1
|
Gottlieb P, Alimova A. Discovery and Classification of the φ6 Bacteriophage: An Historical Review. Viruses 2023; 15:1308. [PMID: 37376608 DOI: 10.3390/v15061308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The year 2023 marks the fiftieth anniversary of the discovery of the bacteriophage φ6. The review provides a look back on the initial discovery and classification of the lipid-containing and segmented double-stranded RNA (dsRNA) genome-containing bacteriophage-the first identified cystovirus. The historical discussion describes, for the most part, the first 10 years of the research employing contemporary mutation techniques, biochemical, and structural analysis to describe the basic outline of the virus replication mechanisms and structure. The physical nature of φ6 was initially controversial as it was the first bacteriophage found that contained segmented dsRNA, resulting in a series of early publications that defined the unusual genomic quality. The technology and methods utilized in the initial research (crude by current standards) meant that the first studies were quite time-consuming, hence the lengthy period covered by this review. Yet when the data were accepted, the relationship to the reoviruses was apparent, launching great interest in cystoviruses, research that continues to this day.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| | - Aleksandra Alimova
- Department of Molecular, Cellular and Biomedical Sciences, The City University of New York School of Medicine, New York, NY 10031, USA
| |
Collapse
|
2
|
Lyytinen OL, Starkova D, Poranen MM. Microbial production of lipid-protein vesicles using enveloped bacteriophage phi6. Microb Cell Fact 2019; 18:29. [PMID: 30732607 PMCID: PMC6366064 DOI: 10.1186/s12934-019-1079-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cystoviruses have a phospholipid envelope around their nucleocapsid. Such a feature is unique among bacterial viruses (i.e., bacteriophages) and the mechanisms of virion envelopment within a bacterial host are largely unknown. The cystovirus Pseudomonas phage phi6 has an envelope that harbors five viral membrane proteins and phospholipids derived from the cytoplasmic membrane of its Gram-negative host. The phi6 major envelope protein P9 and the non-structural protein P12 are essential for the envelopment of its virions. Co-expression of P9 and P12 in a Pseudomonas host results in the formation of intracellular vesicles that are potential intermediates in the phi6 virion assembly pathway. This study evaluated the minimum requirements for the formation of phi6-specific vesicles and the possibility to localize P9-tagged heterologous proteins into such structures in Escherichia coli. Results Using transmission electron microscopy, we detected membranous structures in the cytoplasm of E. coli cells expressing P9. The density of the P9-specific membrane fraction was lower (approximately 1.13 g/cm3 in sucrose) than the densities of the bacterial cytoplasmic and outer membrane fractions. A P9-GFP fusion protein was used to study the targeting of heterologous proteins into P9 vesicles. Production of the GFP-tagged P9 vesicles required P12, which protected the fusion protein against proteolytic cleavage. Isolated vesicles contained predominantly P9-GFP, suggesting selective incorporation of P9-tagged fusion proteins into the vesicles. Conclusions Our results demonstrate that the phi6 major envelope protein P9 can trigger formation of cytoplasmic membrane structures in E. coli in the absence of any other viral protein. Intracellular membrane structures are rare in bacteria, thus making them ideal chasses for cell-based vesicle production. The possibility to locate heterologous proteins into the P9-lipid vesicles facilitates the production of vesicular structures with novel properties. Such products have potential use in biotechnology and biomedicine. Electronic supplementary material The online version of this article (10.1186/s12934-019-1079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Outi L Lyytinen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Daria Starkova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.,Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, Mira St. 14, St. Petersburg, 197101, Russia
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses. J Virol 2019; 93:JVI.01385-18. [PMID: 30463962 DOI: 10.1128/jvi.01385-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host Pseudomonas syringae pv. atrofaciens. Both Sanger sequencing of 50 P. syringae pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of P. syringae pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion.IMPORTANCE RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system (Pseudomonas phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.
