1
|
Moskaliuk VS, Kozhemyakina RV, Khomenko TM, Volcho KP, Salakhutdinov NF, Kulikov AV, Naumenko VS, Kulikova EA. On Associations between Fear-Induced Aggression, Bdnf Transcripts, and Serotonin Receptors in the Brains of Norway Rats: An Influence of Antiaggressive Drug TC-2153. Int J Mol Sci 2023; 24:ijms24020983. [PMID: 36674499 PMCID: PMC9867021 DOI: 10.3390/ijms24020983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The Bdnf (brain-derived neurotrophic factor) gene contains eight regulatory exons (I-VIII) alternatively spliced to the protein-coding exon IX. Only exons I, II, IV, and VI are relatively well studied. The BDNF system and brain serotonergic system are tightly interconnected and associated with aggression. The benzopentathiepine TC-2153 affects both systems and exerts antiaggressive action. Our aim was to evaluate the effects of TC-2153 on the Bdnf exons I-IX's expressions and serotonin receptors' mRNA levels in the brain of rats featuring high aggression toward humans (aggressive) or its absence (tame). Aggressive and tame adult male rats were treated once with vehicle or 10 or 20 mg/kg of TC-2153. mRNA was quantified in the cortex, hippocampus, hypothalamus, and midbrain with real-time PCR. Selective breeding for high aggression or its absence affected the serotonin receptors' and Bdnf exons' transcripts differentially, depending on the genotype (strain) and brain region. TC-2153 had comprehensive effects on the Bdnf exons' expressions. The main trend was downregulation in the hypothalamus and midbrain. TC-2153 increased 5-HT1B receptor hypothalamusc mRNA expression. For the first time, an influence of TC-2153 on the expressions of Bdnf regulatory exons and the 5-HT1B receptor was shown, as was an association between Bdnf regulatory exons and fear-induced aggression involving genetic predisposition.
Collapse
Affiliation(s)
- Vitalii S. Moskaliuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Rimma V. Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Tatyana M. Khomenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Akad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Akad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9 Akad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Alexander V. Kulikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Vladimir S. Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Elizabeth A. Kulikova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Akad. Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
2
|
Ethanol enhanced MDPV- and cocaine-induced aggressive behavior in mice: Forensic implications. Drug Alcohol Depend 2021; 229:109125. [PMID: 34763230 DOI: 10.1016/j.drugalcdep.2021.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reports concerning the causal link between aggressive behavior and use and abuse of different substances (i.e., alcohol, MDPV) can be found in the literature. Nonetheless, the topic concerning the effects of acute ethanol administration on MDPV and cocaine induced aggressive behavior has yet to be thoroughly investigated. The aim of this study was to investigate such synergistic effects. MATERIALS AND METHODS A total of 360 male mice were employed in the study. Ethanol was diluted with saline solution and administered 10 min before MDPV or cocaine injection via oral gavage needles. Similarly, MDPV and cocaine were dissolved in saline solution and administered by intraperitoneal injection. Different associations of specific drug doses were then tested. To investigate the acute effects of MDPV and cocaine and their interaction with ethanol on aggression in mice, a resident-intruder test was used. RESULTS Ethanol alone was ineffective at dosages of 0.05 g/kg and 0.25 g/kg but increased the aggressiveness of the mice at 0.125 g/kg. Similarly, the injection of both cocaine alone and MDPV alone did not significantly increase the aggressiveness of the mice; conversely, the combination of ethanol and cocaine and ethanol and MDPV enhanced aggression at specific ethanol dosages (0.05 g/kg and 0.125 g/kg). CONCLUSION This study demonstrated that acute ethanol administration enhances MDPV- and cocaine-induced aggressive behavior in mice. This aggressive response is particularly enhanced when MDVP and cocaine are coupled with specific ethanol dosages, proving that psychostimulant drugs may act synergistically under certain conditions.
Collapse
|
3
|
Ten Eyck GR, Ten Eyck LM. Serotonin and vasotocin function in territoriality. Pharmacol Biochem Behav 2020; 199:173068. [PMID: 33144208 DOI: 10.1016/j.pbb.2020.173068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
This ethopharmacological investigation comprised a long-term field study that examined the function of serotonergic and vasotonergic systems in territoriality. Adult territorial and non-territorial (silent) male coquí frogs (Eleutherodactylus coqui) were injected (IP) with either arginine vasotocin (AVT) or one of two serotonin agonists, 5-HT2A/2C selective agonist, (±) DOI - [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane], or 2) the 5-HT1A selective agonist, 8-OH-DPAT - [(±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene]. Control groups received saline injections. Each male received two injections. Following the first injection, whether AVT or a 5HT agonist, the male was observed so that behavior could be documented prior to the second injection, which consisted of the other drug class. All frogs were marked, placed back in the exact location as captured, and observed for all behaviors and vocalizations. Territoriality in E. coqui includes several behavioral components: movement into a calling site, presentation of dominant physical displays, emitting advertisement calls, and defense a territory (including the use of physical force and/or aggressive vocalizations). This investigation found that particular territorial behaviors were significantly influenced by 5HT and AVT action. Initiation of advertisement calling is activated by AVT and suppressed by 5HT, calling rate is affected by 5HT activation, presentation of dominant physical displays are activated by AVT and repressed by 5HT activation, and movement associated with activation of territorial behavior is stimulated by AVT. These data suggested that both 5HT and AVT have a profound impact on territoriality and are two fundamental neuroendocrine systems that govern territorial behavior in social systems.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA.
