1
|
Kawasaki T, Nishimura T, Tani N, Ramos C, Karaulanov E, Shinya M, Saito K, Taylor E, Ketting RF, Ishiguro KI, Tanaka M, Siegfried KR, Sakai N. Meioc-Piwil1 complexes regulate rRNA transcription for differentiation of spermatogonial stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.623901. [PMID: 39605693 PMCID: PMC11601514 DOI: 10.1101/2024.11.17.623901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish meioc mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli. Nucleolar Piwil1 interacted with 45S pre-rRNA. piwil1 +/- spermatogonia with reduced Piwil1 upregulated rRNAs, and piwil1 +/- ;meioc -/- spermatogonia recovered differentiation later than those in meioc -/- . Further, Piwil1 interacted with Setdb1 and HP1α, and meioc -/- spermatogonia exhibited high levels of H3K9me3 and methylated CpG in the 45S-rDNA region. These results indicate that zebrafish SSCs maintain low levels of rRNA transcription with repressive marks similar to Drosophila piRNA targets of RNA polymerase II, and that Meioc has a unique function on preventing localization of Piwil1 in nucleoli to upregulate rRNA transcripts and to promote SSC differentiation.
Collapse
Affiliation(s)
- Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Carina Ramos
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Minori Shinya
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kenji Saito
- Department of Gene Function and Phenomics, National Institute of Genetics
| | - Emily Taylor
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Kei-ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | | | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
2
|
Villanueva-Hayes C, Millership SJ. Imprinted Genes Impact Upon Beta Cell Function in the Current (and Potentially Next) Generation. Front Endocrinol (Lausanne) 2021; 12:660532. [PMID: 33986727 PMCID: PMC8112240 DOI: 10.3389/fendo.2021.660532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed 'imprinted' genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the context of the next generation, where dietary overnutrition in the parents can lead to their deregulation in the offspring, alongside beta cell dysfunction and defective glucose handling. Both the modulation of imprinted gene expression and the likelihood of developing type 2 diabetes in adulthood are susceptible to the impact of nutritional status in early life. Imprinted loci, therefore, represent an excellent opportunity with which to assess epigenomic changes in beta cells due to the diet in both the current and next generation.
Collapse
|
3
|
Luo Y, Fefelova E, Ninova M, Chen YCA, Aravin AA. Repression of interrupted and intact rDNA by the SUMO pathway in Drosophila melanogaster. eLife 2020; 9:e52416. [PMID: 33164748 PMCID: PMC7676866 DOI: 10.7554/elife.52416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Ribosomal RNAs (rRNAs) are essential components of the ribosome and are among the most abundant macromolecules in the cell. To ensure high rRNA level, eukaryotic genomes contain dozens to hundreds of rDNA genes, however, only a fraction of the rRNA genes seems to be active, while others are transcriptionally silent. We found that individual rDNA genes have high level of cell-to-cell heterogeneity in their expression in Drosophila melanogaster. Insertion of heterologous sequences into rDNA leads to repression associated with reduced expression in individual cells and decreased number of cells expressing rDNA with insertions. We found that SUMO (Small Ubiquitin-like Modifier) and SUMO ligase Ubc9 are required for efficient repression of interrupted rDNA units and variable expression of intact rDNA. Disruption of the SUMO pathway abolishes discrimination of interrupted and intact rDNAs and removes cell-to-cell heterogeneity leading to uniformly high expression of individual rDNA in single cells. Our results suggest that the SUMO pathway is responsible for both repression of interrupted units and control of intact rDNA expression.
Collapse
Affiliation(s)
- Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elena Fefelova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yung-Chia Ariel Chen
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
4
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
5
|
Lee TH. Physical Chemistry of Epigenetics: Single-Molecule Investigations. J Phys Chem B 2019; 123:8351-8362. [PMID: 31404497 PMCID: PMC6790939 DOI: 10.1021/acs.jpcb.9b06214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The nucleosome is the fundamental building block of the eukaryotic genome, composed of an ∼147 base-pair DNA fragment wrapping around an octameric histone protein core. DNA and histone proteins are targets of enzymatic chemical modifications that serve as signals for gene regulation. These modifications are often referred to as epigenetic modifications that govern gene activities without altering the DNA sequence. Although the term epigenetics initially required inheritability, it now frequently includes noninherited histone modifications associated with gene regulation. Important epigenetic modifications for healthy cell growth and proliferation include DNA methylation, histone acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation (SUMO = Small Ubiquitin-like Modifier). Our research focuses on the biophysical roles of these modifications in altering the structure and structural dynamics of the nucleosome and their implications in gene regulation mechanisms. As the changes are subtle and complex, we employ various single-molecule fluorescence approaches for their investigations. Our investigations revealed that these modifications induce changes in the structure and structural dynamics of the nucleosome and their thermodynamic and kinetic stabilities. We also suggested the implications of these changes in gene regulation mechanisms that are the foci of our current and future research.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Chemistry, The
Pennsylvania State University, University Park 16803, Pennsylvania, United States
| |
Collapse
|
6
|
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun 2019; 10:3053. [PMID: 31311924 PMCID: PMC6635516 DOI: 10.1038/s41467-019-10894-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined ‘preformed’ germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species. Germline cells transfer genetic information to offspring, and in zebrafish, drive sex determination. Here the authors report that, unlike mammals, the germline of zebrafish does not undergo genome-wide DNA methylation erasure, while amplifying and demethylating sex-linked rDNA during feminisation.