Collapse
|
4
|
Turner PE, McBride RC, Duffy S, Montville R, Wang LS, Yang YW, Lee SJ, Kim J. Evolutionary genomics of host-use in bifurcating demes of RNA virus phi-6. BMC Evol Biol 2012; 12:153. [PMID: 22913547 PMCID: PMC3495861 DOI: 10.1186/1471-2148-12-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Viruses are exceedingly diverse in their evolved strategies to manipulate hosts for viral replication. However, despite these differences, most virus populations will occasionally experience two commonly-encountered challenges: growth in variable host environments, and growth under fluctuating population sizes. We used the segmented RNA bacteriophage ϕ6 as a model for studying the evolutionary genomics of virus adaptation in the face of host switches and parametrically varying population sizes. To do so, we created a bifurcating deme structure that reflected lineage splitting in natural populations, allowing us to test whether phylogenetic algorithms could accurately resolve this 'known phylogeny'. The resulting tree yielded 32 clones at the tips and internal nodes; these strains were fully sequenced and measured for phenotypic changes in selected traits (fitness on original and novel hosts). RESULTS We observed that RNA segment size was negatively correlated with the extent of molecular change in the imposed treatments; molecular substitutions tended to cluster on the Small and Medium RNA chromosomes of the virus, and not on the Large segment. Our study yielded a very large molecular and phenotypic dataset, fostering possible inferences on genotype-phenotype associations. Using further experimental evolution, we confirmed an inference on the unanticipated role of an allelic switch in a viral assembly protein, which governed viral performance across host environments. CONCLUSIONS Our study demonstrated that varying complexities can be simultaneously incorporated into experimental evolution, to examine the combined effects of population size, and adaptation in novel environments. The imposed bifurcating structure revealed that some methods for phylogenetic reconstruction failed to resolve the true phylogeny, owing to a paucity of molecular substitutions separating the RNA viruses that evolved in our study.
Collapse
Affiliation(s)
- Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Sapphire Energy, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA
| | - Siobain Duffy
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rebecca Montville
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Li-San Wang
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yul W Yang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sun Jin Lee
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Affiliation(s)
- Minna M Poranen
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
6
|
Laurinavicius S, Käkelä R, Bamford DH, Somerharju P. The origin of phospholipids of the enveloped bacteriophage phi6. Virology 2004; 326:182-90. [PMID: 15262506 DOI: 10.1016/j.virol.2004.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 05/25/2004] [Indexed: 11/26/2022]
Abstract
The phospholipid class and molecular species compositions of bacteriophage phi6 and its host Pseudomonas syringae were determined quantitatively using TLC and liquid-chromatography/electrospray ionization mass-spectrometry. In addition, the fatty acid compositions of the phospholipids were analyzed by gas-chromatography/mass-spectrometry. The phage contained significantly more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host cytoplasmic (CM) and outer (OM) membranes. In addition, the phospholipid molecular species composition of the viral membrane differed from those of the host membranes, but resembled that of CM more than OM as shown by principal component analysis (PCA). The membrane of phi6 contained more 34:1 and 34:2, and less 32:1 PE and PG molecular species than the host CM or OM. Also, phi6 contained negligible amounts of saturated phospholipid molecular species. These data provide the first biochemical evidence suggesting that phi6 obtains its lipids from the CM. This process is not unselective, but certain phospholipid species are preferentially incorporated in the phage membrane. Common factors leading to similar enrichment of PG in every membrane-containing bacterial virus system studied so far (phi6, PM2, PRD1, PR4, Bam35) are discussed.
Collapse
Affiliation(s)
- Simonas Laurinavicius
- Department of Biochemistry, Institute of Biomedicine, University of Helsinki, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
7
|
Abstract
Double-stranded RNA viruses infecting bacterial hosts belong to the Cystoviridae family. Bacteriophage phi6 is one of the best characterized dsRNA viruses and shares structural as well as functional similarities with other well-studied eukaryotic dsRNA viruses (e.g. L-A, rotavirus, bluetongue virus, and reovirus). The assembly pathway of the enveloped, triple-layered phi6 virion has been well documented and can be divided into four distinct steps which are (1) procapsid formation, (2) genome encapsidation and replication, (3) nucleocapsid surface shell assembly, and (4) envelope formation. In this review, we focus primarily on the procapsid and nucleocapsid assembly for which in vitro systems have been established. The in vitro assembly systems have been instrumental in revealing assembly intermediates and conformational changes that are common to phi6 and phi8, two cystoviruses with negligible sequence homology. Two viral enzymes, the packaging NTPase (P4) and the RNA-dependent RNA polymerase (P2), were found essential for the nucleation step. The nucleation complex contains one or more tetramers of the major procapsid protein (P1) and is further stabilized by protein P4. Interaction of P1 and P4 during assembly is accompanied by an additional folding of their respective polypeptide chains. The in vitro assembled procapsids were shown to selectively package and replicate the genomic ssRNA. Furthermore, in vitro assembly of infectious nucleocapsids has been achieved in the case of phi6. The in vitro studies indicate that the nucleocapsid coat protein (P8) assembles around the polymerase complex in a template-assisted manner. Implications for the assembly of other dsRNA viruses are also presented.
