1
|
Hall PM, Mayse LA, Bai L, Smolka MB, Pugh BF, Wang MD. High-Resolution Genome-Wide Maps Reveal Widespread Presence of Torsional Insulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.11.617876. [PMID: 39416127 PMCID: PMC11482950 DOI: 10.1101/2024.10.11.617876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Torsional stress in chromatin plays a fundamental role in cellular functions, influencing key processes such as transcription, replication, and chromatin organization. Transcription and other processes may generate and be regulated by torsional stress. In the genome, the interplay of these processes creates complicated patterns of both positive (+) and negative (-) torsion. However, a challenge in generating an accurate torsion map is determining the zero-torsion baseline signal, which is conflated with chromatin accessibility. Here, we introduce a high-resolution method based on the intercalator trimethylpsoralen (TMP) to address this challenge. We describe a method to establish the zero-torsion baseline while preserving the chromatin state of the genome of S. cerevisiae. This approach enables both high-resolution mapping of accessibility and torsional stress in chromatin in the cell. Our analysis shows transcription-generated torsional domains consistent with the twin-supercoiled-domain model of transcription and suggests a role for torsional stress in recruiting topoisomerases and in regulating 3D genome architecture via cohesin. Significantly, we reveal that insulator sequence-specific transcription factors decouple torsion between divergent promoters, whereas torsion spreads between divergent promoters lacking these factors, suggesting that torsion serves as a regulatory mechanism in these regions. Although insulators are known to decouple gene expression, our finding provides a physical explanation of how such decoupling may occur. This new method provides a potential path forward for using TMP to measure torsional stress in the genome without the confounding contribution of accessibility in chromatin.
Collapse
Affiliation(s)
- Porter M. Hall
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Lauren A. Mayse
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - B. Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Martínez-García B, Díaz-Ingelmo O, Ayats-Fraile A, Roca J. Electrophoretic Analysis of DNA Supercoiling Activities. Methods Mol Biol 2025; 2881:259-270. [PMID: 39704948 DOI: 10.1007/978-1-0716-4280-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
DNA supercoiling in biological systems can occur via three mechanisms. The first is by the activity of DNA topoisomerases, such as DNA gyrases, that can increase or reduce the linking number of relaxed DNA (Lk0). The second is via DNA translocation motors, such as RNA and DNA polymerases, that produce twin supercoiled DNA domains: one positively supercoiled in front and one negatively supercoiled behind. The third is via molecular interactions that constrain DNA supercoils and thereby produce compensatory unconstrained ones. This chapter describes the use of agarose-gel electrophoresis to detect and quantify the DNA supercoils generated by these mechanisms. Particular emphasis is made on the preparation of a relaxed DNA plasmid as initial substrate that marks the position of Lk0 for calculating ΔLk.
Collapse
Affiliation(s)
- Belén Martínez-García
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Ofelia Díaz-Ingelmo
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Ayats-Fraile
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Joaquim Roca
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
3
|
Sangeeta, Bhattacherjee A. Nick Induced Dynamics in Supercoiled DNA Facilitates the Protein Target Search Process. J Phys Chem B 2024; 128:8246-8258. [PMID: 39146491 DOI: 10.1021/acs.jpcb.4c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A DNA nick, defined as a discontinuity in a double-stranded DNA molecule where the phosphodiester bond between adjacent nucleotides of one strand is absent due to enzyme action, serves as an effective mechanism to alleviate stress in supercoiled DNA. This stress release is essential for the smooth operation of transcriptional machinery. However, the underlying mechanisms and their impact on protein search dynamics, which are crucial for initiating transcription, remain unclear. Through extensive computer simulations, we unravel the molecular picture, demonstrating that intramolecular stress release due to a DNA nick is driven by a combination of writhing and twisting motions, depending on the nick's position. This stress release is quantitatively manifested as a step-like increase in the linking number. Furthermore, we elucidate that the nicked supercoiled minicircles exhibit enhanced torsional dynamics, promoting rapid conformational changes and frequent shifts in the identities of juxtaposed DNA sites on the plectoneme. The dynamics of the juxtaposition sites facilitates communication between protein and DNA, resulting in faster protein diffusion compared with native DNA with the same topology. Our findings highlight the mechanistic intricacies and underscore the importance of DNA nicks in facilitating transcription elongation by actively managing torsional stress during DNA unwinding by the RNA polymerase.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Junier I, Ghobadpour E, Espeli O, Everaers R. DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling. Front Microbiol 2023; 14:1192831. [PMID: 37965550 PMCID: PMC10642903 DOI: 10.3389/fmicb.2023.1192831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
DNA supercoiling is central to many fundamental processes of living organisms. Its average level along the chromosome and over time reflects the dynamic equilibrium of opposite activities of topoisomerases, which are required to relax mechanical stresses that are inevitably produced during DNA replication and gene transcription. Supercoiling affects all scales of the spatio-temporal organization of bacterial DNA, from the base pair to the large scale chromosome conformation. Highlighted in vitro and in vivo in the 1960s and 1970s, respectively, the first physical models were proposed concomitantly in order to predict the deformation properties of the double helix. About fifteen years later, polymer physics models demonstrated on larger scales the plectonemic nature and the tree-like organization of supercoiled DNA. Since then, many works have tried to establish a better understanding of the multiple structuring and physiological properties of bacterial DNA in thermodynamic equilibrium and far from equilibrium. The purpose of this essay is to address upcoming challenges by thoroughly exploring the relevance, predictive capacity, and limitations of current physical models, with a specific focus on structural properties beyond the scale of the double helix. We discuss more particularly the problem of DNA conformations, the interplay between DNA supercoiling with gene transcription and DNA replication, its role on nucleoid formation and, finally, the problem of scaling up models. Our primary objective is to foster increased collaboration between physicists and biologists. To achieve this, we have reduced the respective jargon to a minimum and we provide some explanatory background material for the two communities.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
| | - Elham Ghobadpour
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralf Everaers
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Newton MD, Losito M, Smith QM, Parnandi N, Taylor BJ, Akcakaya P, Maresca M, van Eijk P, Reed SH, Boulton SJ, King GA, Cuomo ME, Rueda DS. Negative DNA supercoiling induces genome-wide Cas9 off-target activity. Mol Cell 2023; 83:3533-3545.e5. [PMID: 37802026 DOI: 10.1016/j.molcel.2023.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.
