1
|
Irrinki AM, Kaur J, Randhawa B, McFadden R, Snyder C, Truong H, Soohoo D, Hu E, Yu H, Murray BP, Lu B, Kornyeyev D, Irwan ID, Nguyen L, Yang YS, Belzile JP, Schmitz U, Appleby TC, Schultz B, Lalezari J, Deeks S, Cihlar T, Murry JP. Activating PKC-ε induces HIV expression with improved tolerability. PLoS Pathog 2025; 21:e1012874. [PMID: 39913544 PMCID: PMC11801715 DOI: 10.1371/journal.ppat.1012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/01/2025] [Indexed: 02/11/2025] Open
Abstract
Despite suppressive antiretroviral therapy (ART), HIV-1 persists in latent reservoirs that seed new HIV infections if ART is interrupted, necessitating lifelong therapy for people with HIV. Activation of latent HIV during ART could improve recognition and elimination of infected cells by the immune system. Protein kinase C (PKC) isozymes increase HIV transcription and hence are potential latency reversal agents. However, the clinical utility of PKCs for this application is limited due to toxicity, which is poorly understood. Our studies showed that PKC activation with multiple classes of agonists leads to widespread platelet activation, consistent with disseminated intravascular coagulation, at concentrations that were similar to those required for T-cell activation. Differential expression analysis indicated that PKC-ε and PKC-η isoforms are expressed at high levels in human CD4+ T cells but not in platelets. Using structure-based drug design, we developed a novel PKC agonist, C-233, with increased selectivity for PKC-ε. C-233 increased both supernatant HIV RNA and p24 expression ex vivo after treatment of CD4+ T cells from ART-suppressed people with HIV. C-233 was 5-fold more potent for T-cell activation relative to platelet activation. Our studies support the use of structure-based drug design to create selective novel PKC agonists for the safe activation of HIV reservoirs and improved tolerability.
Collapse
Affiliation(s)
- Alivelu M. Irrinki
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jasmine Kaur
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bally Randhawa
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ryan McFadden
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Chelsea Snyder
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Hoa Truong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Daniel Soohoo
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Eric Hu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Helen Yu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bernard P. Murray
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bing Lu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Dmytro Kornyeyev
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ishak Darryl Irwan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Lan Nguyen
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yu-San Yang
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | - Uli Schmitz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Todd C. Appleby
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian Schultz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jay Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
2
|
Gentry ZO, McAteer OD, Hamad JL, Moran JA, Kim JT, Marsden MD, Zack JA, Wender PA. Synthesis and preclinical evaluation of tigilanol tiglate analogs as latency-reversing agents for the eradication of HIV. SCIENCE ADVANCES 2025; 11:eads1911. [PMID: 39854456 PMCID: PMC11778240 DOI: 10.1126/sciadv.ads1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported. Enabled by our previously reported scalable synthesis of EBC-46, we report herein the systematic design, synthesis, and evaluation of EBC-46 analogs, including those inaccessible from the natural source and their PKC affinities, ability to translocate PKC, nuclear factor κB activity, and efficacy in reversing HIV latency in Jurkat-Latency cells. Leading analogs show exceptional PKC affinities, isoform selectivities, and functional activities, serving as promising candidates for therapeutic applications.
Collapse
Affiliation(s)
- Zachary O. Gentry
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Owen D. McAteer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L. Hamad
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jose A. Moran
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Escobar-Montaño F, Gómez-Oliva R, Ezzanad A, Vázquez de Górgolas S, Zorrilla D, Macías-Sánchez AJ, Botubol-Ares JM, Nunez-Abades P, Castro C, Durán-Patrón R, Hernández-Galán R. Effect of lathyrane-type diterpenoids in neural stem cell physiology: Microbial transformations, molecular docking and dynamics studies. Bioorg Chem 2024; 153:107769. [PMID: 39236582 DOI: 10.1016/j.bioorg.2024.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships. In the present study, we report the biotransformation of euphoboetirane A (4) and epoxyboetirane A (5), two lathyrane diterpenoids isolated from Euphorbia boetica, by Mucor circinelloides MC NRRL3631. Our findings revealed the production of nine biotransformation products (6-14), including jatrophane derivatives originated through an unprecedented rearrangement from the parent lathyranes. The chemical structures and absolute configurations of the new compounds were elucidated through comprehensive analysis using NMR and ECD spectroscopy, as well as MS. The study evaluated how principal metabolites and their derivatives affect TGFα and NRG1 release, as well as their potential to promote proliferation or differentiation in cultures of NSC isolated from the SVZ of adult mice. In order to shed some light on the mechanisms underlying the ability of 12 as a neurogenic compound, the interactions of selected compounds with PKC δ-C1B were analyzed through molecular docking and molecular dynamics. Based on these, it clearly appears that the ability of compound 12 to form both acceptor and donor hydrogen bonds with certain amino acid residues in the enzyme pocket leads to a higher affinity compound-PKC complex, which correlates with the observed biological activity.
Collapse
Affiliation(s)
- Felipe Escobar-Montaño
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Abdellah Ezzanad
- Instituto Universitario de Investigación en Biomoléculas, Universidad de Cádiz, Puerto Real Cádiz, Spain
| | | | - David Zorrilla
- Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Microscopía Electrónica y Materiales, Universidad de Cádiz, Puerto Real Cádiz, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Investigación en Biomoléculas, Universidad de Cádiz, Puerto Real Cádiz, Spain
| | - José M Botubol-Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Investigación Vitivinícola y Agroalimentaria, Universidad de Cádiz, Puerto Real Cádiz, Spain.
| | | | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Investigación en Biomoléculas, Universidad de Cádiz, Puerto Real Cádiz, Spain.
