two to three times initial length (Mytilus) or five to six times initial length (Limulus), at forces approximately 18 nN and approximately 7 nN, respectively, the filaments broke. Appreciable and reversible strain within the physiological force range implies that thick-filament length changes could play a significant physiological role, at least in invertebrate muscles.
Collapse
Affiliation(s)
- T Neumann
- Department of Bioengineering, University of Washington, Seattle, Washington 98195 USA.
| | | | | |
Collapse
|