Collapse
Affiliation(s)
- Matthew D Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK; DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marialucrezia Losito
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK; Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Quentin M Smith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK
| | - Nishita Parnandi
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Benjamin J Taylor
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Patrick van Eijk
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4AW, UK
| | - Simon H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4AW, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| | | | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK.
| |
Collapse
|
6
|
Martin L, Neguembor MV, Cosma MP. Women’s contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization. Front Mol Biosci 2023; 10:1155825. [PMID: 37051322 PMCID: PMC10083264 DOI: 10.3389/fmolb.2023.1155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.
Collapse
Affiliation(s)
- Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Technical Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Lead Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| |
Collapse
|
7
|
Abstract
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics and RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
8
|
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Sci 2021; 30:2042-2056. [PMID: 34398513 PMCID: PMC8442966 DOI: 10.1002/pro.4171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Eduardo A. Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
- Yale Microbial Sciences InstituteWest HavenConnecticutUSA
| |
Collapse
|
9
|
DNA-Topology Simplification by Topoisomerases. Molecules 2021; 26:molecules26113375. [PMID: 34204901 PMCID: PMC8199745 DOI: 10.3390/molecules26113375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The topological properties of DNA molecules, supercoiling, knotting, and catenation, are intimately connected with essential biological processes, such as gene expression, replication, recombination, and chromosome segregation. Non-trivial DNA topologies present challenges to the molecular machines that process and maintain genomic information, for example, by creating unwanted DNA entanglements. At the same time, topological distortion can facilitate DNA-sequence recognition through localized duplex unwinding and longer-range loop-mediated interactions between the DNA sequences. Topoisomerases are a special class of essential enzymes that homeostatically manage DNA topology through the passage of DNA strands. The activities of these enzymes are generally investigated using circular DNA as a model system, in which case it is possible to directly assay the formation and relaxation of DNA supercoils and the formation/resolution of knots and catenanes. Some topoisomerases use ATP as an energy cofactor, whereas others act in an ATP-independent manner. The free energy of ATP hydrolysis can be used to drive negative and positive supercoiling or to specifically relax DNA topologies to levels below those that are expected at thermodynamic equilibrium. The latter activity, which is known as topology simplification, is thus far exclusively associated with type-II topoisomerases and it can be understood through insight into the detailed non-equilibrium behavior of type-II enzymes. We use a non-equilibrium topological-network approach, which stands in contrast to the equilibrium models that are conventionally used in the DNA-topology field, to gain insights into the rates that govern individual transitions between topological states. We anticipate that our quantitative approach will stimulate experimental work and the theoretical/computational modeling of topoisomerases and similar enzyme systems.
Collapse
|
10
|
Kim S, Beltran B, Irnov I, Jacobs-Wagner C. Long-Distance Cooperative and Antagonistic RNA Polymerase Dynamics via DNA Supercoiling. Cell 2020; 179:106-119.e16. [PMID: 31539491 DOI: 10.1016/j.cell.2019.08.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Genes are often transcribed by multiple RNA polymerases (RNAPs) at densities that can vary widely across genes and environmental conditions. Here, we provide in vitro and in vivo evidence for a built-in mechanism by which co-transcribing RNAPs display either collaborative or antagonistic dynamics over long distances (>2 kb) through transcription-induced DNA supercoiling. In Escherichia coli, when the promoter is active, co-transcribing RNAPs translocate faster than a single RNAP, but their average speed is not altered by large variations in promoter strength and thus RNAP density. Environmentally induced promoter repression reduces the elongation efficiency of already-loaded RNAPs, causing premature termination and quick synthesis arrest of no-longer-needed proteins. This negative effect appears independent of RNAP convoy formation and is abrogated by topoisomerase I activity. Antagonistic dynamics can also occur between RNAPs from divergently transcribed gene pairs. Our findings may be broadly applicable given that transcription on topologically constrained DNA is the norm across organisms.
Collapse
Affiliation(s)
- Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA.
| | - Bruno Beltran
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA
| | - Irnov Irnov
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
11
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Páhi ZG, Borsos BN, Pantazi V, Ujfaludi Z, Pankotai T. PARylation During Transcription: Insights into the Fine-Tuning Mechanism and Regulation. Cancers (Basel) 2020; 12:cancers12010183. [PMID: 31940791 PMCID: PMC7017041 DOI: 10.3390/cancers12010183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
Transcription is a multistep, tightly regulated process. During transcription initiation, promoter recognition and pre-initiation complex (PIC) formation take place, in which dynamic recruitment or exchange of transcription activators occur. The precise coordination of the recruitment and removal of transcription factors, as well as chromatin structural changes, are mediated by post-translational modifications (PTMs). Poly(ADP-ribose) polymerases (PARPs) are key players in this process, since they can modulate DNA-binding activities of specific transcription factors through poly-ADP-ribosylation (PARylation). PARylation can regulate the transcription at three different levels: (1) by directly affecting the recruitment of specific transcription factors, (2) by triggering chromatin structural changes during initiation and as a response to cellular stresses, or (3) by post-transcriptionally modulating the stability and degradation of specific mRNAs. In this review, we principally focus on these steps and summarise the recent findings, demonstrating the mechanisms through which PARylation plays a potential regulatory role during transcription and DNA repair.
Collapse
|
13
|
Valdés A, Coronel L, Martínez-García B, Segura J, Dyson S, Díaz-Ingelmo O, Micheletti C, Roca J. Transcriptional supercoiling boosts topoisomerase II-mediated knotting of intracellular DNA. Nucleic Acids Res 2020; 47:6946-6955. [PMID: 31165864 PMCID: PMC6649788 DOI: 10.1093/nar/gkz491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (−) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting–unknotting homeostasis of DNA during chromatin dynamics.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Lucia Coronel
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| |
Collapse
|
14
|
Zaytseva O, Quinn LM. DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond. Bioessays 2018; 40:e1700235. [PMID: 29504137 DOI: 10.1002/bies.201700235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| |
Collapse
|
15
|
RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure. Mol Cell 2017; 62:327-334. [PMID: 27153532 DOI: 10.1016/j.molcel.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription but arrived at different conclusions as to which is more detrimental and why. The issue hinges on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases.
Collapse
|
16
|
Gerasimova NS, Pestov NA, Kulaeva OI, Clark DJ, Studitsky VM. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription. Transcription 2016; 7:91-5. [PMID: 27115204 DOI: 10.1080/21541264.2016.1182240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.
