1
|
Fedorova O, Arhin G, Pyle AM, Frank AT. In Silico Discovery of Group II Intron RNA Splicing Inhibitors. ACS Chem Biol 2023; 18:1968-1975. [PMID: 37602469 DOI: 10.1021/acschembio.3c00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Here, we describe the discovery of compounds that inhibit self-splicing in group II introns. Using docking calculations, we targeted the catalytic active site within the Oceanobacillus iheyensis group IIC intron and virtually screened a library of lead-like compounds. From this initial virtual screen, we identified three unique scaffolds that inhibit splicing in vitro. Additional tests revealed that an analog of the lead scaffold inhibits splicing in an intron-dependent manner. Furthermore, this analog exhibited activity against the group II intron from a different class: the yeast ai5γ IIB intron. The splicing inhibitors we identified could serve as chemical tools for developing group II intron-targeted antifungals, and, more broadly, our results highlight the potential of in silico techniques for identifying bioactive hits against structured and functionally complex RNAs.
Collapse
Affiliation(s)
| | - Grace Arhin
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Fedorova O, Jagdmann GE, Adams RL, Yuan L, Van Zandt MC, Pyle AM. Small molecules that target group II introns are potent antifungal agents. Nat Chem Biol 2018; 14:1073-1078. [PMID: 30323219 PMCID: PMC6239893 DOI: 10.1038/s41589-018-0142-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022]
Abstract
Specific RNA structures control numerous metabolic processes that impact human health, and yet efforts to target RNA structures de novo have been limited. In eukaryotes, the self-splicing group II intron is a mitochondrial RNA tertiary structure that is absent in vertebrates but essential for respiration in plants, fungi and yeast. Here we show that this RNA can be targeted through a process of high-throughput in vitro screening, SAR and lead optimization, resulting in high-affinity compounds that specifically inhibit group IIB intron splicing in vitro and in vivo and lack toxicity in human cells. The compounds are potent growth inhibitors of the pathogen Candida parapsilosis, displaying antifungal activity comparable to that of amphotericin B. These studies demonstrate that RNA tertiary structures can be successfully targeted de novo, resulting in pharmacologically valuable compounds.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute, New Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Rebecca L Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Lin Yuan
- New England Discovery Partners, Branford, CT, USA
| | | | - Anna Marie Pyle
- Howard Hughes Medical Institute, New Haven, CT, USA. .,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Schmidt U, Maue I, Lehmann K, Belcher SM, Stahl U, Perlman PS. Mutant alleles of the MRS2 gene of yeast nuclear DNA suppress mutations in the catalytic core of a mitochondrial group II intron. J Mol Biol 1998; 282:525-41. [PMID: 9737920 DOI: 10.1006/jmbi.1998.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies show that some yeast strains carrying point mutations of domain 5 that block splicing of a mitochondrial group II intron yield spontaneous revertants in which splicing is partially restored by dominant mutations of nuclear genes. Here we cloned and sequenced the suppressor allele of one such gene, and found it to be a missense mutation of the MRS2 gene (MRS2-L232F). The MRS2 gene was first implicated in group II intron splicing by the finding that overexpression of the wild-type gene weakly suppresses the splicing defect of a mutation of another intron. Tetrad analysis showed that independently isolated suppressors of two other domain 5 mutations are also allelles of the MRS2 gene and DNA sequencing identified a new missense mutation in each strain (MRS2-T230I and MRS2-L213M). All three suppressor mutations cause a temperature-sensitive respiration defect that is dominant negative in heterozygous diploids, but those strains splice the mutant intron at the elevated temperature. The three mutations are in a domain of the protein that is likely to be a helix-turn-helix region, so that effects of the mutations on protein-protein interactions may contribute to these phenotypes. These mutations suppress the splicing defect of many, but not all, of the available splicing defective mutations of aI5gamma, including mutations of several intron domains. Protein and RNA blot experiments show that the level of the protein encoded by the MRS2 gene, but not the mRNA, is elevated by these mutations. Interestingly, overexpression of the wild-type protein restores much lower levels of splicing than were obtained with similar elevated levels of the mutated Mrs2 proteins. The splicing phenotypes of these strains suggest a direct role for Mrs2 protein on group II intron splicing, but an indirect effect is not yet ruled out.
