1
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Hao W. From Genome Variation to Molecular Mechanisms: What we Have Learned From Yeast Mitochondrial Genomes? Front Microbiol 2022; 13:806575. [PMID: 35126340 PMCID: PMC8811140 DOI: 10.3389/fmicb.2022.806575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Analysis of genome variation provides insights into mechanisms in genome evolution. This is increasingly appreciated with the rapid growth of genomic data. Mitochondrial genomes (mitogenomes) are well known to vary substantially in many genomic aspects, such as genome size, sequence context, nucleotide base composition and substitution rate. Such substantial variation makes mitogenomes an excellent model system to study the mechanisms dictating mitogenome variation. Recent sequencing efforts have not only covered a rich number of yeast species but also generated genomes from abundant strains within the same species. The rich yeast genomic data have enabled detailed investigation from genome variation into molecular mechanisms in genome evolution. This mini-review highlights some recent progresses in yeast mitogenome studies.
Collapse
|
3
|
Monteiro J, Pratas D, Videira A, Pereira F. Revisiting the Neurospora crassa mitochondrial genome. Lett Appl Microbiol 2021; 73:495-505. [PMID: 34265094 DOI: 10.1111/lam.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
The mitochondrial genome of Neurospora crassa has been less studied than its nuclear counterpart, yet it holds great potential for understanding the diversity and evolution of this important fungus. Here we describe a new mitochondrial DNA (mtDNA) complete sequence of a N. crassa wild type strain. The genome with 64 839 bp revealed 21 protein-coding genes and several hypothetical open reading frames with no significant homology to any described gene. Five large repetitive regions were identified across the genome, including partial or complete genes. The largest repeated region holds a partial nd2 section that was also detected in Neurospora intermedia, suggesting a rearrangement that occurred before the N. crassa speciation. Interestingly, N. crassa has a palindrome adjacent to the partial nd2 repeated region possibly related to the genomic rearrangement, which is absent in N. intermedia. Finally, we compared the sequences of the three available N. crassa complete mtDNAs and found low levels of intraspecific variability. Most differences among strains were due to small indels in noncoding regions. The revisiting of the N. crassa mtDNA forms the basis for future studies on mitochondrial genome organization and variability.
Collapse
Affiliation(s)
- J Monteiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.,Department of Molecular Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - D Pratas
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal.,Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
| | - A Videira
- Department of Molecular Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Cellular and Molecular Biology (IBMC), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - F Pereira
- IDENTIFICA Genetic Testing, Maia, Portugal.,Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Ponts N, Gautier C, Gouzy J, Pinson-Gadais L, Foulongne-Oriol M, Ducos C, Richard-Forget F, Savoie JM, Zhao C, Barroso G. Evolution of Fusarium tricinctum and Fusarium avenaceum mitochondrial genomes is driven by mobility of introns and of a new type of palindromic microsatellite repeats. BMC Genomics 2020; 21:358. [PMID: 32397981 PMCID: PMC7218506 DOI: 10.1186/s12864-020-6770-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Increased contamination of European and Asian wheat and barley crops with “emerging” mycotoxins such as enniatins or beauvericin, produced by Fusarium avenaceum and Fusarium tricinctum, suggest that these phylogenetically close species could be involved in future food-safety crises. Results The mitochondrial genomes of F. tricinctum strain INRA104 and F. avenaceum strain FaLH27 have been annotated. A comparative analysis was carried out then extended to a set of 25 wild strains. Results show that they constitute two distinct species, easily distinguished by their mitochondrial sequences. The mitochondrial genetic variability is mainly located within the intergenic regions. Marks of variations show they have evolved (i) by Single Nucleotide Polymorphisms (SNPs), (ii) by length variations mediated by insertion/deletion sequences (Indels), and (iii) by length mutations generated by DNA sliding events occurring in mononucleotide (A)n or (T)n microsatellite type sequences arranged in a peculiar palindromic organization. The optionality of these palindromes between both species argues for their mobility. The presence of Indels and SNPs in palindrome neighbouring regions suggests their involvement in these observed variations. Moreover, the intraspecific and interspecific variations in the presence/absence of group I introns suggest a high mobility, resulting from several events of gain and loss during short evolution periods. Phylogenetic analyses of intron orthologous sequences suggest that most introns could have originated from lateral transfers from phylogenetically close or distant species belonging to various Ascomycota genera and even to the Basidiomycota fungal division. Conclusions Mitochondrial genome evolution between F. tricinctum and F. avenaceum is mostly driven by two types of mobile genetic elements, implicated in genome polymorphism. The first one is represented by group I introns. Indeed, both genomes harbour optional (inter- or intra-specifically) group I introns, all carrying putatively functional hegs, arguing for a high mobility of these introns during short evolution periods. The gain events were shown to involve, for most of them, lateral transfers between phylogenetically distant species. This study has also revealed a new type of mobile genetic element constituted by a palindromic arrangement of (A) n and (T) n microsatellite sequences whose presence was related to occurrence of SNPs and Indels in the neighbouring regions.
Collapse
Affiliation(s)
- Nadia Ponts
- INRAE, MycSA, F-33882, Villenave d'Ornon, France
| | | | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | | | | | | | - Chen Zhao
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Gérard Barroso
- INRAE, MycSA, F-33882, Villenave d'Ornon, France. .,University of Bordeaux, INRAE, MycSA, F-33882, Villenave d'Ornon, France.
| |
Collapse
|
6
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
7
|
Nieuwenhuis M, van de Peppel LJJ, Bakker FT, Zwaan BJ, Aanen DK. Enrichment of G4DNA and a Large Inverted Repeat Coincide in the Mitochondrial Genomes of Termitomyces. Genome Biol Evol 2019; 11:1857-1869. [PMID: 31209489 PMCID: PMC6609731 DOI: 10.1093/gbe/evz122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria retain their own genome, a hallmark of their bacterial ancestry. Mitochondrial genomes (mtDNA) are highly diverse in size, shape, and structure, despite their conserved function across most eukaryotes. Exploring extreme cases of mtDNA architecture can yield important information on fundamental aspects of genome biology. We discovered that the mitochondrial genomes of a basidiomycete fungus (Termitomyces spp.) contain an inverted repeat (IR), a duplicated region half the size of the complete genome. In addition, we found an abundance of sequences capable of forming G-quadruplexes (G4DNA); structures that can disrupt the double helical formation of DNA. G4DNA is implicated in replication fork stalling, double-stranded breaks, altered gene expression, recombination, and other effects. To determine whether this occurrence of IR and G4DNA was correlated within the genus Termitomyces, we reconstructed the mitochondrial genomes of 11 additional species including representatives of several closely related genera. We show that the mtDNA of all sampled species of Termitomyces and its sister group, represented by the species Tephrocybe rancida and Blastosporella zonata, are characterized by a large IR and enrichment of G4DNA. To determine whether high mitochondrial G4DNA content is common in fungi, we conducted the first broad survey of G4DNA content in fungal mtDNA, revealing it to be a highly variable trait. The results of this study provide important direction for future research on the function and evolution of G4DNA and organellar IRs.