Collapse
Affiliation(s)
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
7
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation. PLoS One 2016; 11:e0163340. [PMID: 27695092 PMCID: PMC5047480 DOI: 10.1371/journal.pone.0163340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer.
Collapse
|
9
|
Sheinkopf SJ, Righi G, Marsit CJ, Lester BM. Methylation of the Glucocorticoid Receptor (NR3C1) in Placenta Is Associated with Infant Cry Acoustics. Front Behav Neurosci 2016; 10:100. [PMID: 27313516 PMCID: PMC4889592 DOI: 10.3389/fnbeh.2016.00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
Epigenetic mechanisms regulating expression of the glucocorticoid receptor gene (NR3C1) promoter may influence behavioral and biological aspects of stress response in human infants. Acoustic features of infant crying are an indicator of neurobehavioral and neurological status not yet investigated in relation to epigenetic mechanisms. We examined NR3C1 methylation in placental tissue from a series of 120 healthy newborn infants in relation to a detailed set of acoustic features extracted from newborn infant cries. We identified significant associations of NR3C1 methylation with energy variation in infants' cries as well as with the presence of very high fundamental frequency in cry utterances. The presence of high fundamental frequency in cry (above 1 kHz) has been linked to poor vocal tract control, poor regulation of stress response, and may be an indicator or poor neurobehavioral integrity. Thus, these results add to evidence linking epigenetic alteration of the NR3C1 gene in the placenta to neurodevelopmental features in infants.
Collapse
Affiliation(s)
- Stephen J Sheinkopf
- The Brown Center for the Study of Children at Risk, Women and Infants HospitalProvidence, RI, USA; Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
| | - Giulia Righi
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University Providence, RI, USA
| | - Carmen J Marsit
- Section of Biostatistics and Epidemiology, Department of Pharmacology and Toxicology and of Community and Family Medicine, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | - Barry M Lester
- The Brown Center for the Study of Children at Risk, Women and Infants HospitalProvidence, RI, USA; Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
| |
Collapse
|
10
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
11
|
Epigenetic control of the genome-lessons from genomic imprinting. Genes (Basel) 2014; 5:635-55. [PMID: 25257202 PMCID: PMC4198922 DOI: 10.3390/genes5030635] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms modulate genome function by writing, reading and erasing chromatin structural features. These have an impact on gene expression, contributing to the establishment, maintenance and dynamic changes in cellular properties in normal and abnormal situations. Great effort has recently been undertaken to catalogue the genome-wide patterns of epigenetic marks—creating reference epigenomes—which will deepen our understanding of their contributions to genome regulation and function with the promise of revealing further insights into disease etiology. The foundation for these global studies is the smaller scale experimentally-derived observations and questions that have arisen through the study of epigenetic mechanisms in model systems. One such system is genomic imprinting, a process causing the mono-allelic expression of genes in a parental-origin specific manner controlled by a hierarchy of epigenetic events that have taught us much about the dynamic interplay between key regulators of epigenetic control. Here, we summarize some of the most noteworthy lessons that studies on imprinting have revealed about epigenetic control on a wider scale. Specifically, we will consider what these studies have revealed about: the variety of relationships between DNA methylation and transcriptional control; the regulation of important protein-DNA interactions by DNA methylation; the interplay between DNA methylation and histone modifications; and the regulation and functions of long non-coding RNAs.
Collapse
|
12
|
Couldrey C, Cave V. Assessing DNA methylation levels in animals: choosing the right tool for the job. Anim Genet 2014; 45 Suppl 1:15-24. [PMID: 24990588 DOI: 10.1111/age.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 12/16/2022]
Abstract
Selection of agricultural animals for improved performance based on genetics has seen significant progress made over the past few decades. Further improvements are likely by combining genetic selection with epigenetic selection or manipulation. However, before this can be undertaken, an understanding of epigenetic mechanisms is required, and this can be obtained only by precise and accurate analysis of epigenetic patterns. Even when one only considers a single epigenetic modification such as DNA methylation, the last 10 years have seen a wide array of technologies developed. For scientists whose primary training is in a field other than epigenetics, the choices can be confusing, and it can be challenging to determine which technology is best for the task at hand. There are many factors to take into consideration before beginning analysis of DNA methylation in animals. It is crucial that the most appropriate tools are selected to ensure that the best possible results are achieved. This review provides an overview of the most common methods of analysing DNA methylation in animals, when they are appropriate, what resolution of information they can provide and what their limitations are.
Collapse
Affiliation(s)
- Christine Couldrey
- Animal Productivity, AgResearch Ruakura Research Centre, 10 Bisley Road, Hamilton, 3214, New Zealand
| | | |
Collapse
|
13
|
Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J. Chromatin states at ribosomal DNA loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:405-17. [PMID: 23291532 DOI: 10.1016/j.bbagrm.2012.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Stephan Hamperl
- Lehrstuhl Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 2011; 32:1161-80. [PMID: 21482442 DOI: 10.1016/j.neurobiolaging.2010.08.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/20/2010] [Accepted: 08/07/2010] [Indexed: 12/20/2022]
Abstract
Epigenetic modifications help orchestrate sweeping developmental, aging, and disease-causing changes in phenotype by altering transcriptional activity in multiple genes spanning multiple biologic pathways. Although previous epigenetic research has focused primarily on dividing cells, particularly in cancer, recent studies have shown rapid, dynamic, and persistent epigenetic modifications in neurons that have significant neuroendocrine, neurophysiologic, and neurodegenerative consequences. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and Alzheimer's disease (AD). Because of their reach across the genome, epigenetic mechanisms may provide a unique integrative framework for the pathologic diversity and complexity of AD.