Collapse
Affiliation(s)
- N S Gerasimova
- a Biology Faculty, Lomonosov Moscow State University , Moscow , Russia
| | - N A Pestov
- b Department of Pharmacology , Rutgers-Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - O I Kulaeva
- a Biology Faculty, Lomonosov Moscow State University , Moscow , Russia.,c Cancer Epigenetics Program, Fox Chase Cancer Center , Philadelphia , PA , USA
| | - D J Clark
- d Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - V M Studitsky
- a Biology Faculty, Lomonosov Moscow State University , Moscow , Russia.,b Department of Pharmacology , Rutgers-Robert Wood Johnson Medical School , Piscataway , NJ , USA.,c Cancer Epigenetics Program, Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
17
|
Dahmane N, Gadelle D, Delmas S, Criscuolo A, Eberhard S, Desnoues N, Collin S, Zhang H, Pommier Y, Forterre P, Sezonov G. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB. Nucleic Acids Res 2016; 44:2795-805. [PMID: 26908651 PMCID: PMC4824112 DOI: 10.1093/nar/gkw097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/08/2016] [Indexed: 11/28/2022] Open
Abstract
Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies.
Collapse
Affiliation(s)
- Narimane Dahmane
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Danièle Gadelle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Stéphane Delmas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Alexis Criscuolo
- Hub Bioinformatique et Biostatistique - C3BI, USR 3756 IP CNRS, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Stephan Eberhard
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Nicole Desnoues
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sylvie Collin
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Guennadi Sezonov
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| |
Collapse
|
18
|
Fernández X, Díaz-Ingelmo O, Martínez-García B, Roca J. Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 2014; 33:1492-501. [PMID: 24859967 DOI: 10.15252/embj.201488091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.
Collapse
Affiliation(s)
- Xavier Fernández
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ofelia Díaz-Ingelmo
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Belén Martínez-García
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joaquim Roca
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
19
|
Luchnik AN. DNA conformational transitions induced by supercoiling control transcription in chromatin. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:89-96. [PMID: 24653646 PMCID: PMC3956857 DOI: 10.4137/grsb.s13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/05/2022]
Abstract
Regulation of transcription in eukaryotes is considered in the light of recent findings demonstrating the presence of negative and positive superhelical tension in chromatin. This tension induces conformational transitions in DNA duplex. Particularly, the transition into A-form renders DNA accessible and waylaying for initiation of transcription producing RNA molecules long known to belong to the A-conformation. Competition between conformational transitions in various DNA sequences for the energy of elastic spring opens a possibility for understanding of fine tuning of transcription at a distance.
Collapse
|
20
|
Gilbert N, Allan J. Supercoiling in DNA and chromatin. Curr Opin Genet Dev 2013; 25:15-21. [PMID: 24584092 PMCID: PMC4042020 DOI: 10.1016/j.gde.2013.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/20/2023]
Abstract
Supercoiling is a fundamental property of DNA and chromatin. It is modulated by polymerase and topoisomerase activities and, through regulated constraint, by DNA/chromatin binding proteins. As a non-covalent and elusive topological modification, supercoiling has proved intractable to research despite being a crucial regulator of nuclear structure and function. Recent studies have improved our understanding of the formation, regulation and organisation of supercoiling domains in vivo, and reinforce the prospect that the propagation of supercoiling can influence local and global chromatin structure. However, to further our understanding the development of new experimental tools and models are required to better dissect the mechanics of this key topological regulator.
Collapse
Affiliation(s)
- Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - James Allan
- Institute of Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
21
|
Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 2013; 21:88-94. [PMID: 24317489 PMCID: PMC3947361 DOI: 10.1038/nsmb.2723] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Abstract
As RNA polymerase II (Pol II) transcribes a gene, it encounters an array of well-ordered nucleosomes. How it traverses through this array in vivo remains unresolved. One model proposes that torsional stress generated during transcription destabilizes nucleosomes ahead of Pol II. Here, we describe a method for high-resolution mapping of underwound DNA, using next-generation sequencing, and show that torsion is correlated with gene expression in Drosophila melanogaster cells. Accumulation of torsional stress, through topoisomerase inhibition, results in increased Pol II at transcription start sites. Whereas topoisomerase I inhibition results in increased nascent RNA transcripts, topoisomerase II inhibition causes little change. Despite the different effects on Pol II elongation, topoisomerase inhibition results in increased nucleosome turnover and salt solubility within gene bodies, thus suggesting that the elongation-independent effects of torsional stress on nucleosome dynamics contributes to the destabilization of nucleosomes.
Collapse
|
22
|
Zhang C, Liu HH, Zheng KW, Hao YH, Tan Z. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res 2013; 41:7144-52. [PMID: 23716646 PMCID: PMC3737545 DOI: 10.1093/nar/gkt443] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
G-quadruplexes, four-stranded structures formed by Guanine-rich nucleic acids, are implicated in many physiological and pathological processes. G-quadruplex-forming sequences are abundant in genomic DNA, and G-quadruplexes have recently been shown to exist in the genome of mammalian cells. However, how G-quadruplexes are formed in the genomes remains largely unclear. Here, we show that G-quadruplex formation can be remotely induced by downstream transcription events that are thousands of base pairs away. The induced G-quadruplexes alter protein recognition and cause transcription termination at the local region. These results suggest that a G-quadruplex-forming sequence can serve as a sensor or receiver to sense remote DNA tracking activity in response to the propagation of mechanical torsion in a DNA double helix. We propose that the G-quadruplex formation may provide a mean for long-range sensing and communication between distal genomic locations to coordinate regulatory transactions in genomic DNA.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
23
|
Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 2013; 20:387-95. [PMID: 23416946 PMCID: PMC3689368 DOI: 10.1038/nsmb.2509] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 01/08/2013] [Indexed: 12/22/2022]
Abstract
DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes.
Collapse
|
24
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
25
|
Barbi M, Mozziconacci J, Wong H, Victor JM. DNA topology in chromosomes: a quantitative survey and its physiological implications. J Math Biol 2012. [PMID: 23179130 DOI: 10.1007/s00285-012-0621-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a simple geometric model, we propose a general method for computing the linking number of the DNA embedded in chromatin fibers. The relevance of the method is reviewed through the single molecule experiments that have been performed in vitro with magnetic tweezers. We compute the linking number of the DNA in the manifold conformational states of the nucleosome which have been evidenced in these experiments and discuss the functional dynamics of chromosomes in the light of these manifold states.