| | - Lily M Ten Eyck
- NYU Langone Health Center, NYU Long Island School of Medicine, Department of Foundations of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
4
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
5
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
6
|
Morrison TR, Melloni RH. The role of serotonin, vasopressin, and serotonin/vasopressin interactions in aggressive behavior. Curr Top Behav Neurosci 2014; 17:189-228. [PMID: 24496652 DOI: 10.1007/7854_2014_283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aggression control has been investigated across species and is centrally mediated within various brain regions by several neural systems that interact at different levels. The debate over the degree to which any one system or region affects aggressive responding, or any behavior for that matter, in some senses is arbitrary considering the plastic and adaptive properties of the central nervous system. Nevertheless, from the reductionist point of view, the compartmentalization of evolutionarily maladaptive behaviors to specific regions and systems of the brain is necessary for the advancement of clinical treatments (e.g., pharmaceutical) and novel therapeutic methods (e.g., deep brain stimulation). The general purpose of this chapter is to examine the confluence of two such systems, and how their functional interaction affects aggressive behavior. Specifically, the influence of the serotonin (5HT) and arginine vasopressin (AVP) neural systems on the control of aggressive behavior will be examined individually and together to provide a context by which the understanding of aggression modulation can be expanded from seemingly parallel neuromodulatory mechanisms, to a single and highly interactive system of aggression control.
Collapse
Affiliation(s)
- Thomas R Morrison
- Program in Behavioral Neuroscience, Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave, Boston, MA, 02155, USA,
| | | |
Collapse
|
7
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
8
|
Lavine R. Psychopharmacological Treatment of Aggression and Violence in the Substance Using Population. J Psychoactive Drugs 2011. [DOI: 10.1080/02791072.1997.10400558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Siviy SM, Deron LM, Kasten CR. Serotonin, motivation, and playfulness in the juvenile rat. Dev Cogn Neurosci 2011; 1:606-16. [PMID: 22436572 DOI: 10.1016/j.dcn.2011.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 11/30/2022] Open
Abstract
The effects of the selective 5HT(1A) agonist 8-OH-DPAT were assessed on the play behavior of juvenile rats. When both rats of the test pair were comparably motivated to play, the only significant effect of 8-OH-DPAT was for play to be reduced at higher doses. When there was a baseline asymmetry in playful solicitation due to a differential motivation to play and only one rat of the pair was treated, low doses of 8-OH-DPAT resulted in a collapse of asymmetry in playful solicitations. It did not matter whether the rat that was treated initially accounted for more nape contacts or fewer nape contacts, the net effect of 8-OH-DPAT in this model was for low doses of 8-OH-DPAT to decrease a pre-established asymmetry in play solicitation. It is concluded that selective stimulation of 5HT(1A) receptors changes the dynamic of a playful interaction between two participants that are differentially motivated to play. These results are discussed within a broader framework of serotonergic involvement in mammalian playfulness.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, PA 17325, USA.
| | | | | |
Collapse
|
10
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
11
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
12
|
Melloni RH, Ricci LA. Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 2010; 58:177-91. [PMID: 19914254 DOI: 10.1016/j.yhbeh.2009.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/12/2023]
Abstract
Considerable public attention has been focused on the issue of youth violence, particularly that associated with drug use. It is documented that anabolic steroid use by teenagers is associated with a higher incidence of aggressive behavior and serious violence, yet little is known about how these drugs produce the aggressive phenotype. Here we discuss work from our laboratory on the relationship between the development and activity of select neurotransmitter systems in the anterior hypothalamus and anabolic steroid-induced offensive aggression using pubertal male Syrian hamsters (Mesocricetus auratus) as an adolescent animal model, with the express goal of synthesizing these data into an cogent neural model of the developmental adaptations that may underlie anabolic steroid-induced aggressive behavior. Notably, alterations in each of the neural systems identified as important components of the anabolic steroid-induced aggressive response occurred in a sub-division of the anterior hypothalamic brain region we identified as the hamster equivalent of the latero-anterior hypothalamus, indicating that this sub-region of the hypothalamus is an important site of convergence for anabolic steroid-induced neural adaptations that precipitate offensive aggression. Based on these findings we present in this review a neural model to explain the neurochemical regulation of anabolic steroid-induced offensive aggression showing the hypothetical interaction between the arginine vasopressin, serotonin, dopamine, gamma-aminobutyric acid, and glutamate neural systems in the anterior hypothalamic brain region.
Collapse
Affiliation(s)
- Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
|
14
|
Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiol Behav 2009; 98:608-13. [PMID: 19799918 DOI: 10.1016/j.physbeh.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022]
Abstract
Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.
Collapse
|
15
|
Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters. Behav Brain Res 2008; 199:257-62. [PMID: 19110004 DOI: 10.1016/j.bbr.2008.11.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/25/2008] [Accepted: 11/29/2008] [Indexed: 12/26/2022]
Abstract
Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.
Collapse
|
16
|
Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology 2008; 33:2888-99. [PMID: 18305458 DOI: 10.1038/npp.2008.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A significant minority of individuals engages in escalated levels of aggression after consuming moderate doses of alcohol (Alc). Neural modulation of escalated aggression involves altered levels of serotonin (5-HT) and the activity of 5-HT(1B) receptors. The aim of these studies was to determine whether 5-HT(1B) receptors in the dorsal raphé (DRN), orbitofrontal (OFC), and medial prefrontal (mPFC) cortex attenuate heightened aggression and regulate extracellular levels of 5-HT. Male mice were trained to self-administer Alc by performing an operant response that was reinforced with a delivery of 6% Alc. To identify Alc-heightened aggressors, each mouse was repeatedly tested for aggression after consuming either 1.0 g/kg Alc or H2O. Next, a cannula was implanted into either the DRN, OFC, or mPFC, and subsets of mice were tested for aggression after drinking either Alc or H(2)O prior to a microinjection of the 5-HT(1B) agonist, CP-94,253. Additional mice were implanted with a microdialysis probe into the mPFC, through which CP-94,253 was perfused and samples were collected for 5-HT measurement. Approximately 60% of the mice were more aggressive after drinking Alc, confirming the aggression-heightening effects of 1.0 g/kg Alc. Infusion of 1 microg CP-94,253 into the DRN reduced both aggressive and motor behaviors. However, infusion of 1 microg CP-94,253 into the mPFC, but not the OFC, after Alc drinking, increased aggressive behavior. In the mPFC, reverse microdialysis of CP-94,253 increased extracellular levels of 5-HT; levels decreased immediately after the perfusion. This 5-HT increase was attenuated in self-administering mice. These results suggest that 5-HT(1B) receptors in the mPFC may serve to selectively disinhibit aggressive behavior in mice with a history of Alc self-administration.