Collapse
|
15
|
D’Ávila MF, Garcia RN, Panzera Y, Valente VLDS. Sex-specific methylation in Drosophila: an investigation of the Sophophora subgenus. Genetica 2010; 138:907-13. [DOI: 10.1007/s10709-010-9473-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 07/05/2010] [Indexed: 11/29/2022]
|
16
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
17
|
Galetzka D, Tralau T, Stein R, Haaf T. Expression ofDNMT3A transcripts and nucleolar localization of DNMT3A protein in human testicular and fibroblast cells suggest a role for de novo DNA methylation in nucleolar inactivation. J Cell Biochem 2006; 98:885-94. [PMID: 16453278 DOI: 10.1002/jcb.20798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcriptional silencing during differentiation of human male germ cells and serum starvation of human fibroblasts is controlled by epigenetic mechanisms that involve de novo DNA methylation. It is associated with high expression of different transcripts of the DNA methyltransferase 3A (DNMT3A) gene that encode two isoforms with de novo methyltransferase activity and one without catalytic activity. Western blots revealed that DNMT3A protein (with catalytic domain) is present at low levels in several tissues and at increased levels in testicular cells and growth-arrested fibroblasts. Immunofluorescence experiments localized DNMT3A to discrete nucleolar foci in B spermatogonia and resting fibroblasts. The data here suggest a role for de novo DNA methylation in nucleolar inactivation.
Collapse
Affiliation(s)
- Danuta Galetzka
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
The genes that encode ribosomal RNA exist in two distinct types of chromatin--an 'open' conformation that is permissive to transcription and a 'closed' conformation that is transcriptionally refractive. Recent studies have provided insights into the molecular mechanisms that silence either entire nucleolus organizer regions (NORs) in genetic hybrids or individual rRNA genes within a NOR. An emerging theme from these studies is that epigenetic mechanisms operating at the level of DNA methylation and histone modifications alter the chromatin structure and control the ratio of active and inactive rRNA genes.
Collapse
Affiliation(s)
- Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
19
|
Stancheva I, El-Maarri O, Walter J, Niveleau A, Meehan RR. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev Biol 2002; 243:155-65. [PMID: 11846484 DOI: 10.1006/dbio.2001.0560] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The levels of genomic DNA methylation in vertebrate species display a wide range of developmental dynamics. Here, we show that in contrast to mice, the paternal genome of the amphibian, Xenopus laevis, is not subjected to active demethylation of 5-methyl cytosine immediately after fertilization. High levels of methylation in the DNA of both oocyte and sperm are maintained in the early embryo but progressively decline during the cleavage stages. As a result, the Xenopus genome has its lowest methylation content at the midblastula transition (MBT) and during subsequent gastrulation. Between blastula and gastrula stages, we detect a loss of methylation at individual Xenopus gene promoters (TFIIIA, Xbra, and c-Myc II) that are activated at MBT. No changes are observed in the methylation patterns of repeated sequences, genes that are inactive at MBT, or in the coding regions of individual genes. In embryos that are depleted of the maintenance methyltransferase enzyme (xDnmt1), these developmentally programmed changes in promoter methylation are disrupted, which may account for the altered patterns of gene expression that occur in these embryos. Our results suggest that DNA methylation has a role in regulating the timing of gene activation at MBT in Xenopus laevis embryos.
Collapse
Affiliation(s)
- Irina Stancheva
- Department of Biomedical Sciences, Genes and Development Group, The University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Santoro R, Grummt I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol Cell 2001; 8:719-25. [PMID: 11583633 DOI: 10.1016/s1097-2765(01)00317-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic control mechanisms silence about half of ribosomal RNA genes (rDNA) in metabolically active cells. In the mouse, 40% of rDNA repeats are methylated and can be activated by 5-azacytidine treatment. In exploring the effect of methylation on rDNA transcription, we found that methylation of a single CpG dinucleotide within the upstream control element of the rDNA promoter (at -133) abrogates rDNA transcription both in transfection experiments and in in vitro assays using chromatin templates. Chromatin immunoprecipitation assays demonstrate that methylation of the cytosine at -133 inhibits binding of the transcription factor UBF to nucleosomal rDNA, thereby preventing initiation complex formation. Thus, methylation may be a mechanism to inactivate rDNA genes and propagate transcriptional silencing through cell division.
Collapse
Affiliation(s)
- R Santoro
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
21
|
Radomski N, Kaufmann C, Dreyer C. Nuclear accumulation of S-adenosylhomocysteine hydrolase in transcriptionally active cells during development of Xenopus laevis. Mol Biol Cell 1999; 10:4283-98. [PMID: 10588658 PMCID: PMC25758 DOI: 10.1091/mbc.10.12.4283] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1999] [Accepted: 09/08/1999] [Indexed: 11/11/2022] Open
Abstract
The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)(+) RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH.