Collapse
Affiliation(s)
- Minna M Poranen
- Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, PL 56, FIN-00014, Finland.
| | | |
Collapse
|
8
|
Mindich L. Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage phi6. Microbiol Mol Biol Rev 1999; 63:149-60. [PMID: 10066834 PMCID: PMC98960 DOI: 10.1128/mmbr.63.1.149-160.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage phi6 has a genome of three segments of double-stranded RNA. Each virus particle contains one each of the three segments. Packaging is effected by the acquisition, in a serially dependent manner, of the plus strands of the genomic segments into empty procapsids. The empty procapsids are compressed in shape and expand during packaging. The packaging program involves discrete steps that are determined by the amount of RNA inside the procapsid. The steps involve the exposure and concealment of binding sites on the outer surface of the procapsid for the plus strands of the three genomic segments. The plus strand of segment S can be packaged alone, while packaging of the plus strand of segment M depends upon prior packaging of S. Packaging of the plus strand of L depends upon the prior packaging of M. Minus-strand synthesis begins when the particle has a full complement of plus strands. Plus-strand synthesis commences upon the completion of minus-strand synthesis. All of the reactions of packaging, minus-strand synthesis, and plus-strand synthesis can be accomplished in vitro with isolated procapsids. Live-virus constructions that are in accord with the model have been prepared. Mutant virus with changes in the packaging program have been isolated and analyzed.
Collapse
Affiliation(s)
- L Mindich
- Department of Microbiology, The Public Health Research Institute New York, New York 10016, USA.
| |
Collapse
|
9
|
Johnson MD, Mindich L. Plasmid-directed assembly of the lipid-containing membrane of bacteriophage phi 6. J Bacteriol 1994; 176:4124-32. [PMID: 8021194 PMCID: PMC205612 DOI: 10.1128/jb.176.13.4124-4132.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleocapsid of bacteriophage phi 6 is enveloped within a lipid-containing membrane. The membrane is composed of proteins P3, P6, P9, P10, and P13 and phospholipids. The relationship between membrane protein P9 and morphogenetic protein P12 was studied in the absence of phage infection. cDNA copies of genes 9 and 12 were expressed on plasmids in Pseudomonas syringae pv. phaseolicola. Immunoblotting demonstrated the presence of protein P9 in strains carrying both gene 9 and gene 12 but not in strains with gene 9 alone. In the absence of P12, P9 was found to be unstable. Simultaneous synthesis of proteins P9 and P12 led to the formation of a low-density P9 particle having a buoyant density similar to that of precursor structures composed of phospholipid and proteins isolated from phi 6-infected cells. These results are consistent with results of previous genetic experiments suggesting that P9 and P12 are necessary and sufficient for the formation of the phi 6 envelope. Extensions of P9 at the C terminus do not impair particle formation; however, N-terminal extensions or C-terminal deletions that extend into the hydrophobic region of P9 do impair particle formation.
Collapse
Affiliation(s)
- M D Johnson
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
10
|
Onodera S, Qiao X, Gottlieb P, Strassman J, Frilander M, Mindich L. RNA structure and heterologous recombination in the double-stranded RNA bacteriophage phi 6. J Virol 1993; 67:4914-22. [PMID: 8331732 PMCID: PMC237879 DOI: 10.1128/jvi.67.8.4914-4922.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bacteriophage phi 6 has a genome of three segments of double-stranded RNA, designated L, M, and S. A 1.2-kbp kanamycin resistance gene was inserted into segment M but was shown to be genetically unstable because of a high recombination rate between segment M and the 3' ends of segments S and L. The high rate of recombination is due to complementary homopolymer tracts bounding the kan gene. Removal of one arm of this potential hairpin stabilizes the insertion. The insertion of a 241- or 427-bp lacZ' gene into segment M leads to a stable Lac+ phage. The insertion of the same genes bounded by complementary homopolymer arms leads to recombinational instability. A stable derivative of this phage was shown to have lost one of the homopolymer arms. Several other conditions foster recombination. The truncation of a genomic segment at the 3' end prevents replication, but such a damaged molecule can be rescued by recombination. Similarly, insertion of the entire 3-kb lacZ gene prevents normal formation of virus, but the viral genes can be rescued by recombination. It appears that conditions leading to the retardation or absence of replication of a particular genomic segment facilitate recombinational rescue.