Collapse
Affiliation(s)
| | | | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| |
Collapse
|
8
|
Deng Y, Hsiang T, Li S, Lin L, Wang Q, Chen Q, Xie B, Ming R. Comparison of the Mitochondrial Genome Sequences of Six Annulohypoxylon stygium Isolates Suggests Short Fragment Insertions as a Potential Factor Leading to Larger Genomic Size. Front Microbiol 2018; 9:2079. [PMID: 30250455 PMCID: PMC6140425 DOI: 10.3389/fmicb.2018.02079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is a core non-nuclear genetic material found in all eukaryotic organisms, the size of which varies extensively in the eumycota, even within species. In this study, mitochondrial genomes of six isolates of Annulohypoxylon stygium (Lév.) were assembled from raw reads from PacBio and Illumina sequencing. The diversity of genomic structures, conserved genes, intergenic regions and introns were analyzed and compared. Genome sizes ranged from 132 to 147 kb and contained the same sets of conserved protein-coding, tRNA and rRNA genes and shared the same gene arrangements and orientation. In addition, most intergenic regions were homogeneous and had similar sizes except for the region between cytochrome b (cob) and cytochrome c oxidase I (cox1) genes which ranged from 2,998 to 8,039 bp among the six isolates. Sixty-five intron insertion sites and 99 different introns were detected in these genomes. Each genome contained 45 or more introns, which varied in distribution and content. Introns from homologous insertion sites also showed high diversity in size, type and content. Comparison of introns at the same loci showed some complex introns, such as twintrons and ORF-less introns. There were 44 short fragment insertions detected within introns, intergenic regions, or as introns, some of them located at conserved domain regions of homing endonuclease genes. Insertions of short fragments such as small inverted repeats might affect or hinder the movement of introns, and these allowed for intron accumulation in the mitochondrial genomes analyzed, and enlarged their size. This study showed that the evolution of fungal mitochondrial introns is complex, and the results suggest short fragment insertions as a potential factor leading to larger mitochondrial genomes in A. stygium.
Collapse
Affiliation(s)
- Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Shuxian Li
- USDA-Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS, United States
| | - Longji Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinghe Chen
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Misas E, Muñoz JF, Gallo JE, McEwen JG, Clay OK. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity. Comput Biol Chem 2016; 61:258-69. [PMID: 26970210 DOI: 10.1016/j.compbiolchem.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 01/26/2023]
Abstract
The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - José Fernando Muñoz
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Juan Esteban Gallo
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan Guillermo McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver Keatinge Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
10
|
Abstract
Transposable elements (TEs) are an important factor shaping eukaryotic genomes. Although a significant body of research has been conducted on the abundance of TEs in nuclear genomes, TEs in mitochondrial genomes remain elusive. In this study, we successfully assembled 28 complete yeast mitochondrial genomes and took advantage of the power of population genomics to determine mobile DNAs and their propensity. We have observed compelling evidence of GC clusters propagating within the mitochondrial genome and being horizontally transferred between species. These mitochondrial TEs experience rapid diversification by nucleotide substitution and, more importantly, undergo dynamic merger and shuffling to form new TEs. Given the hyper mobile and transformable nature of mitochondrial TEs, our findings open the door to a deeper understanding of eukaryotic mitochondrial genome evolution and the origin of nonautonomous TEs.
Collapse
|
11
|
Abstract
Programmed translational bypassing is a process whereby ribosomes "ignore" a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a "takeoff codon" immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching "landing triplet" 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions.
Collapse
|
12
|
Ma J, Li C, Gai Y, Yang Q. The complete mitochondrial genome of Ircinia sp. (Dictyoceratida: Irciniidae). MITOCHONDRIAL DNA 2013; 26:282-3. [PMID: 24041447 DOI: 10.3109/19401736.2013.825776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome of Ircinia sp. (Dictyoceratida: Irciniidae) is a circular molecule of 16,037 bp in length, containing 14 protein-coding genes, 2 ribosomal RNA genes, 2 transfer RNA genes (trnW and trnM) and 13 non-coding segments. All genes are distributed in the same strand (H-strand). The overall base composition of the H-strand is as follows: T (37.84%), C (11.22%), A (24.81%), G (26.13%), with GC- and AT-skew of 0.399 and -0.208, respectively, reflecting unbalanced base composition between the two strands. The non-coding regions are 1190 bp in total length, with high AT content (76.31%). The current mitochondrial genome is identical to that of sibling species I. strobilina in gene order and contents, but differs from the latter in the presence of two kinds of repetitive sequences in the non-coding regions, of which one could form repetitive hairpin-forming elements.
Collapse
Affiliation(s)
- Junye Ma
- Department of Micropalaeontology, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences , Nanjing , P.R. China
| | | | | | | |
Collapse
|
13
|
Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol 2013; 5:1628-43. [PMID: 23925788 PMCID: PMC3787672 DOI: 10.1093/gbe/evt120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.
Collapse
Affiliation(s)
- Denis Beaudet
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Ivan Enrique de la Providencia
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges. Gene 2012; 505:91-9. [PMID: 22669046 DOI: 10.1016/j.gene.2012.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/31/2022]
Abstract
Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L. baicalensis and the most closely related cosmopolitan freshwater sponge Ephydatia muelleri. Here we report mitochondrial genomes of three additional species of Lake Baikal sponges: Swartschewskia papyracea, Rezinkovia echinata and Baikalospongia intermedia morpha profundalis (Demospongiae, Haplosclerida, Lubomirskiidae) and from a more distantly related freshwater sponge Corvomeyenia sp. (Demospongiae, Haplosclerida, Metaniidae). We use these additional sequences to explore mtDNA evolution in Baikalian sponges, paying particular attention to the variation in the rates of nucleotide substitutions and the distribution of hairpins, abundant in these genomes. We show that most of the changes in Lubomirskiidae mitochondrial genomes are due to insertion/deletion/duplication of these elements rather than single nucleotide substitutions. Thus inverted repeats can act as an important force in evolution of mitochondrial genome architecture and be a valuable marker for population- and species-level studies in this group. In addition, we infer (((Rezinkovia+Lubomirskia)+Swartschewskia)+Baikalospongia) phylogeny for the family Lubomirskiidae based on the analysis of mitochondrial coding sequences from freshwater sponges.
Collapse
|
15
|
Al-Reedy RM, Malireddy R, Dillman CB, Kennell JC. Comparative analysis of Fusarium mitochondrial genomes reveals a highly variable region that encodes an exceptionally large open reading frame. Fungal Genet Biol 2012; 49:2-14. [DOI: 10.1016/j.fgb.2011.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/25/2023]
|
16
|
Deletion of a novel F-box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence. Genetics 2010; 185:1257-69. [PMID: 20516500 DOI: 10.1534/genetics.110.117200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While mitochondria are renowned for their role in energy production, they also perform several other integral functions within the cell. Thus, it is not surprising that mitochondrial dysfunction can negatively impact cell viability. Although mitochondria have received an increasing amount of attention in recent years, there is still relatively little information about how proper maintenance of mitochondria and its genomes is achieved. The Neurospora crassa mus-10 mutant was first identified through its increased sensitivity to methyl methanesulfonate (MMS) and was thus believed to be defective in some aspect of DNA repair. Here, we report that mus-10 harbors fragmented mitochondria and that it accumulates deletions in its mitochondrial DNA (mtDNA), suggesting that the mus-10 gene product is involved in mitochondrial maintenance. Interestingly, mus-10 begins to senesce shortly after deletions are visualized in its mtDNA. To uncover the function of MUS-10, we used a gene rescue approach to clone the mus-10 gene and discovered that it encodes a novel F-box protein. We show that MUS-10 interacts with a core component of the Skp, Cullin, F-box containing (SCF) complex, SCON-3, and that its F-box domain is essential for its function in vivo. Thus, we provide evidence that MUS-10 is part of an E3 ubiquitin ligase complex involved in maintaining the integrity of mitochondria and may function to prevent cellular senescence.