Collapse
|
17
|
Smith GT, Combs N. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Horm Behav 2008; 54:69-82. [PMID: 18336816 DOI: 10.1016/j.yhbeh.2008.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/20/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT(1A) and 5HT(1B) receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT(2) receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT(1B/1D) receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT(1A) receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT(2) receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT(2) receptors, but that serotonergic activation of 5HT(1A) receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT(1A) receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT(1A) activity in other systems.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
18
|
Bibancos T, Jardim DL, Aneas I, Chiavegatto S. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. GENES BRAIN AND BEHAVIOR 2007; 6:529-39. [PMID: 17083332 DOI: 10.1111/j.1601-183x.2006.00280.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early-life events influence brain development and evoke long-lasting behavioral consequences. Postweaning social isolation in rodents induces emotional and neurochemical alterations similar to those observed among some human psychopathologies. Central serotonergic neurotransmission is intimately involved in the observed adjustments, but the impact of social deprivation on serotonergic gene expression is unknown. We investigated the effects of prolonged early social isolation on emotion-related behaviors and 5-hydroxytryptamine (5-HT)-related gene transcription in mice. After weaning, male C57BL/6J mice were reared singly or in groups of four for 6 weeks. Gene expression of 5-HT(1A), 5-HT(1B), 5-HT(2A), 5-HT(2C), 5-HT(3A), 5-HT(6) and 5-HT(7) receptors and of 5-HT transporter and tryptophan hydroxylase-2 was determined by quantitative real-time polymerase chain reaction in distinct brain areas. Single-housed mice were hyperactive in a novel environment and showed signs of aggressive behavior. Housing condition did not alter weight gain or body temperature. Isolation markedly reduced transcription of all postsynaptic 5-HT receptors in the prefrontal cortex and reduced 5-HT(1B), 5-HT(2A) and 5-HT(2C) in both hypothalamus and midbrain. In contrast, the only alteration in the hippocampus was 5-HT(6) overexpression. Neither 5-HT transporter nor synthetic enzyme gene transcription differed between housing conditions. In conclusion, early social isolation in mice induces robust changes in postsynaptic 5-HT receptors gene transcription, motor hyperactivity and behavioral disinhibition. The overall pattern of decreased gene expression in the prefrontal cortex highlights its high vulnerability to environment. Furthermore, this is the first study to present a general representation of 5-HT-related gene expression in specific brain areas after social isolation and identifies novel candidates that may be critical for underlying molecular mechanisms.
Collapse
Affiliation(s)
- T Bibancos
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Anabolic Steroid Abuse. J Addict Dis 2006. [DOI: 10.1300/j069v25s01_04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Grimes JM, Melloni RH. Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters. Behav Neurosci 2006; 119:1184-94. [PMID: 16300425 DOI: 10.1037/0735-7044.119.5.1184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated high dose (5.0 mg/kg) anabolic-androgenic steroid (AAS) exposure during adolescence stimulates offensive aggression in male Syrian hamsters. These studies examined whether AAS-induced aggression was regulated by the activity of serotonin (5HT) type-1B receptors and correlated with altered 5HT1B expression. AAS-treated hamsters were tested for offensive aggression following the administration of the 5HT1B agonist anpirtoline (0.125-0.5 mg/kg). Anpirtoline dose-dependently reduced select components of the AAS-induced aggressive response, with significant reductions observed at 0.25 mg/kg. Aggressive, AAS-treated hamsters showed significant decreases in the area covered by 5HT1B-containing neuronal puncta and increases in the number of 5HT1B-containing neuronal somata in select brain regions implicated in aggression control. Together, these data support a role for site-specific alterations in 5HT1B signaling and expression in adolescent AAS-induced aggression.