Collapse
Affiliation(s)
- N Radomski
- Max-Planck-Institut für Entwicklungsbiologie, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
22
|
Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison JS. 5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine. J Cell Sci 1999; 112 ( Pt 23):4397-404. [PMID: 10564657 DOI: 10.1242/jcs.112.23.4397] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triticale (2n=6x=42) is a hybrid plant including rye (R) and wheat (A and B) genomes. Using genomic in situ hybridization with rye DNA as a probe, we found the chromosomes of the R genome were not intermixed with the wheat chromosomes in 85% of nuclei. After treatment of seedlings with low doses of the drug 5-azacytidine (5-AC), leading to hypomethylation of the DNA, the chromosomes became intermixed in 60% of nuclei; the next generation showed intermediate organization. These results correlate with previous data showing that expression of R-genome rRNA genes, normally suppressed, is activated by 5-AC treatment and remains partially activated in the next generation. The distribution of 5-methylcytosine (5-mC) was studied using an antibody to 5-mC. Methylation was detected along the lengths of all chromosomes; there were some chromosome regions with enhanced and reduced methylation, but these were not located at consistent positions, nor were there differences between R and wheat genome chromosomes. After 5-AC treatment, lower levels of methylation were detected. After 5-AC treatment, in situ hybridization with rye genomic DNA sometimes showed micronuclei of rye origin and multiple translocations between wheat and rye chromosomes. Genomic DNA was analysed using methylation-sensitive restriction enzymes and, as probes, two rDNA sequences, two tandemly organised DNA sequences from rye (pSc200 and pSc250), and copia and the gypsy group retrotransposon fragments from rye and wheat. DNA extracted immediately after 5-AC treatment was cut more by methylation-sensitive restriction enzymes than DNA from untreated seedlings. Each probe gave a characteristic restriction fragment pattern, but rye- and wheat-origin probes behaved similarly, indicating that hypomethylation was induced in both genomes. In DNA samples from leaves taken 13–41 days after treatment, RFLP (Restriction Fragment Length Polymorphism) patterns were indistinguishable from controls and 5-AC treatments with all probes. Surprising differences in hybridization patterns were seen between DNA from root tips and leaves with the copia-fragment probes.
Collapse
Affiliation(s)
- A Castilho
- Karyobiology Group, Dep. of Cell Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
23
|
Kass SU, Wolffe AP. DNA methylation, nucleosomes and the inheritance of chromatin structure and function. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:22-35; discussion 36-50. [PMID: 9601010 DOI: 10.1002/9780470515501.ch3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replication of the genome during S phase is a crucial period for the establishment and maintenance of programmes of differential gene activity. Existing chromosomal structures are disrupted during replication and reassembled on both daughter chromatids. The capacity to reassemble a particular chromatin structure with defined functional properties reflects the commitment of a cell type to a particular state of determination. The core and linker histones and their modifications, enzymes that modify the histones, DNA methylation and proteins that recognize methylated DNA within chromatin may all play independent or interrelated roles in defining the functional properties of chromatin. Pre-existing protein-DNA interactions and DNA methylation in a parental chromosome will influence the structure and function of daughter chromosomes generating an epigenetic imprint. In this chapter we consider the events occurring at the eukaryotic replication fork, their consequences for pre-existing chromosomal structures and how an epigenetic imprint might be maintained.
Collapse
Affiliation(s)
- S U Kass
- Department of Experimental Molecular Biology
| | | |
Collapse
|
24
|
Matsuo K, Silke J, Georgiev O, Marti P, Giovannini N, Rungger D. An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA. EMBO J 1998; 17:1446-53. [PMID: 9482741 PMCID: PMC1170492 DOI: 10.1093/emboj/17.5.1446] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, transcriptionally active promoters are undermethylated. Since the transcription factor Sp1, and more recently NF-kappaB, have been implicated in the demethylation process, we examined the effect of transcription factors on demethylation by injecting in vitro methylated plasmid DNA into Xenopus fertilized eggs. We found that various transactivation domains, including a strong acidic activation domain from the viral protein VP16, can enhance demethylation of a promoter region when fused to a DNA binding domain which recognizes the promoter. Furthermore, demethylation occurs only after the midblastula transition, when the general transcription machinery of the host embryo becomes available. Nevertheless, transcription factor binding need not be followed by actual transcription, since demethylation is not blocked by alpha-amanitin treatment. Finally, replication of the target DNA is a prerequisite for efficient demethylation since only plasmids that carry the bovine papilloma virus sequences which support plasmid replication after the midblastula transition are demethylated. No demethylation is detectable in the oocyte system where DNA is not replicated. These results suggest that, in the Xenopus embryo, promoters for which transcription factors are available are demethylated by a replication-dependent, possibly passive mechanism.
Collapse
Affiliation(s)
- K Matsuo
- Institut für Molekularbiologie II der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich
| | | | | | | | | | | |
Collapse
|
25
|
Stancheva I, Lucchini R, Koller T, Sogo JM. Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking. Nucleic Acids Res 1997; 25:1727-35. [PMID: 9108154 PMCID: PMC146648 DOI: 10.1093/nar/25.9.1727] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity.
Collapse
Affiliation(s)
- I Stancheva
- Institute of Cell Biology, ETH-Honggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
Labhart P. Negative and positive effects of CpG-methylation on Xenopus ribosomal gene transcription in vitro. FEBS Lett 1994; 356:302-6. [PMID: 7805860 DOI: 10.1016/0014-5793(94)01291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methylation of cytosine-residues in the sequence CpG affects the expression of many genes and generally correlates with reduced transcription. The ribosomal genes of Xenopus laevis were among the first genes to be studied with respect to their DNA methylation, and a loss of methylation during embryonic development correlated with the onset of transcription. Nevertheless, highly methylated ribosomal genes were transcribed at normal levels when injected into oocyte nuclei, and thus transcription of these genes was generally assumed to be insensitive to CpG-methylation. Here I show that Xenopus ribosomal gene transcription can be repressed by cellular factors binding to meCpG, similarly as it has been described for transcription by RNA polymerase II. In the absence of these repressors, however, CpG-methylation has a direct positive effect on RNA polymerase I-promoter activity.