Collapse
MESH Headings
- Bacteriophage T7/enzymology
- Bacteriophage phi 6/genetics
- Base Sequence
- Cloning, Molecular
- DNA
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Electrophoresis, Agar Gel
- Models, Genetic
- Models, Structural
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Pseudomonas/genetics
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- Recombination, Genetic
- Restriction Mapping
- Transcription, Genetic
- Viral Plaque Assay
Collapse
Affiliation(s)
- S Onodera
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | | | | | |
Collapse
|
11
|
Olkkonen VM, Ojala PM, Bamford DH. Generation of infectious nucleocapsids by in vitro assembly of the shell protein on to the polymerase complex of the dsRNA bacteriophage phi 6. J Mol Biol 1991; 218:569-81. [PMID: 2016747 DOI: 10.1016/0022-2836(91)90702-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A method for the in vitro uncoating of the phi 6 nucleocapsid (NC) was developed. The resulting particle, designated as the NC core, containing the genomic double-stranded (ds) RNA segments and the proteins P1, P2, P4 and P7, was not infectious but had a highly enhanced in vitro transcriptase activity compared to that of the intact NC. The NC shell protein P8 was purified by immunoaffinity chromatography, and it was shown to self-assemble to shell-like structures upon addition of calcium ions. The conditions for the self-assembly of the shell were optimized. Shell reassembly on to the NC cores restored the infectivity but resulted in a decrease of transcriptase activity. No reassembly of the shell on to RNA-less cores (procapsids) produced from a cDNA construction in Escherichia coli was observed. Our results suggest that the intracellular uncoating of the NC is the event activating the phi 6 dsRNA transcriptase and that the NC shell is necessary for infectivity, probably for the passage of the NC through the host cytoplasmic membrane. Packaging of the dsRNA segments into the procapsid appears to be a prerequisite for NC shell assembly.
Collapse
Affiliation(s)
- V M Olkkonen
- Department of Genetics, University of Helsinki, Finland
| | | | | |
Collapse
|
12
|
Ktistakis NT, Kao CY, Lang D. In vitro assembly of the outer shell of bacteriophage phi 6 nucleocapsid. Virology 1988; 166:91-102. [PMID: 3046121 DOI: 10.1016/0042-6822(88)90150-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following dissociation of bacteriophage phi 6 nucleocapsid (NC) by EDTA, a particle composed of protein P8 and corresponding to the outer shell of the NC was assembled in vitro in the presence of Ca2+ and Mg2+. Assembly was obtained from soluble protein constituents above 100 micrograms/ml and was optimal within a temperature range of 22-30 degrees. Assembly did not require the presence of genomic RNA. Crosslinking results of intact NCs and in vitro-assembled outer shells suggested that protein P8 dimers are the structural subunits of the shell. Analysis of the assembly kinetics by electron microscopy suggested that ring-like particles of uniform size, packed in flat hexagonal arrays, are intermediates in outer shell assembly.
Collapse
Affiliation(s)
- N T Ktistakis
- Molecular and Cell Biology Program, University of Texas at Dallas, Richardson 75083-0688
| | | | | |
Collapse
|
13
|
Mindich L, Nemhauser I, Gottlieb P, Romantschuk M, Carton J, Frucht S, Strassman J, Bamford DH, Kalkkinen N. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage phi 6: genes specifying the viral replicase and transcriptase. J Virol 1988; 62:1180-5. [PMID: 3346944 PMCID: PMC253125 DOI: 10.1128/jvi.62.4.1180-1185.1988] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of the lipid-containing bacteriophage phi 6 contains three segments of double-stranded RNA. We determined the nucleotide sequence of cDNA derived from the largest RNA segment (L). This segment specifies the procapsid proteins necessary for transcription and replication of the phi 6 genome. The coding sequences of the four proteins on this segment were identified on the basis of size and the correlation of predicted N-terminal amino acid sequences with those found through analysis of isolated proteins. This report completes the sequence analysis of phi 6. This constitutes the first complete sequence of a double-stranded RNA genome virus.