Collapse
|
17
|
Erpenbeck D, Voigt O, Wörheide G, Lavrov DV. The mitochondrial genomes of sponges provide evidence for multiple invasions by Repetitive Hairpin-forming Elements (RHE). BMC Genomics 2009; 10:591. [PMID: 20003196 PMCID: PMC2800124 DOI: 10.1186/1471-2164-10-591] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 12/09/2009] [Indexed: 01/14/2023] Open
Abstract
Background The mitochondrial (mt) genomes of sponges possess a variety of features, which appear to be intermediate between those of Eumetazoa and non-metazoan opisthokonts. Among these features is the presence of long intergenic regions, which are common in other eukaryotes, but generally absent in Eumetazoa. Here we analyse poriferan mitochondrial intergenic regions, paying particular attention to repetitive sequences within them. In this context we introduce the mitochondrial genome of Ircinia strobilina (Lamarck, 1816; Demospongiae: Dictyoceratida) and compare it with mtDNA of other sponges. Results Mt genomes of dictyoceratid sponges are identical in gene order and content but display major differences in size and organization of intergenic regions. An even higher degree of diversity in the structure of intergenic regions was found among different orders of demosponges. One interesting observation made from such comparisons was of what appears to be recurrent invasions of sponge mitochondrial genomes by repetitive hairpin-forming elements, which cause large genome size differences even among closely related taxa. These repetitive hairpin-forming elements are structurally and compositionally divergent and display a scattered distribution throughout various groups of demosponges. Conclusion Large intergenic regions of poriferan mt genomes are targets for insertions of repetitive hairpin- forming elements, similar to the ones found in non-metazoan opisthokonts. Such elements were likely present in some lineages early in animal mitochondrial genome evolution but were subsequently lost during the reduction of intergenic regions, which occurred in the Eumetazoa lineage after the split of Porifera. Porifera acquired their elements in several independent events. Patterns of their intra-genomic dispersal can be seen in the mt genome of Vaceletia sp.
Collapse
Affiliation(s)
- Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology and GeoBioCenter LMU, Ludwig-Maximilians Universität München, Richard-Wagner-Str, 10, 80333 München, Germany.
| | | | | | | |
Collapse
|
18
|
Bouchier C, Ma L, Créno S, Dujon B, Fairhead C. Complete mitochondrial genome sequences of three Nakaseomyces species reveal invasion by palindromic GC clusters and considerable size expansion. FEMS Yeast Res 2009; 9:1283-92. [PMID: 19758332 DOI: 10.1111/j.1567-1364.2009.00551.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Here we report the sequence of three mitochondrial genomes from yeasts of the Nakaseomyces clade that includes the pathogenic yeast Candida glabrata, namely, that of Kluyveromyces delphensis, Candida castellii and Kluyveromyces bacillisporus. The gene content is equivalent to that of C. glabrata, but reveals the existence of new group I introns in COX1 and CYTB and new potential intronic endonucleases. Gene order is highly rearranged in these genomes, which contain numerous palindromic GC clusters. The more GC nucleotides these elements contain, the longer and more AT-rich are the intergenes containing them, leading to a direct relationship between the number of Gs and Cs within the elements and the size of the genomes. Thus, there is a fivefold difference in size between the smallest and the largest mitochondrial genome, with the largest being the most AT-rich overall. Sequences are available under EMBL accession numbers FM995164, FM995165, and FM995166.
Collapse
|
19
|
Maas MFPM, Hoekstra RF, Debets AJM. A mitochondrial mutator plasmid that causes senescence under dietary restricted conditions. BMC Genet 2007; 8:9. [PMID: 17407571 PMCID: PMC1864894 DOI: 10.1186/1471-2156-8-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 04/02/2007] [Indexed: 11/25/2022] Open
Abstract
Background Calorie or dietary restriction extends life span in a wide range of organisms including the filamentous fungus Podospora anserina. Under dietary restricted conditions, P. anserina isolates are several-fold longer lived. This is however not the case in isolates that carry one of the pAL2-1 homologous mitochondrial plasmids. Results We show that the pAL2-1 homologues act as 'insertional mutators' of the mitochondrial genome, which may explain their negative effect on life span extension. Sequencing revealed at least fourteen unique plasmid integration sites, of which twelve were located within the mitochondrial genome and two within copies of the plasmid itself. The plasmids were able to integrate in their entirety, via a non-homologous mode of recombination. Some of the integrated plasmid copies were truncated, which probably resulted from secondary, post-integrative, recombination processes. Integration sites were predominantly located within and surrounding the region containing the mitochondrial rDNA loci. Conclusion We propose a model for the mechanism of integration, based on innate modes of mtDNA recombination, and discuss its possible link with the plasmid's negative effect on dietary restriction mediated life span extension.
Collapse
Affiliation(s)
- Marc FPM Maas
- Centre de Génétique Moléculaire, Centre Nationale de la Recherche Scientifique, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
- Laboratorium voor Erfelijkheidsleer, Wageningen Universiteit, Arboretumlaan 4, Wageningen, The Netherlands
| | - Rolf F Hoekstra
- Laboratorium voor Erfelijkheidsleer, Wageningen Universiteit, Arboretumlaan 4, Wageningen, The Netherlands
| | - Alfons JM Debets
- Laboratorium voor Erfelijkheidsleer, Wageningen Universiteit, Arboretumlaan 4, Wageningen, The Netherlands
| |
Collapse
|
20
|
Hausner G, Nummy KA, Stoltzner S, Hubert SK, Bertrand H. Biogenesis and replication of small plasmid-like derivatives of the mitochondrial DNA in Neurospora crassa. Fungal Genet Biol 2006; 43:75-89. [PMID: 16386436 DOI: 10.1016/j.fgb.2005.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/04/2005] [Accepted: 10/28/2005] [Indexed: 11/20/2022]
Abstract
For reasons that are not obvious, sets of related, small, plasmid-like elements appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These plasmid-like DNAs are multimeric series of circular molecules, each consisting of a finite number of identical tandem repeats of a relatively short mtDNA-derived nucleotide sequence (monomer). The plasmid-like elements that have been characterized in this study consist of monomers that vary in length from 125 to 296 base pairs, depending on the strain of origin. Each monomer includes a GC-rich palindrome that is followed by the promoter and a short section of the 5' terminal region of the mitochondrial large-subunit rRNA gene (rnl). Analyses of the nucleotide sequences of variants of this group of elements indicates that they are not generated by intra-molecular recombination, but are the result of single- or double-strand DNA breaks that are produced by a mismatch or base excision repair process. These elements do not appear to contain a defined origin of replication, but replicate by a recombination-dependent rolling-circle mechanism. One- and two-dimensional gel electrophoresis of the plasmid-like element derived Hind III and Pst I fragments combined with S1 nuclease treatments suggest that the intergenic GC-rich palindromes, which are ubiquitous in the mtDNA Neurospora, could be replication fork pausing points.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, Michigan State University, East-Lansing, MI 48824-1101, USA.