Collapse
Affiliation(s)
- Jill M Grimes
- Behavioral Neuroscience Program, Department of Psychology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Miczek KA, Fish EW, De Almeida RMM, Faccidomo S, Debold JF. Role of Alcohol Consumption in Escalation to Violence. Ann N Y Acad Sci 2006; 1036:278-89. [PMID: 15817744 DOI: 10.1196/annals.1330.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
No other drug has been associated with aggressive and violent behavior more than alcohol has. A major characteristic of the link between alcohol and social interactions is the very large variation in who becomes more aggressive while drinking and who does not. Tracing the origins of these individual differences has led to a focus on predispositions, such as the antisocial behavior of Type 2 alcoholics. Successful development of an experimental procedure to model heightened aggressive behavior after voluntary consumption of alcohol has facilitated the neurobiologic analysis of the link between alcohol and aggression. From a pharmacologic perspective, consumption of low to moderate doses of alcohol engenders heightened aggressive behavior in a significant minority of individuals before the circulation of appreciable amounts of the aldehyde metabolite. Ionophoric receptors such as NMDA, 5-HT(3) and GABA(A) have been identified in the brain as major sites of action for alcohol in the dose range that is relevant for engendering heightened aggression. Actions at the GABA(A) receptor complex that depend on particular GABA(A) subunits appear to be necessary for alcohol-heightened aggression. Genes that encode the synthesis of these alpha and gamma subunits are potentially significant markers for those individuals that are prone to engage in heightened aggressive behavior after the consumption of alcohol. Of particular importance are the reciprocal interactions between GABA and serotonin. Activating specific serotonin receptor subtypes such as 5-HT(1B) receptors reduces alcohol-heightened aggressive behavior. How these GABAergic and serotonergic corticolimbic mechanisms for alcohol-heightened aggression develop during the adolescent period remains an area of urgent study.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | | | |
Collapse
|
22
|
Miczek KA, Faccidomo S, De Almeida RMM, Bannai M, Fish EW, Debold JF. Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities. Ann N Y Acad Sci 2006; 1036:336-55. [PMID: 15817748 DOI: 10.1196/annals.1330.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Psychopharmacologic studies of aggressive behavior in animals under controlled laboratory conditions have been instrumental in developing and evaluating specific and effective novel drug treatments that reduce aggressive behavior. An initial contribution of this research is to create experimental conditions that enable the display of aggressive and defensive acts and postures in species that engage in either dominance or territorial or maternal aggression. Quantitative ethological analyses allow the precise delineation of the sequential organization of aggressive bursts, providing a benchmark for assessing excessive or pathological forms of aggressive behavior. A second contribution of preclinical research is the development of experimental models of escalated forms of aggressive behavior, such as focusing on genetic predispositions or social provocations and frustrative experiences. A critical role of preclinical research is in the pharmacological and neurochemical analysis of aggressive behavior; for example, a host of undesirable side effects prompted a shift from classic dopaminergic neuroleptic compounds to the more recently developed atypical neuroleptics with effective and more specific anti-aggressive effects. The long-established role of brain serotonin in impulsive and escalated forms of aggressive behavior continues to be a focus of preclinical studies. New evidence differentiates dynamic state changes in corticolimbic serotonergic neurons during the termination of aggressive behavior from the deficient-serotonin trait in violence-prone individuals. It can be anticipated that currently developed tools for targeting the genes that code for specific subtypes of serotonin receptors will offer new therapeutic options for reducing aggressive behavior, and the 5-HT(1B) receptor appears to be a promising target. The modulation of GABA and GABA(A) receptors by 5-HT in corticolimbic neurons promises to be particularly relevant for specific forms of escalated aggressive behavior such as alcohol-heightened aggression.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | |
Collapse
|
23
|
DeMar JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47:172-80. [PMID: 16210728 DOI: 10.1194/jlr.m500362-jlr200] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Male rat pups at weaning (21 days of age) were subjected to a diet deficient or adequate in n-3 polyunsaturated fatty acids (n-3 PUFAs) for 15 weeks. Performance on tests of locomotor activity, depression, and aggression was measured in that order during the ensuing 3 weeks, after which brain lipid composition was determined. In the n-3 PUFA-deprived rats, compared with n-3 PUFA-adequate rats, docosahexaenoic acid (22:6n-3) in brain phospholipid was reduced by 36% and docosapentaenoic acid (22:5n-6) was elevated by 90%, whereas brain phospholipid concentrations were unchanged. N-3 PUFA-deprived rats had a significantly increased (P = 0.03) score on the Porsolt forced-swim test for depression, and increased blocking time (P = 0.03) and blocking number (P = 0.04) scores (uncorrected for multiple comparisons) on the isolation-induced resident-intruder test for aggression. Large effect sizes (d > 0.8) were found on the depression score and on the blocking time score of the aggression test. Scores on the open-field test for locomotor activity did not differ significantly between groups, and had only small to medium effect sizes. This single-generational n-3 PUFA-deprived rat model, which demonstrated significant changes in brain lipid composition and in test scores for depression and aggression, may be useful for elucidating the contribution of disturbed brain PUFA metabolism to human depression, aggression, and bipolar disorder.
Collapse
Affiliation(s)
- James C DeMar
- Brain Physiology and Metabolism Section, National Institute on Aging, and Child Psychiatry Branch, National Institutes of Health Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
24
|
de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005; 526:125-39. [PMID: 16310183 DOI: 10.1016/j.ejphar.2005.09.065] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/01/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the predisposition for and execution of aggressive behavior. The dogmatic view that 5-HT inhibits aggression has dominated both pharmacological research strategies to develop specific and effective novel drug treatments that reduce aggressive behavior and the pharmacological mechanistic interpretation of putative serenic drug effects. Our studies on brain serotonin and aggression in feral wild-type rats using the resident-intruder paradigm have challenged this so-called serotonin deficiency hypothesis of aggressive behavior. The well-known fact that certain 5-HT(1A/1B) receptor agonists potently and specifically reduce aggressive behavior without motor slowing and sedative effects is only consistent with this hypothesis under the assumption that the agonist mainly acts on the postsynaptic 5-HT(1A/1B) receptor sites. However, systemic injections of anti-aggressive doses of 5-HT(1A) and (1B) agonists robustly decrease brain 5-HT release due to their inhibitory actions at somatodendritic and terminal autoreceptors, respectively. The availability of the novel benzodioxopiperazine compound S-15535, which acts in vivo as a preferential agonist of the somatodendritic 5-HT(1A) auto-receptor and as an antagonist (weak partial agonist) at postsynaptic 5-HT(1A) receptors, allows for a pharmacological analysis of the exact site of action of this anti-aggressive effect. It was found that, similar to other prototypical full and partial 5-HT(1A) and/or 5-HT(1B) receptor agonists like repinotan, 8-OHDPAT, ipsapirone, buspirone, alnespirone, eltoprazine, CGS-12066B and CP-93129, also S-15535 very effectively reduced offensive aggressive behavior. Unlike the other ligands, however, a remarkable degree of behavioral specificity was observed after treatment with S-15535, in that the anti-aggressive effects were not accompanied by inhibiting (like other 5-HT(1A) receptor agonist with moderate to high efficacy at postsynaptic 5-HT(1A) receptors) or enhancing (like agonists with activity at 5-HT(1B) receptors and alnespirone) non-aggressive motor behaviors (e.g., social exploration, ambulation, rearing, and grooming) beyond the range of undrugged animals with corresponding levels of aggression. The involvement of 5-HT(1A) and/or 5-HT(1B) receptors in the anti-aggressive actions of these drugs was convincingly confirmed by showing that the selective 5-HT(1A) receptor antagonist WAY-100635 and/or the 5-HT(1B) receptor antagonist GR-127935, while inactive when given alone, effectively attenuated/prevented these actions. Furthermore, combined administration of S-15535 with either alnespirone or CGS-42066B elicited a clear additive effect, indicated by a left-ward shift in their dose-effect curves, providing further support for presynaptic sites of action (i.e., inhibitory somatodendritic 5-HT(1A) and terminal 5-HT(1B) autoreceptors). These findings strongly suggest that the specific anti-aggressive effects of 5-HT(1A) and 5-HT(1B) receptor agonists are predominantly based on reduction rather than enhancement of 5-HT neurotransmission during the combative social interaction. Apparently, normal display of offensive aggressive behavior is positively related to brief spikes in serotonergic activity, whereas an inverse relationship probably exists between tonic 5-HT activity and abnormal forms of aggression only.