Collapse
Affiliation(s)
- Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, and CNRS GDR 3536, Université Pierre et Marie Curie, Case courrier 121, 4 place Jussieu, 75252 , Paris, France,
| | | | | | | |
Collapse
|
26
|
Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT. Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol Cell 2011; 43:638-48. [PMID: 21855802 DOI: 10.1016/j.molcel.2011.07.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/27/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Chromatin assembly involves the combined action of histone chaperones and ATP-dependent motor proteins. Here, we investigate the mechanism of nucleosome assembly with a purified chromatin assembly system containing the histone chaperone NAP1 and the ATP-dependent motor protein ACF. These studies revealed the rapid formation of a stable nonnucleosomal histone-DNA intermediate that is converted into canonical nucleosomes by ACF. The histone-DNA intermediate does not supercoil DNA like a canonical nucleosome, but has a nucleosome-like appearance by atomic force microscopy. This intermediate contains all four core histones, lacks NAP1, and is formed by the initial deposition of histones H3-H4. Conversion of the intermediate into histone H1-containing chromatin results in increased resistance to micrococcal nuclease digestion. These findings suggest that the histone-DNA intermediate corresponds to nascent nucleosome-like structures, such as those observed at DNA replication forks. Related complexes might be formed during other chromatin-directed processes such as transcription, DNA repair, and histone exchange.
Collapse
Affiliation(s)
- Sharon E Torigoe
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | |
Collapse
|
27
|
Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. Proc Natl Acad Sci U S A 2011; 108:12693-8. [PMID: 21771901 DOI: 10.1073/pnas.1106834108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerases are believed to promote transcription by removing excessive DNA supercoils produced during elongation. However, it is unclear how topoisomerases in eukaryotes are recruited and function in the transcription pathway in the context of nucleosomes. To address this problem we present high-resolution genome-wide maps of one of the major eukaryotic topoisomerases, Topoisomerase II (Top2) and nucleosomes in the budding yeast, Saccharomyces cerevisiae. Our data indicate that at promoters Top2 binds primarily to DNA that is nucleosome-free. However, although nucleosome loss enables Top2 occupancy, the opposite is not the case and the loss of Top2 has little effect on nucleosome density. We also find that Top2 is involved in transcription. Not only is Top2 enriched at highly transcribed genes, but Top2 is required redundantly with Top1 for optimal recruitment of RNA polymerase II at their promoters. These findings and the examination of candidate-activated genes suggest that nucleosome loss induced by nucleosome remodeling factors during gene activation enables Top2 binding, which in turn acts redundantly with Top1 to enhance recruitment of RNA polymerase II.
Collapse
|
28
|
Niu DK, Yang YF. Why eukaryotic cells use introns to enhance gene expression: splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol Direct 2011; 6:24. [PMID: 21592350 PMCID: PMC3118952 DOI: 10.1186/1745-6150-6-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The costs and benefits of spliceosomal introns in eukaryotes have not been established. One recognized effect of intron splicing is its known enhancement of gene expression. However, the mechanism regulating such splicing-mediated expression enhancement has not been defined. Previous studies have shown that intron splicing is a time-consuming process, indicating that splicing may not reduce the time required for transcription and processing of spliced pre-mRNA molecules; rather, it might facilitate the later rounds of transcription. Because the densities of active RNA polymerase II on most genes are less than one molecule per gene, direct interactions between the splicing apparatus and transcriptional complexes (from the later rounds of transcription) are infrequent, and thus unlikely to account for splicing-mediated gene expression enhancement. Presentation of the hypothesis The serine/arginine-rich protein SF2/ASF can inhibit the DNA topoisomerase I activity that removes negative supercoiling of DNA generated by transcription. Consequently, splicing could make genes more receptive to RNA polymerase II during the later rounds of transcription, and thus affect the frequency of gene transcription. Compared with the transcriptional enhancement mediated by strong promoters, intron-containing genes experience a lower frequency of cut-and-paste processes. The cleavage and religation activity of DNA strands by DNA topoisomerase I was recently shown to account for transcription-associated mutagenesis. Therefore, intron-mediated enhancement of gene expression could reduce transcription-associated genome instability. Testing the hypothesis Experimentally test whether transcription-associated mutagenesis is lower in intron-containing genes than in intronless genes. Use bioinformatic analysis to check whether exons flanking lost introns have higher frequencies of short deletions. Implications of the hypothesis The mechanism of intron-mediated enhancement proposed here may also explain the positive correlation observed between intron size and gene expression levels in unicellular organisms, and the greater number of intron containing genes in higher organisms. Reviewers This article was reviewed by Dr Arcady Mushegian, Dr Igor B Rogozin (nominated by Dr I King Jordan) and Dr Alexey S Kondrashov. For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
29
|
Naughton C, Sproul D, Hamilton C, Gilbert N. Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol Cell 2010; 40:397-409. [PMID: 21070966 PMCID: PMC3038259 DOI: 10.1016/j.molcel.2010.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/24/2010] [Accepted: 08/26/2010] [Indexed: 11/28/2022]
Abstract
Using a genetic model, we present a high-resolution chromatin fiber analysis of transcriptionally active (Xa) and inactive (Xi) X chromosomes packaged into euchromatin and facultative heterochromatin. Our results show that gene promoters have an open chromatin structure that is enhanced upon transcriptional activation but the Xa and the Xi have similar overall 30 nm chromatin fiber structures. Therefore, the formation of facultative heterochromatin is dependent on factors that act at a level above the 30 nm fiber and transcription does not alter bulk chromatin fiber structures. However, large-scale chromatin structures on Xa are decondensed compared with the Xi and transcription inhibition is sufficient to promote large-scale chromatin compaction. We show a link between transcription and large-scale chromatin packaging independent of the bulk 30 nm chromatin fiber and propose that transcription, not the global compaction of 30 nm chromatin fibers, determines the cytological appearance of large-scale chromatin structures.