Collapse
Affiliation(s)
- P Labhart
- Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA 92037
| |
Collapse
|
27
|
Smith SS. Biological implications of the mechanism of action of human DNA (cytosine-5)methyltransferase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 49:65-111. [PMID: 7863011 DOI: 10.1016/s0079-6603(08)60048-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S S Smith
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California 91010
| |
Collapse
|
28
|
Jupe ER, Zimmer EA. DNaseI-sensitive and undermethylated rDNA is preferentially expressed in a maize hybrid. PLANT MOLECULAR BIOLOGY 1993; 21:805-821. [PMID: 8096771 DOI: 10.1007/bf00027113] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An Eco RI polymorphism, present in the 26S ribosomal RNA gene (rDNA) of the maize hybrid Sx19 (B73 x Mo17), was utilized to correlate DNaseI sensitivity, undermethylation and expression in rDNA. We have previously shown that in double digest experiments with methylation-sensitive restriction enzymes and Eco RI, Sx19 rDNA fragments originating from repeat units with two Eco RI sites (8.0 kb) are undermethylated, whereas the fragments originating from repeat units with a single Eco RI site (9.1 kb) are completely methylated. In the present study, Sx19 rDNA chromatin structure was examined by purifying intact nuclei and digesting them briefly with increasing amounts of DNaseI. Analysis of this DNA with Eco RI showed that the 8.0 kb rDNA fragments are extremely sensitive to DNaseI digestion, while the 9.1 kb rDNA fragments are relatively resistant to digestion even at high levels of DNaseI. Specific sites hypersensitive to DNaseI cleavage were mapped to a region in the intergenic spacer (IGS) near the major undermethylated site. Analysis of polymerase chain reaction (PCR) products synthesized using Sx19, B73, and Mo17 DNAs as templates indicated that the Eco RI polymorphism is due to a base change in the recognition site. Direct rRNA sequencing identified a single-base change in Mo17 rRNA relative to B73 rRNA. Allele-specific oligonucleotide probes containing the region surrounding and including the Eco RI polymorphic site were utilized to detect a nucleolar dominance effect by quantitating levels of rRNA transcripts in Sx19 and the reciprocal cross. Results from these single-base-pair mismatch hybridization experiments indicate that the majority of the rRNA transcripts in Sx19 originate from the DNaseI-sensitive, undermethylated, Eco RI-polymorphic rDNA repeat units.
Collapse
Affiliation(s)
- E R Jupe
- Department of Biochemistry, Louisiana State University, Baton Rouge
| | | |
Collapse
|
29
|
|
30
|
Molecular Analysis of the Nucleolus Organizer Region in Maize. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-88259-2.50031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Ruiz IR, Brison O. Methylation of ribosomal cistrons in diploid and tetraploid Odontophrynus americanus (Amphibia, Anura). Chromosoma 1989; 98:86-92. [PMID: 2776516 DOI: 10.1007/bf00291042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Odontophyrynus americanus (Amphibia, Anura) genomic DNA from diploid and tetraploid specimens was treated with restriction enzymes sensitive to cytosine and adenine methylation (5 meC and 6 meA). In both diploids and tetraploids a high proportion of the total DNA was not cleaved by 5 meC-sensitive enzymes as observed on agarose gels stained with ethidium bromide. The DNAs were transferred to nitrocellulose filters and hybridized with cloned fragments containing sequences of Xenopus laevis 28S and 18S ribosomal DNA (rDNA). A high level of methylation of the ribosomal repeat units was revealed by 5 meC-sensitive enzymes in blood, liver, kidney and testis tissues. Adenine was methylated to a lesser degree and similarly in the rDNA from both germinative and somatic tissues. Comparison of the results obtained with DNA of diploids and tetraploids showed that methylation of ribosomal genes was increased in tetraploid genomes of adult frogs, but exact quantitative determinations could not be performed by this methodology. Cloning of the 28S region of the rDNA repeat unit was performed in the lambda gtWES lambda C vector. Restriction patterns obtained with methylation-sensitive enzymes using diploid and tetraploid derived clones confirmed the high level of methylation of the corresponding region of the ribosomal repeat unit in genomic DNAs. The implications of these results in the regulation of expression of the ribosomal genes in diploids and tetraploids are discussed.
Collapse
Affiliation(s)
- I R Ruiz
- Genética, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
32
|
Developmental regulation of the methylation of the ribosomal DNA in the basidiomycete fungusSchizophyllum commune. Curr Genet 1988. [DOI: 10.1007/bf00569333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Hancock RL. Theoretical mechanisms for synthesis of carcinogen-induced embryonic proteins: XVIII. Biomethylation and differentiation. Med Hypotheses 1987; 24:95-102. [PMID: 3312973 DOI: 10.1016/0306-9877(87)90051-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many reports have appeared describing a direct relationship between hypomethylated states of genes and gene activity. Even after the introduction of viral genomes, these new genes appear to be controlled by specific DNA methylations. A variety of other studies have shown chromatin structural changes being implicated in the activities of certain gene loci. Modifications of chromatin domains may also be initiated or under the control of methylation reactions. Embryonic genes may be controlled by particular methylations by virtue of a differential (hyper-) sensitivity to concentrations of active methyl groups, on a variety of chromatin domains thereby explaining the variation in S-adenosyl-L-methionine synthesis required in developing liver tissue. Also our finding of the ability to manipulate experimentally the activity of the alpha-fetoprotein gene by methyl group availability indicates some methyl-sensitive mechanism is operating with respect to embryonic genes.