Collapse
Affiliation(s)
- Sietse F de Boer
- Department of Behavioral Physiology, Biological Center, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
25
|
Kurling S, Kankaanpää A, Ellermaa S, Karila T, Seppälä T. The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats. Brain Res 2005; 1044:67-75. [PMID: 15862791 DOI: 10.1016/j.brainres.2005.02.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Anabolic-androgenic steroids (AASs) are widely abused by adolescents, although persistent AAS use can cause several adverse physical and mental effects, including drug dependence. The first aim of the present study was to study the action of nandrolone decanoate on dopaminergic and serotonergic activities in the brains of rats. In order to evaluate the anabolic or toxic effects of the dosing regimens used, selected peripheral effects were monitored as well. Male Wistar rats were treated for 2 weeks. Injections containing nandrolone (5 and 20 mg/kg, i.m.) or vehicle were given once daily, 5 days a week. The levels of dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites were assayed from dissected brain regions 3 days after the last injection. Blood was collected for chemical assays before, after 1 week treatment and at decapitation. Both doses of nandrolone significantly increased the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), a metabolite of DA in the cerebral cortex, and the higher dose of nandrolone increased the concentrations of 5-HT in the cerebral cortex compared with the vehicle. In addition, after nandrolone treatment, the levels of hemoglobin and erythrocytes increased, and reticulocyte levels decreased. The results suggest that nandrolone at supraphysiological doses, high enough to induce erythropoiesis, induces changes in the dopaminergic and serotonergic neuronal system in the brains of rats. These phenomena may account to some of the observed central stimulatory properties that have been reported following AAS abuse.
Collapse
Affiliation(s)
- Sanna Kurling
- Department of Mental Health and Alcohol Research, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Ricci LA, Grimes JM, Melloni RH. Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 2005; 118:1097-110. [PMID: 15506892 DOI: 10.1037/0735-7044.118.5.1097] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated cocaine (0.5 mg/kg) exposure throughout adolescence stimulates offensive aggression in hamsters. These studies examined whether the cocaine-induced aggressive response was regulated by serotonin Type 3 (5-HT(3)) receptor activity and correlated with altered 5-HT(3) receptor expression. Cocaine-treated Syrian hamsters (Mesocricetus auratus) were tested for aggression after the administration of either the 5-HT(3) antagonist 3-tropanylindole-3-carboxylate methiodide (tropisetron; 0.01-1.20 mg/kg) or the 5-HT(3) agonist l-(m-chlorophenyl)-biguanide hydrochloride (mCPBG; 5.0-15.0 mg/kg), alone or in combination. Tropisetron alone dose dependently reduced cocaine-induced aggression, with a significant reduction at 0.3 mg/kg, whereas mCPBG was ineffective. mCPBG administered prior to tropisetron required a higher dose (1.2 mg/kg) of antagonist to block aggression, indicating a selective 5-HT(3) effect. Cocaine-treated hamsters showed altered 5-HT-sub-3 immunoreactivity in several brain areas implicated in aggression control. These data support a role for 5-HT(3) receptors in adolescent cocaine-induced aggression.
Collapse
Affiliation(s)
- Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
28
|
Chen TJH, Blum K, Mathews D, Fisher L, Schnautz N, Braverman ER, Schoolfield J, Downs BW, Comings DE. Are dopaminergic genes involved in a predisposition to pathological aggression? Med Hypotheses 2005; 65:703-7. [PMID: 15964153 DOI: 10.1016/j.mehy.2005.04.037] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 12/01/2022]
Abstract
We hypothesize that pathological aggression, a complex behavioral disorder, in adolescents may in part involve polymorphisms of the dopaminergic system. While a number of neurotransmitter systems must be involved, due to polygenic inheritance, one major pathway should involve the dopaminergic system. Advances in our knowledge of the neurobiology of aggression and violence have given rise to rational pharmacological treatments for these behaviors. The main biological systems that are known to be involved are certain reward neurotransmitters including: serotonin, opioid peptides, gamma-aminobutyric acid, and the catecholamines (dopamine and norepinephrine). It is our notion that pathological aggressive behavior is in part similar mechanistically to other forms of impulsive behaviors such as pathological gambling. By analogy to drug dependence, it has been speculated that the underlying pathology in pathological gambling is a reduction in the sensitivity of the reward system. While studying pathological gamblers and controls during a guessing game using functional Magnetic Resonance Imaging, Reuter et al. observed a reduction of ventral striatal and ventromedial prefrontal activation in the pathological gamblers that were negatively correlated with gambling severity. Subsequently, linking hypo activation of these areas to disease severity. A positive correlation of both the dopamine D2 receptor gene (DRD2) and the dopamine transporter gene (DAT1) polymorphisms were observed with pathological violence in adolescents in a blinded clinical trial. Thus, this and other cited work preliminary suggest a role for both the DRD2 and DAT genes in pathological aggressive behavior. We further hypothesize that follow-up gene research in this area, albeit premature, resulting in confirmation of positive correlations with dopaminergic polymorphisms, and utilizing highly screened controls (eliminating any addictive, compulsive and impulsive behaviors in both proband and family) may have important ramifications in our young population.
