1
|
Mahendran G, Breger K, McCown PJ, Hulewicz JP, Bhandari T, Addepalli B, Brown JA. Multi-Omics Approach Reveals Genes and Pathways Affected in Miller-Dieker Syndrome. Mol Neurobiol 2025; 62:5073-5094. [PMID: 39508990 PMCID: PMC11880102 DOI: 10.1007/s12035-024-04532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Miller-Dieker syndrome (MDS) is a rare neurogenetic disorder resulting from a heterozygous deletion of 26 genes in the MDS locus on human chromosome 17. MDS patients often die in utero and only 10% of those who are born reach 10 years of age. Current treatments mostly prevent complications and control seizures. A detailed understanding of the pathogenesis of MDS through gene expression studies would be useful in developing precise medical approaches toward MDS. To better understand MDS at the molecular level, we performed RNA sequencing on RNA and mass spectrometry on total protein isolated from BJ (non-MDS) cells and GM06097 (MDS) cells, which were derived from a healthy individual and an MDS patient, respectively. Differentially expressed genes (DEGs) at the RNA and protein levels involved genes associated with phenotypic features reported in MDS patients (CACNG4, ADD2, SPTAN1, SHANK2), signaling pathways (GABBR2, CAMK2B, TRAM-1), and nervous system development (CAMK2B, BEX1, ARSA). Functional assays validated enhanced calcium signaling, downregulated protein translation, and cell migration defects in MDS. Interestingly, overexpression of methyltransferase-like protein 16 (METTL16), a protein encoded in the MDS locus, restored defects in protein translation, phosphor states of mTOR (mammalian target of rapamycin) pathway regulators, and cell migration in MDS cells. Although DNA- and RNA-modifying enzymes were among the DEGs and the intracellular SAM/SAH ratio was eightfold lower in MDS cells, global nucleoside modifications remained unchanged. Thus, this study identified specific genes and pathways responsible for the gene expression changes, which could lead to better therapeutics for MDS patients.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Phillip J McCown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Internal Medicine, Division of Nephrology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tulsi Bhandari
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Knight LS, Knight TA. Making the case for prophylactic use of betaine to promote brain health in young (15-24 year old) athletes at risk for concussion. Front Neurosci 2023; 17:1214976. [PMID: 37811321 PMCID: PMC10556504 DOI: 10.3389/fnins.2023.1214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Betaine supplementation in the context of human nutrition, athletic performance, and clinical therapy demonstrate that the osmolyte and methyl donor, betaine, is cytoprotective and beneficial to human health. These studies also demonstrate that betaine supplementation in healthy humans is straight-forward with no reported adverse effects. Here, we explore betaine uptake in the central nervous system (CNS) and contribute to evidence that betaine may be uniquely protective to the brain. We specifically describe the therapeutic potential of betaine and explore the potential implications of betaine on inhibition mediated by GABA and glycine neurotransmission. The influence of betaine on neurophysiology complement betaine's role as an osmolyte and metabolite and is consistent with clinical evidence of betaine-mediated improvements to cognitive function (reported in elderly populations) and its anti-convulsant properties. Betaine's therapeutic potential in neurological disorders including epilepsy and neurodegenerative diseases combined with benefits of betaine supplementation on athletic performance support the unique application of betaine as a prophylaxis to concussion. As an example, we identify young athletes (15-24 years old), especially females, for prophylactic betaine supplementation to promote brain health and resilience in a cohort at high risk for concussion and for developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Thomas A. Knight
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
3
|
Chen L, Liu D, Mao M, Liu W, Wang Y, Liang Y, Cao W, Zhong X. Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis. Mol Nutr Food Res 2022; 66:e2200341. [PMID: 36069237 DOI: 10.1002/mnfr.202200341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Betaine rich in beet is used as an important source of human nutrition. Here we aimed to explore whether betaine supplementation can protect against acute sever ulcerative colitis (ASUC) and the underlying mechanism METHODS AND RESULTS: : ASUC model was induced by dextran sulfate sodium (DSS), and effects of betaine as a methyl donor on ASUC were evaluated. Betaine mitigated the changes, e.g., elevated DAI, weight lose, spleen enlargement, colon shortening and disordered colonic mucosa. We then verified the protective effects of betaine on colonic barrier integrity in ASUC through examining tight junction proteins by western blot and immunofluorescence. Spectrophotometry method and western blot confirmed that betaine can decrease levels of oxidative markers (MDA, MPO, NOS and COX2), and promote expressions of antioxidant proteins (GSH, NRF2, CAT and SOD1). Further, betaine prevented colonic inflammatory pyroptosis by blocking expressions of NLRP3 inflammasome complex (NLRP3, ASC and cleaved-caspase 1), N terminal-GSDMD, and release of relevant inflammatory factors. CONCLUSION Betaine inhibits colonic oxidative stress induced inflammatory pyroptosis to alleviate ASUC, which shows therapeutic potential against colitis and other acute inflammatory disorder. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dandan Liu
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingli Mao
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wenjia Liu
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yajuan Wang
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yue Liang
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaolin Zhong
- The First Affiliated Hospital of University of South China, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Chen ST, Hsieh CP, Lee MY, Chen LC, Huang CM, Chen HH, Chan MH. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed Pharmacother 2021; 144:112369. [PMID: 34715446 DOI: 10.1016/j.biopha.2021.112369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.