Collapse
Affiliation(s)
- Catherine Naughton
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | |
Collapse
|
30
|
Zhang Z, Wang Y, Song T, Gao J, Wu G, Zhang J, Qian X. DNA double helix unwinding triggers transcription block-dependent apoptosis: a semiquantitative probe of the response of ATM, RNAPII, and p53 to two DNA intercalators. Chem Res Toxicol 2010; 22:483-91. [PMID: 19182866 DOI: 10.1021/tx800288v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown the binding modes of two DNA interacting analogues (1)a {3-(4-methyl-piperazin)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} and (3)a {3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} with the DNA double helix. In this study, we have determined the notably different DNA damage signal pathway elicited by (1)a and (3)a due to the different extents to which they unwind the DNA double helix. First, we have identified that ataxia-telangiectasia-mutated (ATM) protein kinase can respond to DNA double helix unwinding caused by both (1)a and (3)a. In addition, the amount of ATM activation is consistent with the degree to which the DNA double helix was unwound. Consequently, we used (1)a and (3)a to semiquantitatively probe the response of RNA polymerase II (RNAPII) and p53 toward DNA double helix unwinding in vivo. By means of flow cytometry, immunocytochemistry, ChIP, quantitative real-time polymerase chain reaction, and Western blot analyses, we measured the level of p53 and RNAPII phosphorylation, in addition to the dynamics of the RNAPII distribution along the c-Myc gene. These results provided novel evidence for the impact of subtle DNA structural changes on the activity of RNAPII and p53. Moreover, DNA double helix conformational damage-dependent apoptosis was studied for the first time. These results indicated that (1)a can induce transcriptional blockage following a shift of the unphosphorylated IIa form of RNAPII to the phosphorylated IIo form, while (3)a is unable to induce the same effect. Subsequently, p53 accumulation and phosphorylation events occur that lead to apoptosis in the case of (1)a exposure. This suggests that the transcriptional blockage is also correlated to the degree of double helix unwinding. Furthermore, we found that the degree of DNA conformational damage determines whether or not apoptosis occurs through transcriptional blockage. Under our experimental conditions, ATM does not participate in the downstream events even when it has been activated. Thus, p53-mediated apoptosis may be independently triggered by transcriptional blockage.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Koster DA, Crut A, Shuman S, Bjornsti MA, Dekker NH. Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 2010; 142:519-30. [PMID: 20723754 DOI: 10.1016/j.cell.2010.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entangling and twisting of cellular DNA (i.e., supercoiling) are problems inherent to the helical structure of double-stranded DNA. Supercoiling affects transcription, DNA replication, and chromosomal segregation. Consequently the cell must fine-tune supercoiling to optimize these key processes. Here, we summarize how supercoiling is generated and review experimental and theoretical insights into supercoil relaxation. We distinguish between the passive dissipation of supercoils by diffusion and the active removal of supercoils by topoisomerase enzymes. We also review single-molecule studies that elucidate the timescales and mechanisms of supercoil removal.
Collapse
Affiliation(s)
- Daniel A Koster
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
32
|
Bermúdez I, García-Martínez J, Pérez-Ortín JE, Roca J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 2010; 38:e182. [PMID: 20685815 PMCID: PMC2965259 DOI: 10.1093/nar/gkq687] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA arrays. The entire procedure was robust. Comparison of PB obtained in vivo with that obtained in vitro with naked DNA revealed that numerous chromosomal regions had deviated PB values. Similar analyses in yeast topoisomerase mutants uncovered further PB alterations across specific chromosomal domains. These results suggest that distinct chromosome compartments might confine different levels of DNA helical tension in yeast. Genome-wide analysis of psoralen–DNA PB can be, therefore, a useful approach to uncover a trait of the chromosome architecture not amenable to other techniques.
Collapse
Affiliation(s)
- Ignacio Bermúdez
- Instituto de Biología Molecular de Barcelona-CSIC, Barcelona, Laboratorio de Chips de DNA-SCSIE Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
33
|
Vetcher AA, McEwen AE, Abujarour R, Hanke A, Levene SD. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys Chem 2010; 148:104-11. [PMID: 20346570 PMCID: PMC2867096 DOI: 10.1016/j.bpc.2010.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/15/2022]
Abstract
Agarose-gel electrophoresis has been used for more than thirty years to characterize the linking-number (Lk) distribution of closed-circular DNA molecules. Although the physical basis of this technique remains poorly understood, the gel-electrophoretic behavior of covalently closed DNAs has been used to determine the local unwinding of DNA by proteins and small-molecule ligands, characterize supercoiling-dependent conformational transitions in duplex DNA, and to measure helical-repeat changes due to shifts in temperature and ionic strength. Those results have been analyzed by assuming that the absolute mobility of a particular topoisomer is mainly a function of the integral number of superhelical turns, and thus a slowly varying function of plasmid molecular weight. In examining the mobilities of Lk topoisomers for a series of plasmids that differ incrementally in size over more than one helical turn, we found that the size-dependent agarose-gel mobility of individual topoisomers with identical values of Lk (but different values of the excess linking number, DeltaLk) vary dramatically over a duplex turn. Our results suggest that a simple semi-empirical relationship holds between the electrophoretic mobility of linking-number topoisomers and their average writhe in solution.
Collapse
Affiliation(s)
- Alexandre A. Vetcher
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Abbye E. McEwen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Ramzey Abujarour
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Andreas Hanke
- Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 USA
| | - Stephen D. Levene
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
- Department of Physics, University of Texas at Dallas, Richardson, TX 75083 USA
| |
Collapse
|
34
|
Bécavin C, Barbi M, Victor JM, Lesne A. Transcription within condensed chromatin: Steric hindrance facilitates elongation. Biophys J 2010; 98:824-33. [PMID: 20197036 PMCID: PMC2830436 DOI: 10.1016/j.bpj.2009.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022] Open
Abstract
During eukaryotic transcription, RNA-polymerase activity generates torsional stress in DNA, having a negative impact on the elongation process. Using our previous studies of chromatin fiber structure and conformational transitions, we suggest that this torsional stress can be alleviated, thanks to a tradeoff between the fiber twist and nucleosome conformational transitions into an activated state named "reversome". Our model enlightens the origin of polymerase pauses, and leads to the counterintuitive conclusion that chromatin-organized compaction might facilitate polymerase progression. Indeed, in a compact and well-structured chromatin loop, steric hindrance between nucleosomes enforces sequential transitions, thus ensuring that the polymerase always meets a permissive nucleosomal state.
Collapse
Affiliation(s)
- Christophe Bécavin
- Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
- Institut de Recherche Interdisciplinaire, Centre National de la Recherche Scientifique, USR 3078, Universités Lille I and II, Villeneuve d'Ascq, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| | - Annick Lesne
- Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
35
|
Joshi RS, Piña B, Roca J. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes. EMBO J 2010; 29:740-8. [PMID: 20057354 PMCID: PMC2805846 DOI: 10.1038/emboj.2009.391] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/04/2009] [Indexed: 01/23/2023] Open
Abstract
How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin.