Collapse
Affiliation(s)
- U Schmidt
- Department of Microbiology and Genetics, University of Technology, Berlin, D-13355, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Arlt H, Steglich G, Perryman R, Guiard B, Neupert W, Langer T. The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J 1998; 17:4837-47. [PMID: 9707443 PMCID: PMC1170813 DOI: 10.1093/emboj/17.16.4837] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yta10p (Afg3p) and Yta12p (Rcal1p), members of the conserved AAA family of ATPases, are subunits of the mitochondrial m-AAA protease, an inner membrane ATP-dependent metallopeptidase. Deletion of YTA10 or YTA12 impairs degradation of non-assembled inner membrane proteins and assembly of respiratory chain complexes. Mutations of the proteolytic sites in either YTA10 or YTA12 have been shown to inhibit proteolysis of membrane-integrated polypeptides but not the respiratory competence of the cells, suggesting additional activities of Yta10p and Yta12p. Here we demonstrate essential proteolytic functions of the m-AAA protease in the biogenesis of the respiratory chain. Cells harbouring proteolytically inactive forms of both Yta10p and Yta12p are respiratory deficient and exhibit a pleiotropic phenotype similar to Deltayta10 and Deltayta12 cells. They show deficiencies in expression of the intron-containing mitochondrial genes COX1 and COB. Splicing of COX1 and COB transcripts is impaired in mitochondria lacking m-AAA protease, whilst transcription and translation can proceed in the absence of Yta10p or Yta12p. The function of the m-AAA protease appears to be confined to introns encoding mRNA maturases. Our results reveal an overlapping substrate specificity of the subunits of the m-AAA protease and explain the impaired assembly of respiratory chain complexes by defects in expression of intron-containing genes in mitochondria lacking m-AAA protease.
Collapse
Affiliation(s)
- H Arlt
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
5
|
van Dyck L, Neupert W, Langer T. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 1998; 12:1515-24. [PMID: 9585511 PMCID: PMC316837 DOI: 10.1101/gad.12.10.1515] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ATP-dependent PIM1 protease, a Lon-like protease localized in the mitochondrial matrix, is required for mitochondrial genome integrity in yeast. Cells lacking PIM1 accumulate lesions in the mitochondrial DNA (mtDNA) and therefore lose respiratory competence. The identification of a multicopy suppressor, which stabilizes mtDNA in the absence of PIM1, enabled us to characterize novel functions of PIM1 protease during mitochondrial biogenesis. The synthesis of mitochondrially encoded cytochrome c oxidase subunit I (CoxI) and cytochrome b (Cob) is impaired in pim1 mutants containing mtDNA. PIM1-mediated proteolysis is required for the translation of mature COXI mRNA. Moreover, deficiencies in the splicing of COXI and COB transcripts, which appear to be restricted to introns encoding mRNA maturases, were observed in cells lacking the PIM1 gene. Transcripts of COXI and COB genes harboring multiple introns are degraded in the absence of PIM1. These results establish multiple, essential functions of the ATP-dependent PIM1 protease during mitochondrial gene expression.
Collapse
Affiliation(s)
- L van Dyck
- Institut für Physiologische Chemie der Universität München, 80336 München, Germany.
