1
|
Sherlock ME, Langeberg CJ, Kieft JS. Diversity and modularity of tyrosine-accepting tRNA-like structures. RNA (NEW YORK, N.Y.) 2024; 30:213-222. [PMID: 38164607 PMCID: PMC10870377 DOI: 10.1261/rna.079768.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Reynard JS, Turco S, Brodard J, Kellenberger I, Maclot F, Schumpp O, Gugerli P, Pooggin MM. Identification and Molecular Characterization of a Novel Hordeivirus Associated With Yellow Mosaic Disease of Privet ( Ligustrum vulgare) in Europe. Front Microbiol 2021; 12:723350. [PMID: 34646247 PMCID: PMC8503643 DOI: 10.3389/fmicb.2021.723350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Wild plants serve as a large reservoir of known and yet-unknown viruses and as a source of viral pathogens of cultivated plants. Yellow mosaic disease of forest shrub Ligustrum vulgare (privet) was recurrently observed in Europe for more than 100 years. Using a universal virus identification approach based on deep sequencing and de novo assembly of viral small interfering (si)RNAs we identified a causative agent of this disease in Switzerland and reconstructed its complete 3-segmented RNA genome. Notably, a short 3'-terminal common region (CR) attached to each segment via a ∼53-71 nucleotide poly(A) tract, as determined by RT-PCR sequencing, was initially identified as an orphan siRNA contig with conserved tRNA-like secondary structure. Phylogenomic analysis classified this virus as a novel member in the genus Hordeivirus of family Virgaviridae, which we named ligustrum mosaic virus (LigMV). Similar to other hordeiviruses, LigMV formed rod-shape virions (visualized by electron microscopy), was transmitted through seeds and could also be mechanically transmitted to herbaceous hosts Chenopodium quinoa and Nicotiana benthamiana. Blot hybridization analysis identified genomic and subgenomic RNAs, sharing the 3'-CR and likely serving as monocistronic mRNAs for seven evolutionarily-conserved viral proteins including two subunits of viral RNA-dependent RNA polymerase, coat protein, triple gene block proteins mediating viral movement and cysteine-rich suppressor of RNA silencing. Analysis of size, polarity, and hotspot profiles of viral siRNAs suggested that they are produced by the plant antiviral Dicer-like (DCL) proteins DCL2 and DCL4 processing double-stranded intermediates of genomic RNA replication. Whole genome sequencing of French and Austrian isolates of LigMV revealed its genetic stability over a wide geographic range (>99% nucleotide identity to Swiss isolates and each other), suggesting its persistence and spread in Europe via seed dispersal.
Collapse
Affiliation(s)
| | - Silvia Turco
- Department of Environmental Sciences, Botany, University of Basel, Basel, Switzerland
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, Nyon, Switzerland
| | | | - François Maclot
- Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Olivier Schumpp
- Virology-Phytoplasmology Laboratory, Agroscope, Nyon, Switzerland
| | - Paul Gugerli
- Virology-Phytoplasmology Laboratory, Agroscope, Nyon, Switzerland
| | - Mikhail M Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
3
|
Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY. Hordeivirus replication, movement, and pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:385-422. [PMID: 19400645 DOI: 10.1146/annurev-phyto-080508-081733] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The last Hordeivirus review appearing in this series 20 years ago focused on the comparative biology, relationships, and genome organization of members of the genus ( 68 ). Prior to the 1989 review, useful findings about the origin, disease occurrence, host ranges, and general biological properties of Barley stripe mosaic virus (BSMV) were summarized in three comprehensive reviews ( 26, 67, 107 ). Several recent reviews emphasizing contemporary molecular genetic findings also may be of interest to various readers ( 15, 37, 42, 69, 70, 88, 113 ). In the current review, we briefly reiterate the biological properties of the four members of the Hordeivirus genus and describe advances in our understanding of organization and expression of the viral genomes. We also discuss the infection processes and pathogenesis of the most extensively characterized Hordeiviruses and frame these advances in the broader context of viruses in other families that have encoded triple gene block proteins. In addition, an overview of recent advances in the use of BSMV for virus-induced gene silencing is presented.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
4
|