Collapse
Affiliation(s)
- Ricky S Joshi
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Instituto de Biologia Molecular de Barcelona-CSIC, Baldiri Reixac, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Abstract
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their significance inside the cell, where DNA configurations markedly differ from those of DNA in free solution. The eukaryotic type-2A enzyme, topoisomerase II, is the second most abundant chromatin protein after histones and its biological roles include the decatenation of newly replicated DNA and the relaxation of polymerase-driven supercoils. Yet, topoisomerase II is also implicated in other cellular processes such as chromatin folding and gene expression, in which the topological transformations catalysed by the enzyme are uncertain. Here, some capabilities of topoisomerase II that might be relevant to infer the enzyme performance in the context of chromatin architecture are discussed. Some aspects addressed are the importance of the DNA rejoining step to ensure genome stability, the regulation of the enzyme activity and of its putative structural role, and the selectively of DNA transport in the chromatin milieu.
Collapse
Affiliation(s)
- Joaquim Roca
- Institut de Biologia Molecular de Barcelona, CSIC, Baldiri i Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Losasso C, Cretaio E, Fiorani P, D'Annessa I, Chillemi G, Benedetti P. A single mutation in the 729 residue modulates human DNA topoisomerase IB DNA binding and drug resistance. Nucleic Acids Res 2008; 36:5635-44. [PMID: 18772225 PMCID: PMC2553582 DOI: 10.1093/nar/gkn557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human DNA topoisomerase I (hTop1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of the antitumor drug camptothecin (CPT). The X-ray crystal structure of the enzyme covalently joined to DNA and bound to the CPT analog Topotecan suggests that there are two classes of mutations that can produce a CPT-resistant enzyme. The first class includes changes in residues that directly interact with the drug, whereas a second class alters interactions with the DNA and thereby destabilizes the drug binding site. The Thr729Ala, that is part of a hydrophobic pocket in the enzyme C-terminal domain, belongs to a third group of mutations that confer CPT resistance, but do not interact directly with the drug or the DNA. To understand the contribution of this residue in drug resistance, we have studied the effect on hTop1p catalysis and CPT sensitivity of four different substitutions in the Thr729 position (Thr729Ala, Thr729Glu, Thr729Lys and Thr729Pro). Tht729Glu and Thr729Lys mutants show severe CPT resistance and furthermore, Thr729Glu shows a remarkable defect in DNA binding. We postulate that the maintenance of the hydrophobic pocket integrity, where Thr729 is positioned, is crucial for drug sensitivity and DNA binding.
Collapse
Affiliation(s)
- Carmen Losasso
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padua 35131, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Mayán-Santos ML, Martínez-Robles MD, Hernández P, Krimer D, Schvartzman JB. DNA is more negatively supercoiled in bacterial plasmids than in minichromosomes isolated from budding yeast. Electrophoresis 2007; 28:3845-53. [DOI: 10.1002/elps.200700294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Crut A, Koster DA, Seidel R, Wiggins CH, Dekker NH. Fast dynamics of supercoiled DNA revealed by single-molecule experiments. Proc Natl Acad Sci U S A 2007; 104:11957-62. [PMID: 17623785 PMCID: PMC1924543 DOI: 10.1073/pnas.0700333104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Indexed: 11/18/2022] Open
Abstract
The dynamics of supercoiled DNA play an important role in various cellular processes such as transcription and replication that involve DNA supercoiling. We present experiments that enhance our understanding of these dynamics by measuring the intrinsic response of single DNA molecules to sudden changes in tension or torsion. The observed dynamics can be accurately described by quasistatic models, independent of the degree of supercoiling initially present in the molecules. In particular, the dynamics are not affected by the continuous removal of the plectonemes. These results set an upper bound on the hydrodynamic drag opposing plectoneme removal, and thus provide a quantitative baseline for the dynamics of bare DNA.
Collapse
Affiliation(s)
- Aurélien Crut
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Koster DA, Palle K, Bot ESM, Bjornsti MA, Dekker NH. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 2007; 448:213-7. [PMID: 17589503 DOI: 10.1038/nature05938] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 05/15/2007] [Indexed: 11/09/2022]
Abstract
Increasing the ability of chemotherapeutic drugs to kill cancer cells is often hampered by a limited understanding of their mechanism of action. Camptothecins, such as topotecan, induce cell death by poisoning DNA topoisomerase I, an enzyme capable of removing DNA supercoils. Topotecan is thought to stabilize a covalent topoisomerase-DNA complex, rendering it an obstacle to DNA replication forks. Here we use single-molecule nanomanipulation to monitor the dynamics of human topoisomerase I in the presence of topotecan. This allowed us to detect the binding and unbinding of an individual topotecan molecule in real time and to quantify the drug-induced trapping of topoisomerase on DNA. Unexpectedly, our findings also show that topotecan significantly hinders topoisomerase-mediated DNA uncoiling, with a more pronounced effect on the removal of positive (overwound) versus negative supercoils. In vivo experiments in the budding yeast verified the resulting prediction that positive supercoils would accumulate during transcription and replication as a consequence of camptothecin poisoning of topoisomerase I. Positive supercoils, however, were not induced by drug treatment of cells expressing a catalytically active, camptothecin-resistant topoisomerase I mutant. This combination of single-molecule and in vivo data suggests a cytotoxic mechanism for camptothecins, in which the accumulation of positive supercoils ahead of the replication machinery induces potentially lethal DNA lesions.