| | | | | |
Collapse
|
6
|
Boulanger SC, Faix PH, Yang H, Zhuo J, Franzen JS, Peebles CL, Perlman PS. Length changes in the joining segment between domains 5 and 6 of a group II intron inhibit self-splicing and alter 3' splice site selection. Mol Cell Biol 1996; 16:5896-904. [PMID: 8816503 PMCID: PMC231591 DOI: 10.1128/mcb.16.10.5896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Domain 5 (D5) and domain 6 (D6) are adjacent folded hairpin substructures of self-splicing group II introns that appear to interact within the active ribozyme. Here we describe the effects of changing the length of the 3-nucleotide segment joining D5 to D6 [called J(56)3] on the splicing reactions of intron 5 gamma of the COXI gene of yeast mitochondrial DNA. Shortened variants J(56)0 and J(56)1 were defective in vitro for branching, and the second splicing step was performed inefficiently and inaccurately. The lengthened variant J(56)5 had a milder defect-splicing occurred at a reduced rate but with correct branching and a mostly accurate 3' splice junction choice. Yeast mitochondria were transformed with the J(56)5 allele, and the resulting yeast strain was respiration deficient because of ineffective aI5 gamma splicing. Respiration-competent revertants were recovered, and in one type a single joiner nucleotide was deleted while in the other type a nucleotide of D6 was deleted. Although these revertants still showed partial splicing blocks in vivo and in vitro, including a substantial defect in the second step of splicing, both spliced accurately in vivo. These results establish that a 3-nucleotide J(56) is optimal for this intron, especially for the accuracy of 3' splice junction selection, and indicate that D5 and D6 are probably not coaxially stacked.
Collapse
Affiliation(s)
- S C Boulanger
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lewin AS, Thomas J, Tirupati HK. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein. Mol Cell Biol 1995; 15:6971-8. [PMID: 8524264 PMCID: PMC230952 DOI: 10.1128/mcb.15.12.6971] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nuclear CBP2 gene encodes a protein essential for the splicing of a mitochondrial group I intron in Saccharomyces cerevisiae. This intron (bI5) is spliced autocatalytically in the presence of high concentrations of magnesium and monovalent salt but requires the Cbp2 protein for splicing under physiological conditions. Addition of Cbp2 during RNA synthesis permitted cotranscriptional splicing. Splicing did not occur in the transcription buffer in the absence of synthesis. The Cbp2 protein appeared to modify the folding of the intron during RNA synthesis: pause sites for RNA polymerase were altered in the presence of the protein, and some mutant transcripts that did not splice after transcription did so during transcription in the presence of Cbp2. Cotranscriptional splicing also reduced hydrolysis at the 3' splice junction. These results suggest that Cbp2 modulates the sequential folding of the ribozyme during its synthesis. In addition, splicing during transcription led to an increase in RNA synthesis with both T7 RNA polymerase and mitochondrial RNA polymerase, implying a functional coupling between transcription and splicing.
Collapse
Affiliation(s)
- A S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville 32610-0266, USA
| | | | | |
Collapse
|
8
|
Boulanger SC, Belcher SM, Schmidt U, Dib-Hajj SD, Schmidt T, Perlman PS. Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol Cell Biol 1995; 15:4479-88. [PMID: 7623838 PMCID: PMC230687 DOI: 10.1128/mcb.15.8.4479] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Domain 5 (D5) is a highly conserved, largely helical substructure of group II introns that is essential for self-splicing. Only three of the 14 base pairs present in most D5 structures (A2.U33, G3.U32, and C4.G31) are nearly invariant. We have studied effects of point mutations of those six nucleotides on self-splicing and in vivo splicing of aI5 gamma, an intron of the COXI gene of Saccharomyces cerevisiae mitochondria. Though none of the point mutations blocked self-splicing under one commonly used in vitro reaction condition, the most debilitating mutations were at G3 and G4. Following mitochondrial Biolistic transformation, it was found that mutations at A2, G3, and C4 blocked respiratory growth and splicing while mutations at the other sites had little effect on either phenotype. Intra-D5 second-site suppressors showed that pairing between nucleotides at positions 2 and 33 and 4 and 31 is especially important for D5 function. At the G3.U32 wobble pair, the mutant A.U pair blocks splicing, but a revertant of that mutant that can form an A+.C base pair regains some splicing. A dominant nuclear suppressor restores some splicing to the G3A mutant but not the G3U mutant, suggesting that a purine is required at position 3. These findings are discussed in terms of the hypothesis of Madhani and Guthrie (H. D. Madhani and C. Guthrie, Cell 71:803-817, 1992) that helix 1 formed between yeast U2 and U6 small nuclear RNAs may be the spliceosomal cognate of D5.