| | | | | | | | | |
Collapse
|
21
|
Hausner G, Nummy KA, Bertrand H. Asexual transmission, non-suppressiveness and meiotic extinction of small plasmid-like derivatives of the mitochondrial DNA in Neurospora crassa. Fungal Genet Biol 2005; 43:90-101. [PMID: 16386438 DOI: 10.1016/j.fgb.2005.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/04/2005] [Accepted: 10/28/2005] [Indexed: 11/22/2022]
Abstract
For reasons that are not obvious, sets of related plasmid-like elements that consist of short segments of DNA that overlap the 5' terminal region of the mitochondrial large-subunit rRNA gene sometimes appear spontaneously and become amplified in the mitochondria of some cytochrome-deficient and/or UV-sensitive mutants of Neurospora crassa. These elements are transmitted efficiently through hyphal anastomoses and appear to invade the mitochondria of recipient strains, but they do not cause senescence and at best cause only slight deficiencies in cytochromes a and b even though they are transcribed copiously. Hence, the small elements are not suppressive and, unlike large deletion derivatives of the mitochondrial chromosome, do not displace normal mtDNA molecules in vegetatively propagated mycelia. Unlike the mitochondrial chromosome, large plasmid-like mtDNA derivatives and true mitochondrial plasmids, the small plasmid-like mtDNA derivatives are rarely transmitted sexually even though they persist without selection in very high copy numbers in vegetative cells. The high copy numbers and high stability of these elements in vegetatively propagated cultures suggests that their monomers contain all the features required for their replication and transmission in the hyphae and conidia of Neurospora. However, the mt-rnl-derived molecules appear to lack a sequence or attribute required for the maintenance or transmission of mitochondrial genetic elements at some stage of the sexual reproductive cycle, including ascospore maturation and germination.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, Michigan State University, East-Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
22
|
Cahan P, Kennell JC. Identification and distribution of sequences having similarity to mitochondrial plasmids in mitochondrial genomes of filamentous fungi. Mol Genet Genomics 2005; 273:462-73. [PMID: 15891911 DOI: 10.1007/s00438-005-1133-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/18/2005] [Indexed: 11/30/2022]
Abstract
Mitochondrial plasmids are autonomously replicating genetic elements commonly associated with fungal and plant species. Analysis of several plant and fungal mitochondrial genomes has revealed regions that show significant homology to mitochondrial plasmids, suggesting that plasmids have had a long-term association with their mitochondrial hosts. To assess the degree to which plasmids have invaded fungal mitochondrial genomes, BLAST search parameters were modified to identify plasmid sequences within highly AT-rich mtDNAs, and output data were parsed by E value, score, and sequence complexity. High scoring hits were evaluated for the presence of shared repetitive elements and location within plasmids and mtDNAs. Our searches revealed multiple sites of sequence similarity to four distinct plasmids in the wild-type mtDNA of Neurospora crassa, which collectively comprise more than 2% of the mitochondrial genome. Regions of plasmid similarity were not restricted to plasmids known to be associated with senescence, indicating that all mt plasmids can potentially integrate into mitochondrial DNA. Unexpectedly, plasmid-related sequences were found to be clustered in regions that have disproportionately low numbers of PstI palindromic sequences, suggesting that these repetitive elements may play a role in eliminating foreign DNA. A separate class of GC-rich palindromes was identified that appear to be mobile, as indicated by their occurrence within regions of plasmid homology. Sites of sequence similarity to mitochondrial plasmids were also detected in other filamentous fungi, but to a lesser degree. The tools developed here will be useful in assessing the contribution plasmids have made to mitochondrial function and in understanding the co-evolution of mitochondrial plasmids and their hosts.
Collapse
Affiliation(s)
- Patrick Cahan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | | |
Collapse
|
23
|
D'Souza AD, Sultana S, Maheshwari R. Characterization and prevalence of a circular mitochondrial plasmid in senescence-prone isolates of Neurospora intermedia. Curr Genet 2005; 47:182-93. [PMID: 15700140 DOI: 10.1007/s00294-004-0558-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/08/2004] [Accepted: 12/11/2004] [Indexed: 11/29/2022]
Abstract
Genetic and molecular analyses of the phenomenon of senescence-i.e., irreversible loss of growth and reproductive potential upon subculturing-in Neurospora intermedia strain M1991-60A, collected from Maddur in southern India, showed the presence of plasmid pMaddur1, which is homologous to the senescence-inducing circular mitochondrial plasmid, pVarkud. Maternal inheritance of senescence in M1991-60A correlated to the formation of variant pMaddur1, its subsequent insertion into mitochondrial (mt)DNA and the accumulation of defective mtDNA with the pMaddur1insert. PCR-based analyses for similar plasmids in 147 natural isolates of Neurospora from Maddur showed that nearly 40% of the strains had pMaddur1 or pMaddur2 that shared 97-98% sequence homology with pVarkud and pMauriceville. Nearly 50% of the strains that harbored either pMaddur1 or pMaddur2, also contained a circular Varkud satellite plasmid (pVS). Size polymorphism maps to the cluster of PstI sites in the non-coding region. Whereas senescence of nearly 40% of N. intermedia strains may be due to pMaddur, the presence in seven strains of pVS but not pMaddur and the absence of either of these two plasmids in other senescence-prone isolates suggests yet undiscovered mechanisms of senescence in the Maddur strains.
Collapse
Affiliation(s)
- Anthony D D'Souza
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
24
|
D'Souza AD, Bertrand H, Maheshwari R. Intramolecular recombination and deletions in mitochondrial DNA of senescent, a nuclear-gene mutant of Neurospora crassa exhibiting “death” phenotype. Fungal Genet Biol 2005; 42:178-90. [PMID: 15670715 DOI: 10.1016/j.fgb.2004.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 12/01/2022]
Abstract
In Neurospora crassa, a nuclear-gene mutant, senescent, derived from a phenotypically normal wild isolate of Neurospora intermedia exhibits a 'death' phenotype. Regardless of the composition of the culture medium, the mycelium ceases to grow in 2-6 subcultures at 26 degrees C and 1 or 2 subcultures at 34 degrees C. Senescence of vegetative mycelium is associated with deficiencies in cytochromes aa3 and b and reduced oxygen uptake. The restriction fragment analysis of mitochondrial DNA from senescing mycelia showed deletions and gross sequence rearrangements. Analysis of mitochondrial DNA of (sen + sen+) heterokaryons constructed with "excess" sen cytoplasm suggested correlation between mtDNA deletions and senescence. Three novel sen-specific EcoRI fragments of sizes 3.6, 3.9, and 4.4 kb were cloned, sequenced, and analyzed. Nucleotide sequences of the sen-specific EcoRI fragments suggested that deletions were a consequence of intramolecular recombination between EcoRI-5 and -10 and/or between EcoRI-8 and -10. The recombination junctions were close to stretches of GC-rich-PstI palindromic sequences that potentially form stable hairpin structures and might facilitate recombination between homologous repeats as short as 6-10 bp. These observations suggest that the wild-type (sen+) allele encodes a factor that protects the mitochondrial genome from undergoing intramolecular recombination and deletions. In this respect sen+ (linkage group V) has a function similar to nd+ (linkage group I) and the two gene products probably have mutually exclusive roles in suppressing cruciform-associated and homologous recombination, respectively, thus safeguarding mitochondrial genome integrity. The sen+ allele most likely codes for a factor involved in recombination, repair or replication of the mitochondrial genome, or a transcription factor that regulates the expression of genes affiliated with mitochondrial DNA metabolism.