Collapse
Affiliation(s)
- Daniel A Koster
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Sharma VK, Kumar N, Brahmachari SK, Ramachandran S. Abundance of dinucleotide repeats and gene expression are inversely correlated: a role for gene function in addition to intron length. Physiol Genomics 2007; 31:96-103. [PMID: 17550993 DOI: 10.1152/physiolgenomics.00183.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High and broad transcription of eukaryotic genes is facilitated by cost minimization, clustered localization in the genome, elevated G+C content, and low nucleosome formation potential. In this scenario, illumination of correlation between abundance of (TG/CA)(n>or=12) repeats, which are negative cis modulators of transcription, and transcriptional levels and other commonly occurring dinucleotide repeats, is required. Three independent microarray datasets were used to examine the correlation of (TG/CA)(n>or=12) and other dinucleotide repeats with gene expression. Compared with the expected equi-distribution pattern under neutral model, highly transcribed genes were poor in repeats, and conversely, weakly transcribed genes were rich in repeats. Furthermore, the inverse correlation between repeat abundance and transcriptional levels appears to be a global phenomenon encompassing all genes regardless of their breadth of transcription. This selective pattern of exclusion of (TG/CA)(n>or=12) and (AT)(n>or=12) repeats in highly transcribed genes is an additional factor along with cost minimization and elevated GC, and therefore, multiple factors govern high transcription of genes. We observed that even after controlling for the effects of GC and average intron lengths, the effect of repeats albeit somewhat weaker was persistent and definite. In the ribosomal protein coding genes, sequence analysis of orthologs suggests that negative selection for repeats perhaps occurred early in evolution. These observations suggest that negative selection of (TG/CA)(n>or=12) microsatellites in the evolution of the highly expressed genes was also controlled by gene function in addition to intron length.
Collapse
Affiliation(s)
- Vineet K Sharma
- G. N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | |
Collapse
|
42
|
Fink M, Imholz D, Thoma F. Contribution of the serine 129 of histone H2A to chromatin structure. Mol Cell Biol 2007; 27:3589-600. [PMID: 17353265 PMCID: PMC1899979 DOI: 10.1128/mcb.02077-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phosphorylation of a yeast histone H2A at C-terminal serine 129 has a central role in double-strand break repair. Mimicking H2A phosphorylation by replacement of serine 129 with glutamic acid (hta1-S129E) suggested that phosphorylation destabilizes chromatin structures and thereby facilitates the access of repair proteins. Here we have tested chromatin structures in hta1-S129 mutants and in a C-terminal tail deletion strain. We show that hta1-S129E affects neither nucleosome positioning in minichromosomes and genomic loci nor supercoiling of minichromosomes. Moreover, hta1-S129E has no effect on chromatin stability measured by conventional nuclease digestion, nor does it affect DNA accessibility and repair of UV-induced DNA lesions by nucleotide excision repair and photolyase in vivo. Similarly, deletion of the C-terminal tail has no effect on nucleosome positioning and stability. These data argue against a general role for the C-terminal tail in chromatin organization and suggest that phosphorylated H2A, gamma-H2AX in higher eukaryotes, acts by recruitment of repair components rather than by destabilizing chromatin structures.
Collapse
Affiliation(s)
- Michel Fink
- Institute of Cell Biology, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
43
|
Losasso C, Cretaio E, Palle K, Pattarello L, Bjornsti MA, Benedetti P. Alterations in linker flexibility suppress DNA topoisomerase I mutant-induced cell lethality. J Biol Chem 2007; 282:9855-9864. [PMID: 17276985 DOI: 10.1074/jbc.m608200200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.
Collapse
Affiliation(s)
- Carmen Losasso
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Erica Cretaio
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Komaraiah Palle
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38104
| | - Luca Pattarello
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38104
| | - Piero Benedetti
- Department of Biology, University of Padua, Padua 35131, Italy.
| |
Collapse
|
44
|
Lavelle C. Transcription elongation through a chromatin template. Biochimie 2006; 89:516-27. [PMID: 17070642 DOI: 10.1016/j.biochi.2006.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
DNA transaction events occurring during cell life (replication, transcription, recombination, repair, cell division) are always linked to severe changes in the topological state of the double helix. However, since naked DNA almost does not exist in eukaryote nucleus but rather interacts with various proteins, including ubiquitous histones, these topological changes happen in a chromatin context. This review focuses on the role of chromatin fiber structure and dynamics in the regulation of transcription, with an almost exclusive emphasis on the elongation step. Beside a brief overview of our knowledge about transcribed chromatin, we will see how recent mechanistic and biochemical studies give us new insights into the way cell could modulate DNA supercoiling and chromatin conformational dynamics. The participation of topoisomerases in this complex ballet is discussed, since recent data suggest that their role could be closely related to the precise chromatin structure. Lastly, some future prospects to carry on are proposed, hoping this review will help in stimulating discussions and further investigations in the field.
Collapse
Affiliation(s)
- Christophe Lavelle
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France.
| |
Collapse
|
45
|
Furuhashi H, Nakajima M, Hirose S. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development 2006; 133:4475-83. [PMID: 17035293 DOI: 10.1242/dev.02620] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA supercoiling factor (SCF) is a protein capable of generating negative supercoils in DNA in conjunction with topoisomerase II. To clarify the biological functions of SCF, we introduced a heritable SCF RNAi into Drosophila. Upon knockdown of SCF, we observed male lethality and male-specific reduction in the expression levels of X-linked genes. SCF functionally interacts with components of the MSL complex, which are required for dosage compensation via hypertranscription of the male X chromosome. Moreover, SCF colocalizes with the MSL complex along the male X chromosome. Upon overexpression of SCF, the male X chromosome had a bloated appearance. This phenotype was dependent on the histone acetyltransferase MOF and was suppressed by simultaneous overexpression of ISWI. These findings demonstrate that SCF plays a role in transcriptional activation via alteration of chromatin structure and provide evidence that SCF contributes to dosage compensation.
Collapse
Affiliation(s)
- Hirofumi Furuhashi
- Department of Developmental Genetics, National Institute of Genetics, SOKENDAI, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | |
Collapse
|
46
|
Salceda J, Fernández X, Roca J. Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA. EMBO J 2006; 25:2575-83. [PMID: 16710299 PMCID: PMC1478187 DOI: 10.1038/sj.emboj.7601142] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/18/2006] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic topoisomerases I and II efficiently remove helical tension in naked DNA molecules. However, this activity has not been examined in nucleosomal DNA, their natural substrate. Here, we obtained yeast minichromosomes holding DNA under (+) helical tension, and incubated them with topoisomerases. We show that DNA supercoiling density can rise above +0.04 without displacement of the histones and that the typical nucleosome topology is restored upon DNA relaxation. However, in contrast to what is observed in naked DNA, topoisomerase II relaxes nucleosomal DNA much faster than topoisomerase I. The same effect occurs in cell extracts containing physiological dosages of topoisomeraseI and II. Apparently, the DNA strand-rotation mechanism of topoisomerase I does not efficiently relax chromatin, which imposes barriers for DNA twist diffusion. Conversely, the DNA cross-inversion mechanism of topoisomerase II is facilitated in chromatin, which favor the juxtaposition of DNA segments. We conclude that topoisomerase II is the main modulator of DNA topology in chromatin fibers. The nonessential topoisomerase I then assists DNA relaxation where chromatin structure impairs DNA juxtaposition but allows twist diffusion.