Collapse
|
29
|
Affiliation(s)
- R J Nelson
- Departments of Psychology, Neuroscience, and Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Abstract
Social stress from aggressive interaction is expressed differently in specific brain regions of dominant and subordinate male Anolis carolinensis. Prior to aggressive behavior, the outcome is predictable via the celerity of postorbital coloration: Dominant males exhibit more rapid eyespot darkening. Serotonergic activation is manifest rapidly (1 h) in hippocampus, nucleus accumbens and brainstem of subordinate males, and is expressed more rapidly in dominant males. Amygdalar serotonergic activation responds rapidly (1 h) in dominant males, but is expressed slowly (1 w) and chronically in subordinate males. We hypothesized that chronic (1 w) serotonin elevation, manipulated by the selective serotonin reuptake inhibitor sertraline, would decrease aggressiveness and result in subordinate status. Dominant status was established in pairs of male A. carolinensis. The pairs were separated and treated with sertraline or vehicle. Sertraline was given in food to either the dominant or the subordinate male, both males or neither male for 1 week. Pairs were reintroduced, and behavior and social status recorded. When both dominant and subordinate males were treated with sertraline (or vehicle), or when subordinate males alone were treated with sertraline, previously established social relationships remained unchanged or became associative. However, when dominant males alone were treated with sertraline, their social status was reversed (43%) or negated (57%). Latency to eyespot darkening was significantly retarded in dominant males treated with sertraline, and aggressive displays and attacks were reduced. Chronic 5-HT elevation is consistent with subordinate status. Social status and aggressive disposition do not appear to be immutable, but may be changed by neuroendocrine mechanisms that mediate adaptation to environmental conditions like stress.
Collapse
Affiliation(s)
- E T Larson
- Department of Biology and Neuroscience Group, University of South Dakota, 414 E. Clark Street, 57069-2390, Vermillion, SD, USA
| | | |
Collapse
|
31
|
Huber R, Panksepp JB, Yue Z, Delago A, Moore P. Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish. BRAIN, BEHAVIOR AND EVOLUTION 2001; 57:271-82. [PMID: 11641563 PMCID: PMC4807121 DOI: 10.1159/000047245] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarizes a set of experimental approaches with which we explore fighting behavior in crayfish and the importance of aminergic systems in its control. Our results illustrate that agonistic behavior in crustaceans can be characterized within a quantitative framework, that different types of behavioral plasticity in aggressive behavior are in need of physiological explanation, and that pharmacological intervention involving serotonergic systems produces characteristic changes in fighting. Moreover, we attempt to identify changes in neurochemistry during the acquisition of social status. Many of the studies presented here summarize ongoing work. Nonetheless, results to date complement and extend previous detailed physiological, morphological and biochemical studies exploring the roles of amines in aggression.
Collapse
Affiliation(s)
- R Huber
- J.P. Scott Center for Neuroscience, Mind and Behavior and Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | | | | | | |
Collapse
|
32
|
Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, Lubar JO, Chen TJ, Comings DE. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 2000; 32 Suppl:i-iv, 1-112. [PMID: 11280926 DOI: 10.1080/02791072.2000.10736099] [Citation(s) in RCA: 554] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dopaminergic system, and in particular the dopamine D2 receptor, has been implicated in reward mechanisms. The net effect of neurotransmitter interaction at the mesolimbic brain region induces "reward" when dopamine (DA) is released from the neuron at the nucleus accumbens and interacts with a dopamine D2 receptor. "The reward cascade" involves the release of serotonin, which in turn at the hypothalmus stimulates enkephalin, which in turn inhibits GABA at the substania nigra, which in turn fine tunes the amount of DA released at the nucleus accumbens or "reward site." It is well known that under normal conditions in the reward site DA works to maintain our normal drives. In fact, DA has become to be known as the "pleasure molecule" and/or the "antistress molecule." When DA is released into the synapse, it stimulates a number a DA receptors (D1-D5) which results in increased feelings of well-being and stress reduction. A consensus of the literature suggests that when there is a dysfunction in the brain reward cascade, which could be caused by certain genetic variants (polygenic), especially in the DA system causing a hypodopaminergic trait, the brain of that person requires a DA fix to feel good. This trait leads to multiple drug-seeking behavior. This is so because alcohol, cocaine, heroin, marijuana, nicotine, and glucose all cause activation and neuronal release of brain DA, which could heal the abnormal cravings. Certainly after ten years of study we could say with confidence that carriers of the DAD2 receptor A1 allele have compromised D2 receptors. Therefore lack of D2 receptors causes individuals to have a high risk for multiple addictive, impulsive and compulsive behavioral propensities, such as severe alcoholism, cocaine, heroin, marijuana and nicotine use, glucose bingeing, pathological gambling, sex addiction, ADHD, Tourette's Syndrome, autism, chronic violence, posttraumatic stress disorder, schizoid/avoidant cluster, conduct disorder and antisocial behavior. In order to explain the breakdown of the reward cascade due to both multiple genes and environmental stimuli (pleiotropism) and resultant aberrant behaviors, Blum united this hypodopaminergic trait under the rubric of a reward deficiency syndrome.