Collapse
Affiliation(s)
- R L Hancock
- Efamol Research Institute, Kentville, Nova Scotia, Canada
| |
Collapse
|
34
|
Blundy KS, Cullis CA, Hepburn AG. Ribosomal DNA methylation in a flax genotroph and a crown gall tumour. PLANT MOLECULAR BIOLOGY 1987; 8:217-225. [PMID: 24301126 DOI: 10.1007/bf00015030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/1986] [Revised: 10/08/1986] [Accepted: 10/27/1986] [Indexed: 06/02/2023]
Abstract
The methylation patterns of two flax lines are described. One, a genotroph S1, has 800 rNA genes per haploid cell while FT37/1, a crown gall tumour incited on S1, has only 300. Using the enzymes EcoRII, BstNI and ApyI to assess CXG methylation and HpaII and MspI for CG, we show that the methylation patterns of the rDNAs of both lines are identical. Both lines contain 3 fractions; the first contains repeats that are methylated at all sites examined and the second has some unmethylated sites. The third fraction contains repeats that are fully methylated but contain a discrete hypomethylated site at the 5' end of the pre-rRNA. The number of repeats which show these hypomethylated sites is constant in both lines despite the copy number difference. These may represent the active rRNA gene repeats.
Collapse
Affiliation(s)
- K S Blundy
- John Innes Institute, Colney Lane, NR4 7UH, Norwich, United Kingdom
| | | | | |
Collapse
|
35
|
Watson JC, Kaufman LS, Thompson WF. Developmental regulation of cytosine methylation in the nuclear ribosomal RNA genes of Pisum sativum. J Mol Biol 1987; 193:15-26. [PMID: 3035192 DOI: 10.1016/0022-2836(87)90622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prominent features of the cytosine methylation pattern of the Pisum sativum nuclear ribosomal RNA genes have been defined. Cytosine methylation within the C-C-G-G sequence was studied using the restriction enzymes HpaII and MspI and gel blot hybridizations of the restriction digests. The extent to which particular features of the methylation pattern change during seedling development has also been determined. Total cellular DNA, purified from defined sections of pea seedlings grown under different lighting conditions, was analyzed with DNA hybridization probes derived from different portions of a cloned member of the nuclear rRNA gene family. By use of an indirect end-labeling technique, a map of 23 cleavable HpaII and/or MspI sites in genomic rDNA was constructed. The map covers about 90% of the rDNA repeat including the entire non-transcribed spacer region and most of the rRNA coding sequences. One notable feature of the map is that the most prominent HpaII site, located about 800 base-pairs upstream from the 5' end of the mature 18 S rRNA, is cleaved only in one of the two most abundant rDNA length variants (the short variant). With a gel blot assay specific for cleavage at this site, we estimated the HpaII sensitivity of DNA preparations from several stages of pea seedling development. We find that, while methylation is generally low in young seedlings, DNA obtained from the apical buds of pea seedlings is highly methylated. Further, the methylation level of rDNA within the pea bud decreases as the buds are allowed to develop under continuous white light. Our data, taken together with published studies on pea seedling development, indicate that cytosine methylation levels may be related to the regulated expression of the nuclear rRNA genes in pea.
Collapse
|
36
|
|
37
|
Numerical changes of nucleolar organiser regions and nucleolar activity inLathyrus. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf01946419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Angelier N, Bonnanfant-Ja�s ML, Moreau N, Gounon P, Lavaud A. DNA methylation and RNA transcriptional activity in amphibian lampbrush chromosomes. Chromosoma 1986. [DOI: 10.1007/bf00288491] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Shiokawa K, Kawazoe Y, Nomura H, Miura T, Nakakura N, Horiuchi T, Yamana K. Ammonium ion as a possible regulator of the commencement of rRNA synthesis in Xenopus laevis embryogenesis. Dev Biol 1986; 115:380-91. [PMID: 3635478 DOI: 10.1016/0012-1606(86)90257-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, we have shown that ammonium salts and amines at an external concentration of 3 mM selectively inhibit rRNA synthesis in Xenopus disaggregated neurula cells. We studied here the change in the amount of ammonia within the embryo and its inhibitory action on the commencement of rRNA synthesis which normally occurs at the blastula stage of development. Ammonia exists at ca. 50 ng/egg (or ca. 3.0 mM at an intra-egg concentration) in the unfertilized egg. This level was maintained during cleavage and then sharply decreased during the blastula stage to the level of ca. 20 ng/embryo (or 1.2 mM) in postblastular stages. Ammonia was extracted from cleavage embryos in a form of ammonium chloride and confirmed to selectively inhibit rRNA synthesis in neurula cells. With authentic ammonium chloride, ammonia was found to be promptly incorporated into cells and to inhibit rRNA synthesis within 1 hr after treatment. In blastula cells, ammonium salts reversibly inhibited the commencement of the synthesis of rRNA, but not hnRNA, 5 S RNA and U1, U2, and U5 snRNAs. The inhibition was at the step of transcription of 40 S pre-rRNA but not the processing or degradation of the processed rRNA. Ammonium salts did not inhibit DNA synthesis, protein synthesis, cell division, and cellular reaggregation. These observations suggest that ammonium ion may be involved in the regulation of the commencement of rRNA synthesis in Xenopus embryogenesis, although it is not yet clear if the ammonium ion exerts its effect directly upon the rDNA transcription system.