Dreher TW. Role of tRNA-like structures in controlling plant virus replication. Virus Res 2008; 139:217-29. [PMID: 18638511 DOI: 10.1016/j.virusres.2008.06.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Transfer RNA-like structures (TLSs) that are sophisticated functional mimics of tRNAs are found at the 3'-termini of the genomes of a number of plant positive strand RNA viruses. Three natural aminoacylation identities are represented: valine, histidine, and tyrosine. Paralleling this variety in structure, the roles of TLSs vary widely between different viruses. For Turnip yellow mosaic virus, the TLS must be capable of valylation in order to support infectivity, major roles being the provision of translational enhancement and down-regulation of minus strand initiation. In contrast, valylation of the Peanut clump virus TLS is not essential. An intermediate situation seems to exist for Brome mosaic virus, whose RNAs 1 and 2, but not RNA 3, need to be capable of tyrosylation to support infectivity. Other known roles for certain TLSs include: (i) the recruitment of host CCA nucleotidyltransferase as a telomerase to maintain intact 3' CCA termini, (ii) involvement in the encapsidation of viral RNAs, and (iii) presentation of minus strand promoter elements for replicase recognition. In the latter role, the promoter elements reside within the TLS but are not functionally dependent on tRNA mimicry. The phylogenetic distribution of TLSs indicates that their evolutionary history includes frequent horizontal exchange, as has been observed for protein-coding regions of plant positive strand RNA viruses.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Genome Research & Bioinformatics, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
|
6
|
|
7
|
|
8
|
Fechter P, Giegé R, Rudinger-Thirion J. Specific tyrosylation of the bulky tRNA-like structure of brome mosaic virus RNA relies solely on identity nucleotides present in its amino acid-accepting domain. J Mol Biol 2001; 309:387-99. [PMID: 11371160 DOI: 10.1006/jmbi.2001.4654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residues specifying aminoacylation by yeast tyrosyl-tRNA synthetase (TyrRS) of the tRNA-like structure present at the 3'-end of brome mosaic virus (BMV) RNA were determined by the in vitro approach using phage T7 transcripts. They correspond to nucleotides equivalent to base-pair C1-G72 and discriminator base A73 in the amino acid-acceptor branch of the molecule. No functional equivalents of the tyrosine anticodon residues, shown to be weakly involved in tyrosine identity of canonical tRNA(Tyr), were found in the BMV tRNA-like structure. This indicates a behaviour of this large and intricate molecule reminiscent of that of a minihelix derived from an amino acid-acceptor branch. Furthermore, iodine footprinting experiments performed on a tyrosylable BMV RNA transcript of 196 nt complexed to yeast TyrRS indicate that the amino acid-acceptor branch of the viral RNA is protected against cleavages as well as a hairpin domain, which is possibly located perpendicularly to its accepting branch. This domain without the canonical anticodon loop or the tyrosine anticodon acts as an anchor for TyrRS interaction leading to a better efficiency of tyrosylation.
Collapse
Affiliation(s)
- P Fechter
- Département "Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse", UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, Strasbourg Cedex F-67084, France
| | | | | |
Collapse
|
9
|
Savenkov EI, Sandgren M, Valkonen JPT. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. J Gen Virol 1999; 80 ( Pt 10):2779-2784. [PMID: 10573175 DOI: 10.1099/0022-1317-80-10-2779] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequence (6043 nt) of RNA 1 from Potato mop-top virus (PMTV-Sw), the type member of the genus Pomovirus, was determined. The first (5'-terminal) open reading frame (ORF 1) encodes a predicted protein of 148 kDa. ORF 2 extends through the opal stop codon of ORF 1 producing a predicted readthrough protein of 206 kDa which resembles the RNA-dependent RNA polymerases (RdRp) of other fungal-transmitted viruses. It includes a methyltransferase, a helicase and a GDD RdRp motif, respectively. Phylogenetic analyses of RdRps indicated that PMTV is most closely related to Beet soil-borne virus (genus Pomovirus), Broad bean necrosis virus (genus Pomovirus) and Soil-borne wheat mosaic virus (genus Furovirus), and is more distantly related to the other viruses of the former furovirus group. The 5' and 3' termini of RNA 1 in PMTV contained untranslated regions (UTR) of 114 nt and 489 nt, respectively. The 3'-UTR of RNA 1 contained a tRNA-like structure, which has previously been reported in the 3'-UTR of RNA 2 but not RNA 3. However, in this study, the tRNA-like structure was also found in the 3'-UTR of RNA 3, which confirms its presence in the 3'-UTRs of all three RNAs of PMTV.