Collapse
Affiliation(s)
- Javier Salceda
- Institut de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
| | - Xavier Fernández
- Institut de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
| | - Joaquim Roca
- Institut de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
- Institut de Biología Molecular de Barcelona, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain. Tel.: 34 934 006 178; Fax: 34 932 045 904; E-mail:
| |
Collapse
|
47
|
Khobta A, Ferri F, Lotito L, Montecucco A, Rossi R, Capranico G. Early Effects of Topoisomerase I Inhibition on RNA Polymerase II Along Transcribed Genes in Human Cells. J Mol Biol 2006; 357:127-38. [PMID: 16427078 DOI: 10.1016/j.jmb.2005.12.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/08/2005] [Accepted: 12/20/2005] [Indexed: 01/28/2023]
Abstract
We have determined the early effects of camptothecin and alpha-amanitin on genomic DNA-binding sites of RNA polymerase II (RNAPII), TATA-binding protein (TBP), DNA topoisomerase I (Top1), and histone components in human transcribed loci by chromatin-immunoprecipitation (ChIP). The two agents caused notably different alterations in active chromatin. Camptothecin induced a specific reduction of RNAPII density at promoter pause sites and histone modifications suggesting an increased chromatin accessibility. alpha-Amanitin caused an accumulation of RNAPII at transcribed genes, a reduction of TBP bound to chromatin and a less accessible chromatin structure. Interestingly, RNAPII reduction at promoter pause sites occurred within 5-10min of camptothecin treatment, and was not a response to replication-dependent DNA breaks. ChIP analyses of RNAPII along transcribed genes indicated that RNAPII levels were transiently increased at internal exons, and that camptothecin effects could be fully reversed by DRB, a cdk inhibitor. Top1 was found to be enriched in active chromatin, therefore suggesting that Top1 inhibition at the transcribed template and/or adjacent regulating regions immediately affects RNAPII at active genes. The findings are novel in vivo evidence of camptothecin effects on RNAPII bound to transcribing genomic regions, and are consistent with the hypothesis that Top1 activity can be involved in transcription regulation at the level of promoter clearance.
Collapse
Affiliation(s)
- Andriy Khobta
- Department of Biochemistry, University of Bologna School of Pharmacy, via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Thiriet C, Hayes JJ. Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation. Results Probl Cell Differ 2006; 41:77-90. [PMID: 16909891 DOI: 10.1007/400_009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromatin within eukaryotic cell nuclei accommodates many complex activities that require at least partial disassembly and reassembly of nucleosomes. This disassembly/reassembly is thought to be somewhat localized when associated with processes such as site-specific DNA repair but likely occurs over extended regions during processive processes such as DNA replication or transcription. Here we review data addressing the effect of transcription elongation on nucleosome disassembly/reassembly, specifically focusing on the issue of transcription-dependent exchange of H2A/H2B dimers and H3/H4 tetramers. We suggest a model whereby passage of a polymerase through a nucleosome induces displacement of H2A/H2B dimers with a much higher probability than displacement of H3/H4 tetramers such that the extent of tetramer replacement is relatively low and proportional to polymerase density on any particular gene.
Collapse
Affiliation(s)
- Christophe Thiriet
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, NY 14625, USA
| | | |
Collapse
|
49
|
Kulikowicz T, Shapiro TA. Distinct Genes Encode Type II Topoisomerases for the Nucleus and Mitochondrion in the Protozoan Parasite Trypanosoma brucei. J Biol Chem 2006; 281:3048-56. [PMID: 16316982 DOI: 10.1074/jbc.m505977200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerases are essential for orderly nucleic acid metabolism and cell survival and are proven targets for clinically useful antimicrobial and anticancer drugs. Interest in the topologically intricate mitochondrial DNA (kinetoplast or kDNA) of Trypanosoma brucei brucei and related kinetoplastid protozoan parasites has led to many reports of type II topoisomerases that participate in kDNA metabolism (we term the T. brucei brucei gene TbTOP2mt). We have now identified and characterized two new genes for type II topoisomerases in T. brucei brucei, termed TbTOP2alpha and TbTOP2beta. Phylogenetically, they share a common node with other nuclear topoisomerases, clearly distinct from a clade that includes the previously reported kinetoplastid genes, all of which are homologs of TbTOP2mt. Southern blot analysis reveals the new genes are single copy and positioned approximately 1.7 kb apart. Cognate mRNAs are expressed in African trypanosomes, but only a single message is detected in Leishmania or Crithidia. TbTOP2alpha encodes an ATP-dependent topoisomerase that appears as a single approximately 170-kDa band on immunoblots and localizes to the nucleus; RNA interference leads to pleomorphic nuclear (but not kDNA) abnormalities and early growth arrest. The role of TbTOP2beta is unclear. Although transcribed in trypanosomes, TbTOP2beta is not detected by beta-specific antiserum, and RNAi silencing results in no obvious phenotype. These studies indicate that African trypanosomes and related kinetoplastid human pathogens are unusual in having independent topoisomerase II genes to service their nuclear and mitochondrial genomes, and they highlight TbTOP2alpha as a promising target for the development of much-needed new therapies.
Collapse
Affiliation(s)
- Tomasz Kulikowicz
- Division of Clinical Pharmacology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
50
|
Garcia V, Furuya K, Carr AM. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 2005; 4:1227-39. [PMID: 15897014 DOI: 10.1016/j.dnarep.2005.04.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 01/18/2023]
Abstract
The multiple BRCT-domain protein TopBP1 and its yeast homologs have been implicated in many aspects of DNA metabolism, but their molecular functions remain elusive. In this review, we first summarise how the yeast homologs were identified and characterised. We next review the data available from metazoan systems and finally draw parallels with the yeast models. TopBP1 plays important functions in the initiation of DNA replication in all organisms and participates in checkpoint responses both within S phase and following DNA damage. In metazoan systems there is accumulating evidence for additional roles in transcriptional regulation that have not been reported in yeast. Overall, TopBP1 appears to play a key role in integrating different aspects of DNA metabolism, but the mechanistic basis for this remains to be fully explained.
Collapse
Affiliation(s)
- Valerie Garcia
- Genome Damage and Stability Center, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| | | | | |
Collapse
|