Collapse
MESH Headings
- Base Sequence
- Cell Nucleus/genetics
- Crossing Over, Genetic
- DNA, Cruciform/genetics
- DNA, Cruciform/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Genes, Fungal
- Genes, Lethal/genetics
- Molecular Sequence Data
- Mycelium/genetics
- Mycelium/metabolism
- Neurospora crassa/genetics
- Phenotype
- Recombination, Genetic
- Restriction Mapping
- Sequence Deletion
Collapse
Affiliation(s)
- Anthony D D'Souza
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
25
|
|
26
|
Forget L, Ustinova J, Wang Z, Huss VAR, Lang BF. Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 2002; 19:310-9. [PMID: 11861890 DOI: 10.1093/oxfordjournals.molbev.a004084] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have sequenced the mitochondrial DNA (mtDNA) of Hyaloraphidium curvatum, an organism previously classified as a colorless green alga but now recognized as a lower fungus based on molecular data. The 29.97-kbp mitochondrial chromosome is maintained as a monomeric, linear molecule with identical, inverted repeats (1.43 kbp) at both ends, a rare genome architecture in mitochondria. The genome encodes only 14 known mitochondrial proteins, 7 tRNAs, the large subunit rRNA and small subunit rRNA (SSU rRNA), and 3 ORFs. The SSU rRNA is encoded in two gene pieces that are located 8 kbp apart on the mtDNA. Scrambled and fragmented mitochondrial rRNAs are well known from green algae and alveolate protists but are unprecedented in fungi. Protein genes code for apocytochrome b; cytochrome oxidase 1, 2, and 3, NADH dehydrogenase 1, 2, 3, 4, 4L, 5, and 6, and ATP synthase 6, 8, and 9 subunits, and several of these genes are organized in operon-like clusters. The set of seven mitochondrially encoded tRNAs is insufficient to recognize all codons that occur in the mitochondrial protein genes. When taking into account the pronounced codon bias, at least 16 nuclear-encoded tRNAs are assumed to be imported into the mitochondria. Three of the seven predicted mitochondria-encoded tRNA sequences carry mispairings in the first three positions of the acceptor stem. This strongly suggests that these tRNAs are edited by a mechanism similar to the one seen in the fungus Spizellomyces punctatus and the rhizopod amoeba Acanthamoeba castellanii. Our phylogenetic analysis confirms with overwhelming support that H. curvatum is a member of the chytridiomycete fungi, specifically related to the Monoblepharidales.
Collapse
Affiliation(s)
- Lise Forget
- Program in Evolutionary Biology, Département de Biochimie, Canadian Institute for Advanced Research, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Paquin B, Laforest MJ, Lang BF. Double-hairpin elements in the mitochondrial DNA of allomyces: evidence for mobility. Mol Biol Evol 2000; 17:1760-8. [PMID: 11070063 DOI: 10.1093/oxfordjournals.molbev.a026274] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) of the chytridiomycete fungus Allomyces macrogynus contains 81 G+C-rich sequence elements that are 26-79 bases long and can be folded into a unique secondary structure consisting of two stem-loops. At the primary sequence level, the conservation of these double-hairpin elements (DHEs) is variable, ranging from marginal to complete identity. Forty of these DHEs are inserted in intergenic regions, 35 in introns, and 6 in variable regions of rRNA genes. Ten DHEs are inserted into other DHE elements (twins); two even form triplets. A comparison of DHE sequences shows that loop regions contain more sequence variation than helical regions and that the latter often contain compensatory base changes. This suggests a functional importance of the DHE secondary structure. We further identified nine DHEs in a 4-kb region of Allomyces arbusculus, a close relative of A. macrogynus. Eight of these DHEs are highly similar in sequence (90%-100%) to those in A. macrogynus, but only five are inserted at the same positions as in A. macrogynus. Interestingly, DHEs are also found in the mtDNAs of other chytridiomycetes, as well as certain zygomycete and ascomycete fungi. The overall distribution pattern of DHEs in fungal mtDNAs suggests that they are mobile elements.
Collapse
Affiliation(s)
- B Paquin
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
28
|
Bertrand H. Role of Mitochondrial DNA in the Senescence and Hypovirulence of Fungi and Potential for Plant Disease Control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:397-422. [PMID: 11701848 DOI: 10.1146/annurev.phyto.38.1.397] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The unique coenocytic anatomy of the mycelia of the filamentous fungi and the formation of anastomoses between hyphae from different mycelia enable the intracellular accumulation and infectious transmission of plasmids and mutant mitochondrial DNAs (mtDNAs) that cause senescence. For reasons that are not fully apparent, mitochondria that are rendered dysfunctional by so-called "suppressive" mtDNA mutations proliferate rapidly in growing cells and gradually displace organelles that contain wild-type mtDNA molecules and are functional. The consequence of this process is senescence and death if the suppressive mtDNA contains a lethal mutation. Suppressive mtDNA mutations and mitochondrial plasmids can elicit cytoplasmically transmissible "mitochondrial hypovirulence" syndromes in at least some of the phytopathogenic fungi. In the chestnut-blight fungus Cryphonectria parasitica, the pattern of asexual transmission of mutant mtDNAs and mitochondrial plasmids resembles the pattern of "infectious" transmission displayed by the attenuating virus that is most commonly used for the biological control of this fungus. At least some of the attenuating mitochondrial hypovirulence factors are inherited maternally in crosses, whereas the viruses are not transmitted sexually. The natural control of blight in an isolated stand of chestnut trees has resulted from the invasion of the local population of C. parasitica by a senescence-inducing mutant mtDNA. Moreover, a mitochondrial plasmid, pCRY1, attenuates at least some virulent strains of C. parasitica, suggesting that such factors could be applied to control plant diseases caused by fungi.
Collapse
Affiliation(s)
- Helmut Bertrand
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824; e-mail:
| |
Collapse
|
29
|
Abstract
The yeast genome exhibits a variety of trinucleotide repeat arrays within protein-coding genes and intergenic regions. In the first situation, repeats are often not random relative to the translational frame, resulting preferably in long stretches of the two acidic amino acids or of their corresponding amine forms. Interestingly, the longest trinucleotide repeats are often found in genes encoding nuclearly located proteins. Repeats tend to be more frequent in long genes, but less frequent among members of gene families compared to unique genes. In the latter case, repeat arrays often differ in length or composition between the gene homologs, indicating their instability.
Collapse
Affiliation(s)
- G F Richard
- Unité de Génétique moléculaire des Levures (UMR1300 CNRS and UFR927 Univ. P. M. Curie, Paris), Institut Pasteur
| | | |
Collapse
|
30
|
Koll F, Boulay J, Belcour L, d'Aubenton-Carafa Y. Contribution of ultra-short invasive elements to the evolution of the mitochondrial genome in the genus Podospora. Nucleic Acids Res 1996; 24:1734-41. [PMID: 8649993 PMCID: PMC145831 DOI: 10.1093/nar/24.9.1734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the filamentous fungus Podospora anserina, senescence is associated with major rearrangements of the mitochondrial DNA. The undecamer GGCGCAAGCTC has been described as a preferential site for these recombination events. We show that: (i) copies of this short sequence GGCGCAAGCTC are present in unexpectedly high numbers in the mitochondrial genome of this fungus; (ii) a short cluster of this sequence, localised in a group II intronic ORF, encodes amino acids that disrupt a protein domain that is otherwise highly conserved between various species; (iii) most of the polymorphisms observed between three related species, P.anserina, P.curvicolla and P.comata, are associated with the presence/absence of this sequence; (iv) this element lies at the boundaries of major rearrangements of the mitochondrial genomes; (v) at least two other short elements in the Podospora mitochondrial genomes display similar features. We suggest that these short elements, called MUSEs (mitochondrial ultra-short elements), could be mobile and that they contribute to evolution of the mitochondrial genome in the genus Podospora. A model for mobility involving a target DNA-primed reverse transcription step is discussed.