Collapse
Affiliation(s)
- K Blum
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Skrebuhhova-Malmros T, Pruus K, Rudissaar R, Allikmets L, Matto V. The serotonin 5-HT(2A) receptor subtype does not mediate apomorphine-induced aggressive behaviour in male Wistar rats. Pharmacol Biochem Behav 2000; 67:339-43. [PMID: 11124399 DOI: 10.1016/s0091-3057(00)00368-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the effect of the 5-HT(2A) receptor antagonists on apomorphine-induced aggressive behaviour in male Wistar rats. In acute behavioural experiments with apomorphine-pretreated (1.0 mg/kg, s.c., once daily, 2 weeks) animals, risperidone (0.5 and 1.0 mg/kg) inhibited aggressive behaviour, but ketanserin and ritanserin (0.5-5. 0 mg/kg) had no effect on the latency and intensity of aggressive behaviour. Concomitant risperidone (0.5 mg/kg) and haloperidol (0.03 and 0.3 mg/kg) administration blocked aggressive behaviour completely. In conclusion, our experiments confirm that inhibition of the apomorphine-induced aggressive behaviour is elicited by drugs with dopamine (DA) but not with 5-HT(2A) antagonistic activity. Moreover, it may be concluded that the serotonin 5-HT(2A) receptor subtype does not alter the DA-mediated behaviour.
Collapse
Affiliation(s)
- T Skrebuhhova-Malmros
- Department of Pharmacology, University of Tartu, Ulikooli Street 18, 51014, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
34
|
Stork O, Welzl H, Wolfer D, Schuster T, Mantei N, Stork S, Hoyer D, Lipp H, Obata K, Schachner M. Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur J Neurosci 2000; 12:3291-306. [PMID: 10998113 DOI: 10.1046/j.1460-9568.2000.00197.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we further investigate functions of the neural cell adhesion molecule (NCAM) in the mature central nervous system and its implications for animal behaviour. To this end we generated transgenic mice expressing the major NCAM isoform with the largest cytoplasmic domain, NCAM180, under control of a promoter for the small form neurofilament gene. Transgenic mice were also bred with mice deficient in endogenous NCAM (Ncam-/- mice) so that effects of NCAM180 could be analysed in the presence and absence of endogenous NCAM. While overexpression of transgenic NCAM180 was without apparent behavioural or morphological effect, its expression in Ncam-/- mice counteracted NCAM ablation-induced aggressive, anxiety-like and antidepressant-like behaviour. It furthermore prevented a hypersensitivity of Ncam-/- mice to the anxiolytic serotonin1A (5-HT1A) receptor agonist buspirone. Such recovery of emotional behaviour and behavioural 5-HT1A response occurred in spite of misdevelopment of the olfactory bulb and hippocampus that is characteristic of Ncam-/- mice, and without an apparent change in the expression of 5-HT1A binding sites in the brain. Hippocampus- and amygdala-dependent learning, though disturbed in Ncam-/- mice, remained unaffected by the transgenic NCAM180. We suggest an involvement of NCAM180-mediated cell recognition processes in the serotonergic modulation of emotional behaviour in adult mice.
Collapse
Affiliation(s)
- O Stork
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH 8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shishkina GT, Dygalo NN. Role of the serotoninergic system in the acceleration of sexual maturation in wild Norway rats selected for reduced aggressiveness toward humans. Comp Biochem Physiol C Toxicol Pharmacol 2000; 125:45-51. [PMID: 11790329 DOI: 10.1016/s0742-8413(99)00092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the serotoninergic system in acceleration of the sexual development of domesticated rats (Rattus norvegicus) was assessed. The onset of age-related changes in hypothalamic serotonin during prepubertal period occurred earlier in domesticated than in aggressive male rats. Blockade of the serotoninergic system after p-chlorophenylalanine (PCPA) administration on days 40 and 44 delayed the development of the reproductive system in both aggressive and domesticated males. In 60-day-old rats treated with PCPA, levels of testosterone in plasma and the number of mature spermatozoa in epididymis were decreased compared to controls. At the same time, the administration of PCPA on days 30 and 34 did not modify basal testosterone secretion and other parameters in 60-day-old aggressive rats and produced a decrease similar to PCPA injections on days 40 and 44, although less pronounced, in the weights of testes in domesticated animals. Administration of 5-hydroxytryptophan (5-HTP), a precursor of serotonin synthesis, on days 30, 32, 34, 36 and 38 increased plasma testosterone levels and weights of the sex organs in 60-day-old domesticated males, but did not significantly affect the development of reproductive system in aggressive animals. These data indicate that serotonin stimulates sexual development of males during prepubertal period and this activating effect of serotonin occurs earlier in domesticated than in aggressive males. They also suggest that the acceleration in sexual maturation of domesticated rats could result from changes in the ontogenetic dynamic of hypothalamic serotonin induced by a selection for low aggressiveness towards man.
Collapse
Affiliation(s)
- G T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Academy of Science of Russia, 630090, Novosibirsk, Russia
| | | |
Collapse
|
36
|
Stork O, Welzl H, Wotjak CT, Hoyer D, Delling M, Cremer H, Schachner M. Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. JOURNAL OF NEUROBIOLOGY 1999; 40:343-55. [PMID: 10440734 DOI: 10.1002/(sici)1097-4695(19990905)40:3<343::aid-neu6>3.0.co;2-s] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety-like behavior of homozygous (NCAM-/-) and heterozygous (NCAM/-) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety-like behavior was reduced in both NCAM+/+ and NCAM-/- mice by systemic administration of the benzodiazepine agonist diazepam and the 5-HT1A receptor agonists buspirone and 8-OH-DPAT. However, NCAM-/- mice showed anxiolytic-like effects at lower doses of buspirone and 8-OH-DPAT than NCAM+/+ mice. Such increased response to 5-HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM-/- mice, likely involved in the control of anxiety and aggression. However, 5-HT1A receptor binding and tissue content of serotonin and its metabolite 5-hydroxyindolacetic acid were found unaltered in every brain area of NCAM-/- mice investigated, indicating that expression of 5-HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM-/- mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5-HT1A receptors and inwardly rectifying K+ channels as the respective effector systems.