Collapse
Affiliation(s)
- Eugene I Savenkov
- Department of Plant Biology, Genetic Centre, SLU, PO Box 7080, S- 750 07 Uppsala, Sweden1
| | - Maria Sandgren
- Department of Plant Biology, Genetic Centre, SLU, PO Box 7080, S- 750 07 Uppsala, Sweden1
| | - Jari P T Valkonen
- Department of Plant Biology, Genetic Centre, SLU, PO Box 7080, S- 750 07 Uppsala, Sweden1
| |
Collapse
|
10
|
Goodwin JB, Dreher TW. Transfer RNA mimicry in a new group of positive-strand RNA plant viruses, the furoviruses: differential aminoacylation between the RNA components of one genome. Virology 1998; 246:170-8. [PMID: 9657004 DOI: 10.1006/viro.1998.9193] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent sequencing of the genomes of several furoviruses--fungus-transmitted rod-shaped positive-strand plant viruses--has suggested the presence of tRNA-like structures (TLSs) at the 3' ends of the genomic RNAs. We show here that the genomic RNAs of soil-borne wheat mosaic virus (SBWMV), beet soil-borne virus (BSBV), potato mop-top virus (PMTV), peanut clump virus (PCV), and Indian peanut clump virus (IPCV) all possess functional TLSs that are capable of high-efficiency valylation. While the SBWMV, BSBV, and PMTV TLSs are similar to those found in tymoviruses, the PCV and IPCV TLSs harbor an insertion of about 40 nucleotides between the two halves of the TLS. The valylated SBWMV and BSBV RNAs formed tight complexes with wheat germ EF-1 alpha.GTP (Kd = 2 to 11 nM), whereas valylated PMTV, PCV, and IPCV RNAs bound EF-1 alpha.GTP weakly (Kd > or = 50 nM). The TLS of PCV RNA2 differs from PCV RNA1 in lacking the major valine identity nucleotide in the anticodon and consequently is capable of only very inefficient valylation. This is the first case of differential aminoacylation between the RNA components of one genome.
Collapse
Affiliation(s)
- J B Goodwin
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | |
Collapse
|
11
|
Edwards MC, Zhang Z, Weiland JJ. Oat blue dwarf marafivirus resembles the tymoviruses in sequence, genome organization, and expression strategy. Virology 1997; 232:217-29. [PMID: 9185605 DOI: 10.1006/viro.1997.8555] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complete nucleotide sequence and genome organization of oat blue dwarf marafivirus (OBDV) were determined. The 6509 nucleotide RNA genome encodes a putative 227-kDa polyprotein (p227) with sequence motifs similar to the methyltransferase, papain-like protease, helicase, and polymerase motifs present in the nonstructural proteins of other positive strand RNA viruses. The 3' end of the open reading frame (ORF) that encodes p227 (ORF 227) also encodes the two capsid proteins: a 24-kDa capsid protein is presumably cleaved from the p227 polyprotein, whereas the 21-kDa capsid protein appears to be translated from a subgenomic RNA (sgRNA). Encoded amino acid and nucleotide sequence comparisons, as well as the OBDV genome expression strategy, show that OBDV closely resembles the tymoviruses. OBDV differs from the tymoviruses in its general biology, in its lack of a putative movement gene that overlaps the replication-associated genes, and in its fusion of the capsid gene sequences to the major ORF. OBDV also possesses a 3' poly(A) tail, as compared to the tRNA-like structures found in most tymoviral genomes. Due to the strong similarities in genome sequence and expression strategy, OBDV, and presumably the other marafiviruses, should be considered a member of the tymovirus lineage of the alpha-like plant viruses.
Collapse
Affiliation(s)
- M C Edwards
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, North Dakota 58105-5677, USA.
| | | | | |
Collapse
|
12
|
Mans RM, Pleij CW, Bosch L. tRNA-like structures. Structure, function and evolutionary significance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:303-24. [PMID: 1935928 DOI: 10.1111/j.1432-1033.1991.tb16288.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R M Mans
- Department of Biochemistry, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
13
|
Morozov SYu, Dolja VV, Atabekov JG. Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol 1989; 29:52-62. [PMID: 2504930 PMCID: PMC7087513 DOI: 10.1007/bf02106181] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1988] [Revised: 10/26/1988] [Indexed: 01/01/2023]
Abstract
The relationships of genome organization among elongated (rod-shaped and filamentous) plant viruses have been analyzed. Sequences in coding and noncoding regions of barley stripe mosaic virus (BSMV) RNAs 1, 2, and 3 were compared with those of the monopartite RNA genomes of potato virus X (PVX), white clover mosaic virus (WClMV), and tobacco mosaic virus, the bipartite genome of tobacco rattle virus (TRV), the quadripartite genome of beet necrotic yellow vein virus (BNYVV), and icosahedral tricornaviruses. These plant viruses belong to a supergroup having 5'-capped genomic RNAs. The results suggest that the genomic elements in each BSMV RNA are phylogenetically related to those of different plant RNA viruses. RNA 1 resembles the corresponding RNA 1 of tricornaviruses. The putative proteins encoded in BSMV RNA 2 are related to the products of BNYVV RNA 2, PVX RNA, and WClMV RNA. Amino acid sequence comparisons suggest that BSMV RNA 3 resembles TRV RNA 1. Also, it can be proposed that in the case of monopartite genomes, as a rule, every gene or block of genes retains phylogenetic relationships that are independent of adjacent genomic elements of the same RNA. Such differential evolution of individual elements of one and the same viral genome implies a prominent role for gene reassortment in the formation of viral genetic systems.