Collapse
Affiliation(s)
- L Mindich
- Department of Microbiology, Public Health Research Institute of the City of New York, Inc., New York
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gottlieb P, Metzger S, Romantschuk M, Carton J, Strassman J, Bamford DH, Kalkkinen N, Mindich L. Nucleotide sequence of the middle dsRNA segment of bacteriophage phi 6: placement of the genes of membrane-associated proteins. Virology 1988; 163:183-90. [PMID: 3347997 DOI: 10.1016/0042-6822(88)90245-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The genome of the lipid-containing bacteriophage phi 6 contains three segments of double-stranded RNA. We have determined the nucleotide sequence of cDNA derived from the middle-size RNA segment. The coding sequences of three proteins on this segment were identified on the basis of size and the correlation of predicted N-terminal amino acid sequences with those found through the analysis of isolated proteins. In contrast to our results with the small phi 6 dsRNA segment, the open reading frames are not tightly clustered. The homologous terminal noncoding regions between the middle and small dsRNA segments are found to be more extensive than RNA sequencing had previously indicated.
Collapse
Affiliation(s)
- P Gottlieb
- Department of Microbiology, Public Health Research Institute of the City of New York, Inc., New York 10016
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mindich L. Bacteriophage phi 6: a unique virus having a lipid-containing membrane and a genome composed of three dsRNA segments. Adv Virus Res 1988; 35:137-76. [PMID: 3068964 DOI: 10.1016/s0065-3527(08)60710-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- L Mindich
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
16
|
Mindich L, MacKenzie G, Strassman J, McGraw T, Metzger S, Romantschuk M, Bamford D. cDNA cloning of portions of the bacteriophage phi 6 genome. J Bacteriol 1985; 162:992-9. [PMID: 3858275 PMCID: PMC215873 DOI: 10.1128/jb.162.3.992-999.1985] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phage phi 6 has a genome consisting of three pieces of double-stranded RNA. Single-stranded RNA was prepared from phi 6 nucleocapsids by in vitro transcription with the phage RNA polymerase. These transcripts were polyadenylated and used as templates for the preparation of cDNA copies. The resulting DNA was cloned into the PstI restriction nuclease site of plasmid pBR322. Insert-bearing plasmids were annealed to phi 6 RNA to assign the inserts to their proper segments. In this way we identified inserts corresponding to the large, medium, and small segments. Two large overlapping inserts of the small segment constitute the complete complement of the segment as determined by the sequence analysis of the DNA. In vitro coupled transcription and translation showed that the small segment inserts were able to direct the synthesis of the four known genes in the small segment. Two overlapping inserts in the medium segment constitute the entire segment and were shown to direct the in vitro synthesis of two of the three known proteins of the medium segment. Several inserts bearing about one-third the complement of the large segment were also isolated, and one of these directed the synthesis of a peptide that resembles protein P1. Restriction endonuclease maps were prepared for the inserts, and by in vitro synthesis it was possible to refine the genetic map of phi 6. A chimeric plasmid was constructed that combines plasmids pUC8 and RSF1010. Inserts placed on this plasmid were transformed to Pseudomonas phaseolicola, the natural host of phage phi 6. It was possible to refine further the genetic map by complementation of nonsense mutants of phi 6 with the cDNA.
Collapse
|
17
|
Yang Y, Lang D. Electron microscopy of bacteriophage phi 6 nucleocapsid: three-dimensional image analysis. J Virol 1984; 51:484-8. [PMID: 6205172 PMCID: PMC254463 DOI: 10.1128/jvi.51.2.484-488.1984] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Electron micrographs of bacteriophage phi 6 nucleocapsids, negatively stained by neutralized phosphotungstate and tilted in a goniometer specimen cartridge, proved that the three distinct morphologies seen in the electron microscope are merely three different aspects of a single nucleocapsid structure and strongly suggested that this structure is dodecahedral.
Collapse
|
18
|
Abstract
Bacteriophage phi 6 has a lipid- and protein-containing membrane as its outer covering. Two phi 6-coded proteins are known to be required to produce enveloped phage particles: one is P9, the major phi 6 membrane structural protein, and the other is P12, a nonstructural protein without which membrane fails to assemble around phage nucleocapsids. A particle containing phospholipid, P9, and two minor phi 6 membrane proteins has been found in cells pulse labeled with protein precursors at late times after infection. The P9 particle can be chased into phage and is dependent on active P12 for its formation. Models are presented in which the role of the P9 particle in phi 6 membrane assembly is discussed.
Collapse
|