Collapse
Affiliation(s)
- O Stork
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH 8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Thiblin I, Finn A, Ross SB, Stenfors C. Increased dopaminergic and 5-hydroxytryptaminergic activities in male rat brain following long-term treatment with anabolic androgenic steroids. Br J Pharmacol 1999; 126:1301-6. [PMID: 10217522 PMCID: PMC1565900 DOI: 10.1038/sj.bjp.0702412] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effects of treating groups of rats with four different anabolic androgenic steroids (AAS) (testosterone, nandrolone, methandrostenolone, and oxymetholone) on 5-hydroxytryptamine (5-HT) and dopamine (DA) neurones in different brain regions were examined. The AAS was injected six times with 1 week's interval and the rats were sacrificed 2 days after the final injection. 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured. The effect on DA and 5-HT synthesis rate was analysed as the accumulation of 3,4-dihydroxyphenyl-alanine (DOPA) and 5-hydroxytryptophan (5-HTP), respectively, after inhibition of the amino acid decarboxylase with NSD-1015 (3-hydroxy-benzylhydrazine dihydrochloride). Additionally, the monoamine oxidase (MAO) activity was analysed in the hypothalamus. 2. The DOPAC + HVA/DA ratio was increased in the striatum in all treatment groups. However, the synthesis rate of DA was significantly increased only in the methandrostenolone treated group. 3. The 5-HIAA/5-HT ratio was increased in all treatment groups in the hippocampus, in the frontal cortex in the methandrostenolone-treated animals and in the hypothalamus in the testosterone- and oxymetholone-treated rats, while the 5-HT synthesis rate was not affected by the AAS-treatments. 4. The MAO-A activity was increased in the oxymetholone-treated rats while the other treatment groups were unaffected. The MAO-B activity was not changed. 5. The results indicate that relatively high doses of AAS increase dopaminergic and 5-hydroxytryptaminergic metabolism in male rat brain, probably due to enhanced turnover in these monaminergic systems.
Collapse
Affiliation(s)
- I Thiblin
- Department of Forensic Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Rodríguez-Arias M, Miñarro J, Aguilar MA, Pinazo J, Simón VM. Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 1998; 8:95-103. [PMID: 9619687 DOI: 10.1016/s0924-977x(97)00051-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, the antiaggressive effects of risperidone and SCH 23390 have been explored. Using the paradigm of isolation-induced aggression, 150 albino male mice of the OF1 strain were allocated to control and experimental groups which received three doses of risperidone (0.01, 0.05 and 0.1 mg/kg) or two doses of SCH 23390 (0.05 and 0.1 mg/kg). Only the highest doses of risperidone decreased threat and attack behaviours but all doses significantly impaired motor behaviour. SCH 23390 decreased attack with the two doses used and also produced significant increases in immobility. Although both antipsychotics are antiaggressive, this action seems to be more specific in the case of risperidone. Finally, both drugs failed to affect animals with short attack latency, being antiaggressive only in subjects with long attack latency, which suggests that these two types of animals are different in their dopamine and serotonin neurotransmission.
Collapse
Affiliation(s)
- M Rodríguez-Arias
- Area de Psicobiología, Facultad de Psicología, Universitat de València, Spain.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Central monoamines display a variety of activation patterns in different social groups, and among males and females. We addressed three social conditions for female lizards of the species Anolis carolinensis: Isolated, paired with a mate, and in a group of 5 competing for one mate. Among those in a group, only 1 or 2 females exhibited recrudescing ovaries. Individuals paired with a mate (for one month) exhibited ovarian growth, isolated animals (initial controls) had quiescent ovaries. Reproductively dominant females had significantly greater telencephalic 5-HIAA, and serotonergic activation, as indicated by the ratio of 5-HIAA to 5-HT. Telencephalic HVA as well as the HVA/DA ratio were also significantly greater in dominant females compared to all other groups. In contrast, serotonergic activation in brainstem was elevated in subordinate females only. These results suggest that serotonergic activation in telencephalon, found only in dominant females, not in other reproductively active females, is a function of the unique social role of a dominant female, possibly combining submissive behaviors toward a male with dominance over other females and competition for access to that male. Dopaminergic activation in telencephalon, also found only in dominant females, may be related to aggressive interactions with other females. Activation of serotonin in brainstem, found in this study in subordinate females and previously in males [C.H. Summers and N. Greenberg, Activation of central biogenic amines following aggressive interaction in male lizards, Anolis carolinensis, Brain Behav. Evol., 45 (1995) 339-349], may be associated with subordinate social status. Monoamines, involved in social behaviors, appear to be regionally specialized for dominant and subordinate social roles, in males [C.H. Summers and N. Greenberg, Activation of central biogenic amines following aggressive interaction in male lizards, Anolis carolinensis, Brain Behav. Evol., 45 (1995) 339-349][T.R. Summers, E.T. Larson, A.L. Hunter, K.J. Renner, N. Greenberg and C.H. Summers, Amygdalar serotonin mediates long-term social roles following aggressive interaction, Soc. Neurosci. Abs., 22 (1996) 1147] and females. Dominant females exhibit unique social position, behavior and monoamine profile whereas subordinate females and males have a similar serotonergic response in this species.
Collapse
Affiliation(s)
- T R Summers
- Department of Biology, University of South Dakota, Vermillion 57069-3290, USA.
| | | | | |
Collapse
|