Collapse
Affiliation(s)
- Morozov SYu
- Department of Virology, Moscow State University, USSR
| | | | | |
Collapse
|
14
|
Tyulkina L, Karpova O, Rodionova N, Atabekov J. Site-specific cleavage and religation of viral RNAs I. Infectivity of barley stripe mosaic virus RNA religated from functionally active segments and restoration of the internal poly(A) tract in progeny. Virology 1987; 159:312-20. [DOI: 10.1016/0042-6822(87)90469-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1986] [Accepted: 04/04/1987] [Indexed: 10/26/2022]
|
15
|
Stanley J, Hanau R, Jackson AO. Sequence comparison of the 3' ends of a subgenomic RNA and the genomic RNAs of barley stripe mosaic virus. Virology 1984; 139:375-83. [PMID: 6516216 DOI: 10.1016/0042-6822(84)90383-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
All strains of barley stripe mosaic virus examined encapsidate small amounts of an 800-nucleotide (NT) gamma-subgenomic (sg) RNA. This sgRNA has been isolated from genomic (g) RNAs of the Type and North Dakota 18 (ND18) strains and the sequence of these RNAs has been compared near the 3' end. The immediate 3' termini of the gRNAs terminate in the icosomer-GGUCCCCCAAGGGAAGACCAOH-3' and differ from the sgRNAs, which are polyadenylated. The poly(A) tracts of the sgRNAs are heterogeneous with lengths ranging from 10 to greater than 150 NT. Polyacrylamide gel electrophoresis of complementary (c) DNAs transcribed in the presence of dideoxynucleotides reveals that the sgRNAs from Type and ND18 have almost identical sequences for at least 160 NT adjacent to the 5' side of the poly(A) region. This region of the sgRNA from the ND18 strain is nearly identical to a 95-NT sequence adjacent to a poly(A) tract located at the 3' end of a 2050-base pair cDNA cloned from the gamma-genomic RNA of ND18. These results suggest that the sequences encoding the sgRNA are located upstream of an internal poly(A) region situated more than 200 NT from the 3' end of the gamma-genomic RNA.
Collapse
|
16
|
Miller W, Hall T. RNA-dependent RNA polymerase isolated from cowpea chlorotic mottle virus-infected cowpeas is specific for bromoviral RNA. Virology 1984; 132:53-60. [DOI: 10.1016/0042-6822(84)90090-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1983] [Accepted: 09/27/1983] [Indexed: 11/25/2022]
|
17
|
Agranovsky A, Dolja V, Atabekov J. Differences in polyadenylate length between individual barley stripe mosaic virus RNA species. Virology 1983; 129:344-9. [DOI: 10.1016/0042-6822(83)90173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1983] [Accepted: 05/16/1983] [Indexed: 10/26/2022]
|
18
|
Dolja V, Lunina N, Leiser RM, Stanarius T, Belzhelarskaya S, Kozlov Y, Atabekov J. A comparative study on the in vitro translation products of individual RNAs from two-, three-, and four-component strains of barley stripe mosaic virus. Virology 1983; 127:1-14. [DOI: 10.1016/0042-6822(83)90365-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1982] [Accepted: 12/01/1982] [Indexed: 10/26/2022]
|
19
|
|
20
|
Agranovsky A, Dolja V, Atabekov J. Structure of the 3′ extremity of barley stripe mosaic virus RNA: Evidence for internal poly(A) and a 3′-terminal tRNA-like structure. Virology 1982; 119:51-8. [DOI: 10.1016/0042-6822(82)90064-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1981] [Accepted: 12/16/1981] [Indexed: 10/26/2022]
|
21
|
Haenni AL, Joshi S, Chapeville F. tRNA-like structures in the genomes of RNA viruses. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1982; 27:85-104. [PMID: 6285419 DOI: 10.1016/s0079-6603(08)60598-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|