Collapse
Affiliation(s)
- S C Boulanger
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038, USA
| | | | | | | | | | | |
Collapse
|
9
|
Guo WW, Moran JV, Hoffman PW, Henke RM, Butow RA, Perlman PS. The mobile group I intron 3 alpha of the yeast mitochondrial COXI gene encodes a 35-kDa processed protein that is an endonuclease but not a maturase. J Biol Chem 1995; 270:15563-70. [PMID: 7797552 DOI: 10.1074/jbc.270.26.15563] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three mitochondrial mutants were characterized that block the splicing of aI3 alpha, a mobile group I intron of the COXI gene of yeast mtDNA. Mutant C1085 alters helical structures known to be important for splicing of group I introns. M44 and C1072 are point mutants in exon 3 that block correct splicing but allow some splicing at cryptic 5'-splice sites. M44 alters the P1 helix needed for 5'-splice site definition, while the mutation in C1072 is a new kind of mutation because it is located upstream of the exon sequence involved in the P1 helix. All three mutants accumulate novel proteins of 35 and 44 kDa (p35 and p44, respectively) detected both by labeling of mitochondrial translation products and by Western blotting. Partial protease digestions indicate that p44 and p35 are closely related, probably as precursor and processed protein. The level of the intron-encoded endonuclease activity, I-SceIII, is elevated approximately 10-fold in the mutants. Partial purification of I-SceIII from the mutants showed that most, if not all, of the activity is associated with p35. Finally, because aI3 alpha splices accurately in a petite mutant, we conclude that aI3 alpha splicing does not depend on a mtDNA-encoded maturase.
Collapse
Affiliation(s)
- W W Guo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
10
|
Moran JV, Mecklenburg KL, Sass P, Belcher SM, Mahnke D, Lewin A, Perlman P. Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucleic Acids Res 1994; 22:2057-64. [PMID: 8029012 PMCID: PMC308121 DOI: 10.1093/nar/22.11.2057] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Six mutations blocking the function of a seven intron form of the mitochondrial gene encoding subunit I of cytochrome c oxidase (COXI) and mapping upstream of exon 3 were isolated and characterized. A cis-dominant mutant of the group IIA intron 1 defines a helical portion of the C1 substructure of domain 1 as essential for splicing. A trans-recessive mutant confirms that the intron 1 reading frame encodes a maturase function. A cis-dominant mutant in exon 2 was found to have no effect on the splicing of intron 1 or 2. A trans-recessive mutant, located in the group IIA intron 2, demonstrates for the first time that intron 2 encodes a maturase. A genetic dissection of the five missense mutations present in the intron 2 reading frame of that strain demonstrates that the maturase defect results from one or both of the missense mutations in a newly-recognized conserved sequence called domain X.
Collapse
Affiliation(s)
- J V Moran
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | | | |
Collapse
|
11
|
Moran JV, Wernette CM, Mecklenburg KL, Butow RA, Perlman PS. Intron 5 alpha of the COXI gene of yeast mitochondrial DNA is a mobile group I intron. Nucleic Acids Res 1992; 20:4069-76. [PMID: 1324475 PMCID: PMC334089 DOI: 10.1093/nar/20.15.4069] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have found that intron 5 alpha of the COXI gene (al5 alpha) of yeast mtDNA is a mobile group I intron in crosses between strains having or lacking the intron. We have demonstrated the following hallmarks of that process: 1) co-conversion of flanking optional intron markers; 2) mutations that truncate the intron open reading frame block intron mobility; and 3) the intron open reading frame encodes an endonuclease activity that is required for intron movement. The endonuclease activity, termed I-Sce IV, cleaves the COXI allele lacking al5 alpha near the site of intron insertion, making a four-base staggered cut with 3' OH overhangs. Three cloned DNAs derived from different forms of the COXI gene, which differ in primary sequence at up to seven nucleotides around the cleavage site, are all good substrates for in vitro I-Sce IV cleavage activity. Two of the strains from which these substrates were derived were tested in crosses and are comparably efficient as al5 alpha recipients. When compared with omega mobility occurring simultaneously in one cross, al5 alpha is less efficient as a mobile element.