Collapse
|
40
|
Bolden AH, Ward CA, Nalin CM, Weissbach A. The primary DNA sequence determines in vitro methylation by mammalian DNA methyltransferases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:231-50. [PMID: 3541043 DOI: 10.1016/s0079-6603(08)60025-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
von Kalm L, Vize PD, Smyth DR. An under-methylated region in the spacer of ribosomal RNA genes of Lilium henryi. PLANT MOLECULAR BIOLOGY 1986; 6:33-39. [PMID: 24307152 DOI: 10.1007/bf00021304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/1985] [Revised: 10/29/1985] [Accepted: 10/30/1985] [Indexed: 06/02/2023]
Abstract
Ribosomal RNA genes of Lilium henryi are almost completely methylated at CG and CNG sequences. A short under-methylated region was detected between 2.05 and 2.4 kbp upstream of the 18S sequences. It included the only sites of digestion by four methylation-sensitive restriction endonucleases - PstI, Hae II, Eco RII and Hpa II. Only about 15%-20% of rDNA repeats from shoot meristem are susceptible to each of the enzymes. The same repeats are apparently cut by all enzymes and occur in contiguous blocks. Because the region involved is likely to include regulatory sequences it may be that under-methylation occurs specifically in active rDNA repeats. To test this, rDNA was examined from pollen mother cells at pachytene where transcription has fallen to near zero. Under-methylation levels here were similar to those in shoot meristem tissue. Thus methylation of this region is not the agent responsible for rDNA gene inactivation in pachytene cells and it does not occur immediately genes become inactive. Even so, sequences in this region might be prevented from becoming methylated in transcribing repeats.
Collapse
Affiliation(s)
- L von Kalm
- Department of Genetics, Monash University, 3168, Clayton, Victoria, Australia
| | | | | |
Collapse
|
42
|
Popodi EM, Greve D, Phillips RB, Wejksnora PJ. The ribosomal RNA genes of three salmonid species. Biochem Genet 1985; 23:997-1010. [PMID: 4084210 DOI: 10.1007/bf00499943] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ribosomal RNA cistrons of three species of trout: Salvelinus namaycush (lake trout), Salvelinus fontinalis (brook trout), and Salmo gairdneri (rainbow trout) were examined by Southern blot analysis of genomic DNA. The repeat length of the cistron of S. namaycush is 26 kb. A repeat-length polymorphism was observed in some of the individual fish examined. These individuals showed 24-kb repeats. In some individuals both forms were present. The restriction maps of the transcribed regions of all three species were similar and showed a site homology with other vertebrate ribosomal RNA genes. Interspecific comparison showed restriction-site differences within the spacer regions examined. A restriction-site polymorphism within the 28 S gene was observed in S. fontinalis. The rDNA of S. namaycush liver showed a high degree of methylation as determined by digestion with the restriction endonucleases MspI and HpaII.
Collapse
|
43
|
Abstract
A well-differentiated rat hepatoma cell line, Fu5-5, yields variant clones whose rate of secretion of serum albumin ranges from 40 to less than 0.08 micrograms of albumin/mg of cell protein per 48 h. Clones were classified as high producers (10 to 40 micrograms/mg per 48 h), intermediate producers (1 to 10 micrograms/mg per 48 h), low producers (0.1 to 1.0 micrograms/mg per 48 h), and null variants (less than 0.1 micrograms/mg per 48 h). Albumin synthetic rates are proportional to secretion rates and range from 0.9 to less than 0.002% of total protein synthesis as measured by pulse-labeling. Steady-state albumin mRNA levels were measured by filter hybridization of fragmented, end-labeled mRNA and by Northern blotting. Message levels are proportional to albumin synthetic rates except for a high producer in which albumin mRNA is less elevated than the synthetic rate. The extent of methylation was quantitated at each of 24 CpG-containing sites or site clusters at the albumin locus. These sites span a region that contains the albumin gene as well as 10 kilobases of the 5' flank and 1 kilobase of the 3' flank. An 8-kilobase region is described, with boundaries in the 5' flank and in the middle of the gene, within which all 11 sites examined showed a correlation of undermethylation with the high-producer phenotype. In contrast, 12 of 13 sites outside of this region showed no phenotype correlation. Null variants derived from a high producer underwent de novo methylation of this domain. Six independent hybrid clones derived from the cross of a high producer with a null variant showed extinction of albumin production and hypermethylation of the domain. Apparently these cells retain the capacity for the de novo methylation of these specific sites.
Collapse
|
44
|
Abstract
A well-differentiated rat hepatoma cell line, Fu5-5, yields variant clones whose rate of secretion of serum albumin ranges from 40 to less than 0.08 micrograms of albumin/mg of cell protein per 48 h. Clones were classified as high producers (10 to 40 micrograms/mg per 48 h), intermediate producers (1 to 10 micrograms/mg per 48 h), low producers (0.1 to 1.0 micrograms/mg per 48 h), and null variants (less than 0.1 micrograms/mg per 48 h). Albumin synthetic rates are proportional to secretion rates and range from 0.9 to less than 0.002% of total protein synthesis as measured by pulse-labeling. Steady-state albumin mRNA levels were measured by filter hybridization of fragmented, end-labeled mRNA and by Northern blotting. Message levels are proportional to albumin synthetic rates except for a high producer in which albumin mRNA is less elevated than the synthetic rate. The extent of methylation was quantitated at each of 24 CpG-containing sites or site clusters at the albumin locus. These sites span a region that contains the albumin gene as well as 10 kilobases of the 5' flank and 1 kilobase of the 3' flank. An 8-kilobase region is described, with boundaries in the 5' flank and in the middle of the gene, within which all 11 sites examined showed a correlation of undermethylation with the high-producer phenotype. In contrast, 12 of 13 sites outside of this region showed no phenotype correlation. Null variants derived from a high producer underwent de novo methylation of this domain. Six independent hybrid clones derived from the cross of a high producer with a null variant showed extinction of albumin production and hypermethylation of the domain. Apparently these cells retain the capacity for the de novo methylation of these specific sites.