Collapse
Affiliation(s)
- F Koll
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | | |
Collapse
|
31
|
Nakazono M, Kanno A, Tsutsumi N, Hirai A. Palindromic repeated sequences (PRSs) in the mitochondrial genome of rice: evidence for their insertion after divergence of the genus Oryza from the other Gramineae. PLANT MOLECULAR BIOLOGY 1994; 24:273-281. [PMID: 7509206 DOI: 10.1007/bf00020167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have identified a family of small repeated sequences (from 60 to 66 bp in length) in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare). There are at least ten copies of these sequences and they are distributed throughout the mitochondrial genome. Each is potentially capable of forming a stem-and-loop structure and we have designated them PRSs (palindromic repeated sequences). Their features are reminiscent of the small dispersed repeats in the mitochondrial DNA (mtDNA) of some lower eukaryotes, such as Saccharomyces cerevisiae, Neurospora crassa and Chlamydomonas reinhardtii. Some of the PRSs of rice mtDNA are located in the intron of the gene for ribosomal protein S3 (rps3) and in the flanking sequence of the gene for chloroplast-like tRNA(Asn) (trnN). analysis of PCR-amplified fragments of these regions from the DNA of some Gramineae suggests that the PRSs were inserted into these regions of the Oryza mtDNA after the divergence of Oryza from the other Gramineae.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Hyperactive recombination in the mitochondrial DNA of the natural death nuclear mutant of Neurospora crassa. Mol Cell Biol 1993. [PMID: 8413272 DOI: 10.1128/mcb.13.11.6778] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Neurospora crassa, a recessive mutant allele of a nuclear gene, nd (natural death), causes rapid degeneration of the mitochondrial DNA, a process that is manifested phenotypically as an accelerated form of senescence in growing and stationary mycelia. To examine the mechanisms that are involved in the degradation of the mitochondrial chromosome, several mitochondrial DNA restriction fragments unique to the natural-death mutant were cloned and characterized through restriction, hybridization, and nucleotide sequence analyses. All of the cloned DNA pieces contained one to four rearrangements that were generated by unequal crossing-over between direct repeats of several different nucleotide sequences that occur in pairs and are dispersed throughout the mitochondrial chromosome of wild-type Neurospora strains. The most abundant repeats, a family of GC-rich sequences that includes the so-called PstI palindromes, were not involved in the generation of deletions in the nd mutant. The implication of these results is that the nd allele hyperactivates a general system for homologous recombination in the mitochondria of N. crassa. Therefore, the nd+ allele either codes for a component of the complex of proteins that catalyzes recombination, and possibly repair and replication, of the mitochondrial chromosome or specifies a regulatory factor that controls the synthesis or activity of at least one enzyme or ancillary factor that is affiliated with mitochondrial DNA metabolism.
Collapse
|
33
|
Bertrand H, Wu Q, Seidel-Rogol BL. Hyperactive recombination in the mitochondrial DNA of the natural death nuclear mutant of Neurospora crassa. Mol Cell Biol 1993; 13:6778-88. [PMID: 8413272 PMCID: PMC364740 DOI: 10.1128/mcb.13.11.6778-6788.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Neurospora crassa, a recessive mutant allele of a nuclear gene, nd (natural death), causes rapid degeneration of the mitochondrial DNA, a process that is manifested phenotypically as an accelerated form of senescence in growing and stationary mycelia. To examine the mechanisms that are involved in the degradation of the mitochondrial chromosome, several mitochondrial DNA restriction fragments unique to the natural-death mutant were cloned and characterized through restriction, hybridization, and nucleotide sequence analyses. All of the cloned DNA pieces contained one to four rearrangements that were generated by unequal crossing-over between direct repeats of several different nucleotide sequences that occur in pairs and are dispersed throughout the mitochondrial chromosome of wild-type Neurospora strains. The most abundant repeats, a family of GC-rich sequences that includes the so-called PstI palindromes, were not involved in the generation of deletions in the nd mutant. The implication of these results is that the nd allele hyperactivates a general system for homologous recombination in the mitochondria of N. crassa. Therefore, the nd+ allele either codes for a component of the complex of proteins that catalyzes recombination, and possibly repair and replication, of the mitochondrial chromosome or specifies a regulatory factor that controls the synthesis or activity of at least one enzyme or ancillary factor that is affiliated with mitochondrial DNA metabolism.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cell Nucleus/metabolism
- Chromosomes, Fungal
- Cloning, Molecular
- Crossing Over, Genetic
- DNA Primers
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/metabolism
- Genes, Fungal
- Genes, Recessive
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Neurospora crassa/genetics
- Neurospora crassa/metabolism
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
Collapse
Affiliation(s)
- H Bertrand
- Department of Microbiology, Michigan State University, East Lansing 48824-1101
| | | | | |
Collapse
|
34
|
Li Q, Nargang FE. Two Neurospora mitochondrial plasmids encode DNA polymerases containing motifs characteristic of family B DNA polymerases but lack the sequence Asp-Thr-Asp. Proc Natl Acad Sci U S A 1993; 90:4299-303. [PMID: 8483947 PMCID: PMC46494 DOI: 10.1073/pnas.90.9.4299] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have determined the DNA sequence of the mitochondrial plasmid from Neurospora intermedia strain Fiji N6-6. The plasmid contains a 1278-codon open reading frame that is 49% identical to the open reading frame of the mitochondrial plasmid from the LaBelle strain of N. intermedia, which is known to encode a DNA-dependent DNA polymerase. The results of polymerase assays and photolabeling studies, the high degree of identity with the LaBelle plasmid polymerase, and the observation that the Fiji polymerase activity in a reaction utilizing endogenous template is not affected by removal of RNA suggest that the Fiji plasmid also encodes a DNA-dependent DNA polymerase. Comparison of regions of amino acids that are highly conserved in the two plasmid polymerases to family B polymerases reveals good correlates for the three major polymerase motifs and suggests that previously identified motifs characteristic of reverse transcriptase found in the LaBelle sequence are not significant. The polymerases encoded by the Fiji and LaBelle plasmids are unusual in that the amino acid sequence Asp-Thr-Asp, which forms the core of the third motif in family B polymerases, is not present in either Fiji or LaBelle. A version of the motif containing Thr-Thr-Asp exists in both sequences.
Collapse
Affiliation(s)
- Q Li
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
35
|
Oeser B, Rogmann-Backwinkel P, Tudzynski P. Interaction between mitochondrial DNA and mitochondrial plasmids in Claviceps purpurea: analysis of plasmid-homologous sequences upstream of the lrRNA-gene. Curr Genet 1993; 23:315-22. [PMID: 8467529 DOI: 10.1007/bf00310892] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Homology of two linear, mitochondrial (mt) Claviceps purpurea plasmids, pClK1 and pClT5, to the upstream region of the large ribosomal RNA gene in the mtDNA of three strains (W3, T5 and K) has been investigated in detail to explore the widespread phenomenon of homology between mt plasmids and mtDNA in C. purpurea. Sequence comparison indicates that recombination between free plasmids and mtDNA is the cause of the observed homology. The process is similar to the integration of the structurally related adenoviruses into the mammalian genome. As in other fungi, palindromic sequences seem to be involved in this mitochondrial recombination process.
Collapse
Affiliation(s)
- B Oeser
- Lehrstuhl für Allgemeine Botanik/Mikrobiologie, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | |
Collapse
|
36
|
Clark-Walker GD. Evolution of mitochondrial genomes in fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 141:89-127. [PMID: 1452434 DOI: 10.1016/s0074-7696(08)62064-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G D Clark-Walker
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra City
| |
Collapse
|
37
|
Almasan A, Mishra NC. Recombination by sequence repeats with formation of suppressive or residual mitochondrial DNA in Neurospora. Proc Natl Acad Sci U S A 1991; 88:7684-8. [PMID: 1881910 PMCID: PMC52366 DOI: 10.1073/pnas.88.17.7684] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recombination junctions of several Neurospora mitochondrial DNA (mtDNA) mutants and their revertants were identified. Their nucleotide sequences and putative secondary structures were determined in order to understand the nature of the elements involved in intramolecular recombination. Multiple deletions, involving the same portion of Neurospora mtDNA, were identified in six independently isolated mutants. A 9-nucleotide repeat element, CCCCNCCCC, was found to be involved in these and other Neurospora mitochondrial recombination events. The repeat elements were clustered as hot spots on the Neurospora mtDNA and were associated with palindromic DNA sequences. The palindromes have a potential to generate hairpin structures. A much lower free energy of the putative hairpins at the 5' end of the recombination site, and the possible formation of non-B-DNA structure by polypyrimidine tracks, may be important in the initiation of recombination. Using PCR, we found low levels of a specific mitochondrial deletion in certain Neurospora mutants. Their presence in low amounts in a population with a much larger number of normal mtDNA is unexpected. Contrary to earlier belief, this finding supports the view that deleted, smaller DNA molecules are not always suppressive relative to normal mtDNAs.