Collapse
Affiliation(s)
- J V Moran
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | | | | | | | |
Collapse
|
12
|
Hebbar SK, Belcher SM, Perlman PS. A maturase-encoding group IIA intron of yeast mitochondria self-splices in vitro. Nucleic Acids Res 1992; 20:1747-54. [PMID: 1579468 PMCID: PMC312266 DOI: 10.1093/nar/20.7.1747] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intron 1 of the coxI gene of yeast mitochondrial DNA (aI1) is a group IIA intron that encodes a maturase function required for its splicing in vivo. It is shown here to self-splice in vitro under some reaction conditions reported earlier to yield efficient self-splicing of group IIB introns of yeast mtDNA that do not encode maturase functions. Unlike the group IIB introns, aI1 is inactive in 10 mM Mg2+ (including spermidine) and requires much higher levels of Mg2+ and added salts (1M NH4Cl or KCl or 2M (NH4)2SO4) for ready detection of splicing activity. In KCl-stimulated reactions, splicing occurs with little normal branch formation; a post-splicing reaction of linear excised intron RNA that forms shorter lariat RNAs with branches at cryptic sites was evident in those samples. At low levels of added NH4Cl or KCl, the precursor RNA carries out the first reaction step but appears blocked in the splicing step. AI1 RNA is most reactive at 37-42 degrees C, as compared with 45 degrees C for the group IIB introns; and it lacks the KCl- or NH4Cl-dependent spliced-exon reopening reaction that is evident for the self-splicing group IIB introns of yeast mitochondria. Like the group IIB intron aI5 gamma, the domain 4 of aI1 can be largely deleted in cis, without blocking splicing; also, trans-splicing of half molecules interrupted in domain 4 occurs. This is the first report of a maturase-encoding intron of either group I or group II that self-splices in vitro.
Collapse
Affiliation(s)
- S K Hebbar
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
13
|
Anziano PQ, Butow RA. Splicing-defective mutants of the yeast mitochondrial COXI gene can be corrected by transformation with a hybrid maturase gene. Proc Natl Acad Sci U S A 1991; 88:5592-6. [PMID: 1648225 PMCID: PMC51923 DOI: 10.1073/pnas.88.13.5592] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have developed a recombinant vector, termed pMIT, for transient expression of genes delivered to yeast mitochondria by biolistic transformation. Using that vector, we introduced a hybrid RNA maturase (splicing) gene into mitochondria of rho 0 petite cells and showed the gene to be functional in crosses. The hybrid maturase is an in-frame fusion between the N-terminal half of the maturase encoded by intron 1 of the COXI (cytochrome oxidase) gene and the C-terminal half of a similar maturase encoded by COXI intron 2. pMIT transformants can provide a functional maturase in crosses to restore respiration and COXI polypeptide synthesis to a respiratory-deficient strain defective in the synthesis of a maturase encoded by COXI intron 1; the transformant will also restore respiration to two splicing-defective cis mutants of COXI introns 1 and 3. We detect a 68-kDa polypeptide comparable in abundance to other major mitochondrial translation products as a likely product of the hybrid maturase gene. Transformants containing an internal 218-amino acid deletion mutation of the hybrid maturase gene no longer express a functional maturase in crosses and produce the expected shortened polypeptide of approximately 40 kDa; however, those transformants still restore respiration to the COXI cis mutants. These studies show the utility of the pMIT transformation system for the expression and reverse genetic analysis of yeast mitochondrial genes.
Collapse
Affiliation(s)
- P Q Anziano
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | |
Collapse
|