Collapse
Affiliation(s)
- Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Min Huang
- Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan; Research Center for Mind, Brain, and Learning, National Changchi University, 64, Section 2, Zhinan Road, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhao Z, He X, Ma C, Wu S, Cuan Y, Sun Y, Bai Y, Huang L, Chen X, Gao T, Zheng X. Excavating Anticonvulsant Compounds from Prescriptions of Traditional Chinese Medicine in the Treatment of Epilepsy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:707-737. [PMID: 29737210 DOI: 10.1142/s0192415x18500374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) has a long history and been widely used in prevention and treatment of epilepsy in China. This paper is intended to review the advances in the active anticonvulsant compounds isolated from herbs in the prescription of TCM in the treatment of epilepsy. These compounds were introduced with the details including classification, CAS number specific structure and druggability data. Meanwhile, much of the research in these compounds in the last two decades has shown that they exhibited favorable pharmacological properties in treatment of epilepsy both in in vivo and in vitro models. In addition, in this present review, the evaluation of the effects of the anticonvulsant classical TCM prescriptions is discussed. According to these rewarding pharmacological effects and chemical substances, the prescription of TCM herbs could be an effective therapeutic strategy for epilepsy patients, and also could be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Zefeng Zhao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xirui He
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Cuixia Ma
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Shaoping Wu
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ye Cuan
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Ying Sun
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Yajun Bai
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China.,† College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Linhong Huang
- ‡ Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Xufei Chen
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Tian Gao
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| | - Xiaohui Zheng
- * Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
6
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
7
|
Peden AS, Mac P, Fei YJ, Castro C, Jiang G, Murfitt KJ, Miska EA, Griffin JL, Ganapathy V, Jorgensen EM. Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nat Neurosci 2013; 16:1794-801. [PMID: 24212673 PMCID: PMC3955162 DOI: 10.1038/nn.3575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022]
Abstract
Prior to the advent of synthetic nematocides, natural products such as seaweed were used to control nematode infestations. The nematocidal agent in seaweed is betaine, an amino acid that functions as an osmolyte and methyl donor. However, the molecular mechanisms of betaine toxicity are unknown. Here, we identify the betaine transporter SNF-3 and a betaine receptor ACR-23 in the nematode C. elegans. Mutating snf-3 in a sensitized background causes the animals to be hypercontracted and paralyzed, presumably because of excess extracellular betaine. These behavioral defects are suppressed by mutations in acr-23, which encodes a ligand-gated cation channel of the cys-loop family. ACR-23 is activated by betaine and functions in the mechanosensory neurons to maintain basal levels of locomotion. However, overactivation of the receptor by excess betaine or by the allosteric modulator monepantel causes hypercontraction and death of the nematode. Thus, monepantel targets a betaine signaling pathway in nematodes.
Collapse
Affiliation(s)
- Aude S Peden
- 1] Department of Biology and Howard Hughes Medical Institute, University of Utah, Utah, USA. [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Katz-Brull R, Koudinov AR, Degani H. Direct detection of brain acetylcholine synthesis by magnetic resonance spectroscopy. Brain Res 2005; 1048:202-10. [PMID: 15921662 DOI: 10.1016/j.brainres.2005.04.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/24/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
The cholinergic system is an important modulatory neurotransmitter system in the brain. Changes in acetylcholine concentration have been previously determined directly in animal models and human brain biopsy specimens, and indirectly, by the effects of drugs, in living humans. Here, we developed a method for direct determination of acetylcholine synthesis in living brain tissue. The method is based on administration of choline, enriched with carbon-13 (stable isotope) in the two methylene positions, and detection of labeled acetylcholine and all other metabolic fates of choline, by carbon-13 magnetic resonance spectroscopy. We tested this method in rat brain slices and found it to be specific for acetylcholine synthesis in both the cortex and hippocampus. This method is potentially useful as a research tool for exploring the cholinergic system role in cognitive processes and memory storage as well as in diseases in which the malfunction of the cholinergic system has been implicated.
Collapse
Affiliation(s)
- Rachel Katz-Brull
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
9
|
Abstract
Betaine is distributed widely in animals, plants, and microorganisms, and rich dietary sources include seafood, especially marine invertebrates ( approximately 1%); wheat germ or bran ( approximately 1%); and spinach ( approximately 0.7%). The principal physiologic role of betaine is as an osmolyte and methyl donor (transmethylation). As an osmolyte, betaine protects cells, proteins, and enzymes from environmental stress (eg, low water, high salinity, or extreme temperature). As a methyl donor, betaine participates in the methionine cycle-primarily in the human liver and kidneys. Inadequate dietary intake of methyl groups leads to hypomethylation in many important pathways, including 1) disturbed hepatic protein (methionine) metabolism as determined by elevated plasma homocysteine concentrations and decreased S-adenosylmethionine concentrations, and 2) inadequate hepatic fat metabolism, which leads to steatosis (fatty accumulation) and subsequent plasma dyslipidemia. This alteration in liver metabolism may contribute to various diseases, including coronary, cerebral, hepatic, and vascular diseases. Betaine has been shown to protect internal organs, improve vascular risk factors, and enhance performance. Databases of betaine content in food are being developed for correlation with population health studies. The growing body of evidence shows that betaine is an important nutrient for the prevention of chronic disease.
Collapse
Affiliation(s)
- Stuart A S Craig
- Danisco USA Inc., 440 Saw Mill River Road, Ardsley, NY 10502, USA.
| |
Collapse
|