Collapse
Affiliation(s)
- A Almasan
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | |
Collapse
|
38
|
Boer PH, Gray MW. Short dispersed repeats localized in spacer regions of Chlamydomonas reinhardtii mitochondrial DNA. Curr Genet 1991; 19:309-12. [PMID: 1831072 DOI: 10.1007/bf00355060] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the mtDNA of Chlamydomonas reinhardtii, a unicellular green alga, we have identified a set of short repeated sequences up to 65 nucleotides long, each of which contains the palindromic consensus motif CTCGG(N4-14)CCGAG. Most of these repeated elements are localized in spacer regions that flank the transcribed coding regions of C. reinhardtii mtDNA. These algal mitochondrial repeats have features reminiscent of short repeats in some fungal mtDNAs, such as GC clusters in Saccharomyces cerevisiae and PstI palindromes in Neurospora crassa. The location of these elements suggests that they could play a role in gene expression, e.g., post-transcriptional processing, in C. reinhardtii mitochondria.
Collapse
Affiliation(s)
- P H Boer
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Genetics and Molecular Biology of Neurospora crassa. ADVANCES IN GENETICS 1991. [DOI: 10.1016/s0065-2660(08)60106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
40
|
Akins RA, Lambowitz AM. Analysis of large deletions in the Mauriceville and Varkud mitochondrial plasmids of Neurospora. Curr Genet 1990; 18:365-9. [PMID: 2253274 DOI: 10.1007/bf00318218] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Mauriceville and Varkud mitochondrial plasmids are closely related, closed-circular DNAs (3.6 and 3.7 kb, respectively) that have characteristics of mtDNA introns and retroid elements. Both plasmids contain a 710 amino acid open reading frame (ORF) that encodes an 81 kDa protein having reverse transcriptase activity. Here, we analyzed two mutant plasmids, V5-36 and M3-24, that have undergone relatively large deletions (approximately 0.35 and 0.5 kb, respectively). Both deletions occur downstream of the long ORF in a non-coding region of the plasmids that contains a direct repeat of 160 bp and a cluster of five PstI-palindromes, a repetitive sequence element in Neurospora mtDNA. In V5-36, the deletion end points are at the bases of two hairpin structures that are centered around PstI-palindromes and flank the deleted region. In M3-24, the deletion junction contains an extra T-residue that is not encoded in the plasmid. In both plasmids, the deletion end points do not correspond to homologous or directly repeated sequences of more than one nucleotide, whose pairing could account for the deletion junction. The characteristics of the deletion end points can be accounted for either by illegitimate recombination, possibly following double strand breaks at cruciform structures, or by interruption of reverse transcription followed by reinitiation downstream. The finding that the deletions encompass the 160 bp direct repeat and all five PstI-palindromes indicates that neither are required for propagation of the plasmids and supports the hypothesis that PstI-palindromes are selfish DNA elements that inserted into a nonessential region of the plasmid.
Collapse
Affiliation(s)
- R A Akins
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
41
|
Almasan A, Mishra NC. Characterization of a novel plasmid-like element in Neurospora crassa derived mostly from the mitochondrial DNA. Nucleic Acids Res 1990; 18:5871-7. [PMID: 2145549 PMCID: PMC332327 DOI: 10.1093/nar/18.19.5871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have identified a plasmid-like element within mitochondria of Neurospora crassa strain stp-B1. It is derived from the EcoRI-4 and EcoRI-6 regions of the mitochondrial DNA, and an additional 124 bp DNA segment of unknown origin. The plasmid DNA consists of an oligomeric series of circular molecules of monomer length 2.2 kbp. The abundance of the plasmid suggests its autonomous replication and the presence of an efficient origin of replication. An unusually large number of palindromes capable of forming secondary structures are present in the plasmid. Such a palindrome, located near sequences reminiscent of mammalian and fungal mtDNA origins of replication, may define the replication origin of the plasmid. This putative origin might also represent the replication origin of the wild-type mtDNA.
Collapse
Affiliation(s)
- A Almasan
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | |
Collapse
|
42
|
Cummings DJ, Michel F, Domenico JM, McNally KL. Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit II gene from Podospora anserina. A group IA intron with a putative alternative splice site. J Mol Biol 1990; 212:287-94. [PMID: 2157023 DOI: 10.1016/0022-2836(90)90125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
43
|
Kubelik AR, Kennell JC, Akins RA, Lambowitz AM. Identification of Neurospora mitochondrial promoters and analysis of synthesis of the mitochondrial small rRNA in wild-type and the promoter mutant [poky]. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39593-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Abstract
The natural-death mutant of Neurospora crassa has an accelerated senescence phenotype caused by a recessive mutation, nd, in a nuclear gene that is located in linkage group I. An examination of mitochondrial functions, however, revealed that the mutant has phenotypic and molecular defects similar to those commonly associated with maternally transmitted fungal senescence syndromes, including (i) deficiencies in cytochromes aa3 and b; (ii) a deficit in small subunits of mitochondrial ribosomes, and hence defective mitochondrial protein synthesis; and (iii) accumulation of gross rearrangements, including large deletions, in the mitochondrial chromosome of vegetatively propagated cells. These traits indicate that the nd+ allele codes for a function that is essential for stable maintenance of the mitochondrial chromosome, possibly a protein involved in replication, repair, or recombination.
Collapse
|
45
|
Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol 1989. [PMID: 2528684 DOI: 10.1128/mcb.9.9.3603] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed an in vitro transcription system for Neurospora crassa mitochondrial DNA (mtDNA) and used it to identify transcription initiation sites at the 5' ends of the genes encoding the mitochondrial small and large rRNA and cytochrome b (cob). The in vitro transcription start sites correspond to previously mapped 5' ends of major in vivo transcripts of these genes. Sequences around the three transcription initiation sites define a 15-nucleotide consensus sequence, 5'-TTAGARA(T/G)G(T/G)ARTRR-3', all or part of which appears to be an element of an N. crassa mtDNA promoter. A somewhat looser 11-nucleotide consensus sequence, 5'-TTAGARR(T/G)R(T/G)A-3', was derived by including two additional promoters identified recently. Group I extranuclear mutants, such as [poky] and [SG-3], have a 4-base-pair (bp) deletion in the consensus sequence at the 5' end of the mitochondrial small rRNA and are grossly deficient in mitochondrial small rRNA (R. A. Akins and A. M. Lambowitz, Proc. Natl. Acad. Sci. USA 81:3791-3795, 1984). We show here that the 4-bp deletion in the consensus sequence decreases in vitro transcription from this site by more than 99%. N. crassa mtDNA is similar to Saccharomyces cerevisiae mtDNA in having multiple promoters, including separate promoters for the genes encoding the mitochondrial small and large rRNAs. Our results suggest that the primary effect of the 4-bp deletion in group I extranuclear mutants is to inhibit transcription of the mitochondrial small rRNA, leading to severe deficiency of mitochondrial small rRNA and small ribosomal subunits.