Collapse
|
45
|
Ferraro M, Lavia P. Differential gene activity visualized on sister chromatids after replication in the presence of 5-azacytidine. Chromosoma 1985; 91:307-12. [PMID: 2579777 DOI: 10.1007/bf00328226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitotic chromosomes with sister chromatids bearing differentially active ribosomal gene clusters were recovered from human lymphocytes exposed to 5-azacytidine. The hypothesis was that the differential activity was determined by the hypomethylation of one of the two sister chromatids. The verification was carried out by "labeling" the 5-azacytidine-substituted chromatid with BUdR, and then checking the location of active clusters by specific staining techniques. Data obtained confirmed that the chromatid bearing the active cluster was indeed the 5-azacytidine-substituted one.
Collapse
|
46
|
Razin A, Szyf M. DNA methylation patterns. Formation and function. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 782:331-42. [PMID: 6383476 DOI: 10.1016/0167-4781(84)90043-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Abstract
In several experimental systems the genomic capacity in specialized cells can be assessed by examining the activation of dormant genes. Since some of these specialized cells can be induced to change cell phenotype, all cell specializations do not necessarily involve irreversible genetic changes.
Collapse
|
48
|
Razin A, Webb C, Szyf M, Yisraeli J, Rosenthal A, Naveh-Many T, Sciaky-Gallili N, Cedar H. Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc Natl Acad Sci U S A 1984; 81:2275-9. [PMID: 6585800 PMCID: PMC345041 DOI: 10.1073/pnas.81.8.2275] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mouse teratocarcinoma cells induced to differentiate in vitro undergo a massive (30%) demethylation of DNA. A similar undermethylation is also observed in the mouse extraembryonic membranes, the yolk sac and placenta. In both cases, the decrease in methyl moieties occurs at a large number of CpG sites spread out over the entire genome, as indicated by a restriction enzyme analysis of several mouse genes including dhfr, beta-major globin, and the H-2K gene family. In contrast to this, the embryo itself appears to undergo methylation de novo during early stages of embryogenesis. Thus, as opposed to somatic cells, events during early mouse development are associated with wide variations in the level of DNA methylation. Although these changes in DNA methylation seem to be an integral part of the differentiation process, its relation to specific gene expression is still unclear.
Collapse
|
49
|
Ponzetto-Zimmerman C, Wolgemuth DJ. Methylation of satellite sequences in mouse spermatogenic and somatic DNAs. Nucleic Acids Res 1984; 12:2807-22. [PMID: 6324127 PMCID: PMC318707 DOI: 10.1093/nar/12.6.2807] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The distribution of 5-methyl cytosine (5-MeC) residues in a highly repetitive sequence, mouse major satellite, was examined in germinal versus somatic DNAs by digestion with the methylation sensitive isoschizomers Msp I and Hpa II and Southern blot analysis, using a cloned satellite probe. DNA from liver, brain, and a mouse fibroblast cell line, C3H 10T1/2, yielded a multimeric hybridization pattern after digestion with Msp I (and control Eco RI) but were resistant to digestion with Hpa II, reflecting a high level of methylation of the satellite sequences. In contrast, DNA from mature sperm was undermethylated at these same sequences as indicated by the ability of Hpa II to generate a multimeric pattern. DNAs from purified populations of testis cells in different stages of spermatogenesis were examined to determine when during germ cell differentiation the undermethylation was established. As early as in primitive type A, type A, and type B spermatogonia, an undermethylation of satellite sequences was observed. This suggest that this highly specific undermethylation of germ cell satellite DNA occurs very early in the germ cell lineage, prior to entry into meiosis.
Collapse
|
50
|
Andres AC, Muellener DB, Ryffel GU. Persistence, methylation and expression of vitellogenin gene derivatives after injection into fertilized eggs of Xenopus laevis. Nucleic Acids Res 1984; 12:2283-302. [PMID: 6324111 PMCID: PMC318662 DOI: 10.1093/nar/12.5.2283] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report the fate of different derivatives of the vitellogenin genes after injection into fertilized eggs of Xenopus. We injected a constructed minigene as well as a 5' fragment of the A2 vitellogenin gene. The minigene survives in embryogenesis much better than the 5' A2 fragment and is retained more frequently and at a higher level in frog tissues. The mosaic distribution of the foreign DNA in different frog tissues indicates that no integration occurred before the first cleavage stage. The persisting DNA may be partially integrated but is mostly found in an episome-like form. This unintegrated form is not supercoiled and is rearranged. Methylation of the Hpa II sites prior to injection has no influence on the survival of the injected sequences and the Hpa II sites of the surviving DNA are unmethylated irrespective whether the injected DNA was methylated or not. Whereas the derivatives are transcribed in embryos, they cannot be activated by estrogen in the liver of young frogs.
Collapse
|