Collapse
|
46
|
Seidel-Rogol BL, King J, Bertrand H. Unstable mitochondrial DNA in natural-death nuclear mutants of Neurospora crassa. Mol Cell Biol 1989; 9:4259-64. [PMID: 2531276 PMCID: PMC362505 DOI: 10.1128/mcb.9.10.4259-4264.1989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The natural-death mutant of Neurospora crassa has an accelerated senescence phenotype caused by a recessive mutation, nd, in a nuclear gene that is located in linkage group I. An examination of mitochondrial functions, however, revealed that the mutant has phenotypic and molecular defects similar to those commonly associated with maternally transmitted fungal senescence syndromes, including (i) deficiencies in cytochromes aa3 and b; (ii) a deficit in small subunits of mitochondrial ribosomes, and hence defective mitochondrial protein synthesis; and (iii) accumulation of gross rearrangements, including large deletions, in the mitochondrial chromosome of vegetatively propagated cells. These traits indicate that the nd+ allele codes for a function that is essential for stable maintenance of the mitochondrial chromosome, possibly a protein involved in replication, repair, or recombination.
Collapse
Affiliation(s)
- B L Seidel-Rogol
- Department of Biological Sciences, State University of New York, Plattsburgh 12901
| | | | | |
Collapse
|
47
|
Kennell JC, Lambowitz AM. Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol 1989; 9:3603-13. [PMID: 2528684 PMCID: PMC362420 DOI: 10.1128/mcb.9.9.3603-3613.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have developed an in vitro transcription system for Neurospora crassa mitochondrial DNA (mtDNA) and used it to identify transcription initiation sites at the 5' ends of the genes encoding the mitochondrial small and large rRNA and cytochrome b (cob). The in vitro transcription start sites correspond to previously mapped 5' ends of major in vivo transcripts of these genes. Sequences around the three transcription initiation sites define a 15-nucleotide consensus sequence, 5'-TTAGARA(T/G)G(T/G)ARTRR-3', all or part of which appears to be an element of an N. crassa mtDNA promoter. A somewhat looser 11-nucleotide consensus sequence, 5'-TTAGARR(T/G)R(T/G)A-3', was derived by including two additional promoters identified recently. Group I extranuclear mutants, such as [poky] and [SG-3], have a 4-base-pair (bp) deletion in the consensus sequence at the 5' end of the mitochondrial small rRNA and are grossly deficient in mitochondrial small rRNA (R. A. Akins and A. M. Lambowitz, Proc. Natl. Acad. Sci. USA 81:3791-3795, 1984). We show here that the 4-bp deletion in the consensus sequence decreases in vitro transcription from this site by more than 99%. N. crassa mtDNA is similar to Saccharomyces cerevisiae mtDNA in having multiple promoters, including separate promoters for the genes encoding the mitochondrial small and large rRNAs. Our results suggest that the primary effect of the 4-bp deletion in group I extranuclear mutants is to inhibit transcription of the mitochondrial small rRNA, leading to severe deficiency of mitochondrial small rRNA and small ribosomal subunits.
Collapse
Affiliation(s)
- J C Kennell
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | |
Collapse
|
48
|
Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 1989. [PMID: 2469004 DOI: 10.1128/mcb.9.2.678] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mauriceville and Varkud mitochondrial plasmids of Neurospora spp. are closely related, closed-circular DNAs (3.6 and 3.7 kilobases, respectively) whose nucleotide sequences and genetic organization suggest relationships to mitochondrial introns and retroelements. We have characterized nine suppressive mutants of these plasmids that outcompete mitochondrial DNA and lead to impaired growth. All nine suppressive plasmids contain small insertions, corresponding to or including a mitochondrial tRNA (tRNATrp, tRNAGly, or tRNAVal) or a tRNA-like sequence. The insertions are located at the position corresponding to the 5' end of the major plasmid transcript or 24 nucleotides downstream near a cognate of the sequence at the major 5' RNA end. The structure of the suppressive plasmids suggests that the tRNAs were inserted via an RNA intermediate. The 3' end of the wild-type plasmid transcript can itself be folded into a secondary structure which has tRNA-like characteristics, similar to the tRNA-like structures at the 3' ends of plant viral RNAs. This structure may play a role in replication of the plasmids by reverse transcription. Major transcripts of the suppressive plasmids begin at the 5' end of the inserted mitochondrial tRNA sequence and are present in 25- to 100-fold-higher concentrations than are transcripts of wild-type plasmids. Mapping of 5' RNA ends within the inserted mtDNA sequences identifies a short consensus sequence (PuNPuAG) which is present at the 5' ends of a subset of mitochondrial tRNA genes. This sequence, together with sequences immediately upstream in the plasmids, forms a longer consensus sequence, which is similar to sequences at transcription initiation sites in Neurospora mitochondrial DNA. The suppressive behavior of the plasmids is likely to be directly related to the insertion of tRNAs leading to overproduction of plasmid transcripts.
Collapse
|
49
|
Cummings DJ, Domenico JM, Nelson J, Sogin ML. DNA sequence, structure, and phylogenetic relationship of the small subunit rRNA coding region of mitochondrial DNA from Podospora anserina. J Mol Evol 1989; 28:232-41. [PMID: 2494352 DOI: 10.1007/bf02102481] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA sequence analysis and the localization of the 5' and 3' termini by S1 mapping have shown that the mitochondrial (mt) small subunit rRNA coding region from Podospora anserina is 1980 bp in length. The analogous coding region for mt rRNA is 1962 bp in maize, 1686 bp in Saccharomyces cerevisiae, and 956 bp in mammals, whereas its counterpart in Escherichia coli is 1542 bp. The P. anserina mt 16S-like rRNA is 400 bases longer than that from E. coli, but can be folded into a similar secondary structure. The additional bases appear to be clustered at specific locations, including extensions at the 5' and 3' termini. Comparison with secondary structure diagrams of 16S-like RNAs from several organisms allowed us to specify highly conserved and variable regions of this gene. Phylogenetic tree construction indicated that this gene is grouped with other mitochondrial genes, but most closely, as expected, with the fungal mitochondrial genes.
Collapse
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| | | | | | | |
Collapse
|
50
|
Akins RA, Kelley RL, Lambowitz AM. Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 1989; 9:678-91. [PMID: 2469004 PMCID: PMC362645 DOI: 10.1128/mcb.9.2.678-691.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Mauriceville and Varkud mitochondrial plasmids of Neurospora spp. are closely related, closed-circular DNAs (3.6 and 3.7 kilobases, respectively) whose nucleotide sequences and genetic organization suggest relationships to mitochondrial introns and retroelements. We have characterized nine suppressive mutants of these plasmids that outcompete mitochondrial DNA and lead to impaired growth. All nine suppressive plasmids contain small insertions, corresponding to or including a mitochondrial tRNA (tRNATrp, tRNAGly, or tRNAVal) or a tRNA-like sequence. The insertions are located at the position corresponding to the 5' end of the major plasmid transcript or 24 nucleotides downstream near a cognate of the sequence at the major 5' RNA end. The structure of the suppressive plasmids suggests that the tRNAs were inserted via an RNA intermediate. The 3' end of the wild-type plasmid transcript can itself be folded into a secondary structure which has tRNA-like characteristics, similar to the tRNA-like structures at the 3' ends of plant viral RNAs. This structure may play a role in replication of the plasmids by reverse transcription. Major transcripts of the suppressive plasmids begin at the 5' end of the inserted mitochondrial tRNA sequence and are present in 25- to 100-fold-higher concentrations than are transcripts of wild-type plasmids. Mapping of 5' RNA ends within the inserted mtDNA sequences identifies a short consensus sequence (PuNPuAG) which is present at the 5' ends of a subset of mitochondrial tRNA genes. This sequence, together with sequences immediately upstream in the plasmids, forms a longer consensus sequence, which is similar to sequences at transcription initiation sites in Neurospora mitochondrial DNA. The suppressive behavior of the plasmids is likely to be directly related to the insertion of tRNAs leading to overproduction of plasmid transcripts.
Collapse
Affiliation(s)
- R A Akins
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|