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Investigación en Biomoléculas, Universidad de Cádiz, Puerto Real Cádiz, Spain
| |
Collapse
|
4
|
Overall SA, Hartmann SJ, Luu-Nguyen QH, Judge P, Pinotsi D, Marti L, Sigurdsson ST, Wender PA, Barnes AB. Topological Heterogeneity of Protein Kinase C Modulators in Human T-Cells Resolved with In-Cell Dynamic Nuclear Polarization NMR Spectroscopy. J Am Chem Soc 2024; 146:27362-27372. [PMID: 39322225 PMCID: PMC11468733 DOI: 10.1021/jacs.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Phorbol ester analogs are a promising class of anticancer therapeutics and HIV latency reversing agents that interact with cellular membranes to recruit and activate protein kinase C (PKC) isoforms. However, it is unclear how these esters interact with membranes and how this might correlate with the biological activity of different phorbol ester analogs. Here, we have employed dynamic nuclear polarization (DNP) NMR to characterize phorbol esters in a native cellular context. The enhanced NMR sensitivity afforded by DNP and cryogenic operation reveals topological heterogeneity of 13C-21,22-phorbol-myristate-acetate (PMA) within T cells utilizing 13C-13C correlation and double quantum filtered NMR spectroscopy. We demonstrate the detection of therapeutically relevant amounts of PMA in T cells down to an upper limit of ∼60.0 pmol per million cells and identify PMA to be primarily localized in cellular membranes. Furthermore, we observe distinct 13C-21,22-PMA chemical shifts under DNP conditions in cells compared to model membrane samples and homogenized cell membranes, that cannot be accounted for by differences in conformation. We provide evidence for distinct membrane topologies of 13C-21,22-PMA in cell membranes that are consistent with shallow binding modes. This is the first of its kind in-cell DNP characterization of small molecules dissolved in the membranes of living cells, establishing in-cell DNP-NMR as an important method for the characterization of drug-membrane interactions within the context of the complex heterogeneous environment of intact cellular membranes. This work sets the stage for the identification of the in-cell structural interactions that govern the biological activity of phorbol esters.
Collapse
Affiliation(s)
- Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Sina J. Hartmann
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Quang H. Luu-Nguyen
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Patrick Judge
- Department
of Biochemistry, Biophysics, & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Dorothea Pinotsi
- Scientific
Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Lea Marti
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
6
|
Zhou Y, Roseli RB, Hungerford NL, Fletcher MT, Ouwerkerk D, Gilbert RA, Krenske EH. Binding of the plant-derived toxin simplexin to bovine protein kinase C: insights from molecular dynamics. Org Biomol Chem 2024; 22:2863-2876. [PMID: 38525790 DOI: 10.1039/d4ob00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Pimelea poisoning of cattle is toxicologically linked to the activation of bovine protein kinase C (PKC) by the plant-derived toxin simplexin. To understand the affinity of PKC for simplexin, we performed molecular dynamics (MD) studies of simplexin, simplexin analogues, and several other activators of PKC. Binding enthalpy calculations indicated that simplexin had the strongest affinity for PKCα-C1B among the activators studied. Key to simplexin's affinity is its ability to form more hydrogen bonds to PKC, compared to the other activators. The C-3 carbonyl group and C-20 hydroxyl group of simplexin were identified as especially important for stabilizing the PKC binding interaction. The hydrophobic alkyl chain of simplexin induces deep membrane embedding of the PKC-simplexin complex, enhancing the protein-ligand hydrogen bonding. Our findings align with previous experiments on structure-activity relationships (SAR) for simplexin analogues, and provide insights that may guide the development of interventions or treatments for Pimelea poisoning.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ras Baizureen Roseli
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Natasha L Hungerford
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Mary T Fletcher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Diane Ouwerkerk
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, St Lucia, QLD 4072, Australia
| | - Rosalind A Gilbert
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, St Lucia, QLD 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Katti SS, Igumenova TI. Protein-Cadmium Interactions in Crowded Biomolecular Environments Probed by In-cell and Lysate NMR Spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565546. [PMID: 38405767 PMCID: PMC10888879 DOI: 10.1101/2023.11.03.565546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One of the mechanisms by which toxic metal ions interfere with cellular functions is ionic mimicry, where they bind to protein sites in lieu of native metals Ca 2+ and Zn 2+ . The influence of crowded intracellular environments on these interactions is not well understood. Here, we demonstrate the application of in-cell and lysate NMR spectroscopy to obtain atomic-level information on how a potent environmental toxin cadmium interacts with its protein targets. The experiments, conducted in intact E. coli cells and their lysates, revealed that Cd 2+ can profoundly affect the quinary interactions of its protein partners, and can replace Zn 2+ in both labile and non-labile protein structural sites without significant perturbation of the membrane binding function. Surprisingly, in crowded molecular environments Cd 2+ can effectively target not only all-sulfur and mixed sulfur/nitrogen but also all-oxygen coordination sites. The sulfur-rich coordination environments show significant promise for bioremedial applications, as demonstrated by the ability of the designed protein scaffold α 3 DIV to sequester intracellular cadmium. Our data suggests that in-cell NMR spectroscopy is a powerful tool for probing interactions of toxic metal ions with their potential protein targets, and for the assessment of potency of sequestering agents.
Collapse
|
8
|
Yin Y, Zhao SL, Rane D, Lin Z, Wu M, Peterson BR. Quantification of Binding of Small Molecules to Native Proteins Overexpressed in Living Cells. J Am Chem Soc 2024; 146:187-200. [PMID: 38118119 PMCID: PMC10910633 DOI: 10.1021/jacs.3c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.
Collapse
Affiliation(s)
- Yuwen Yin
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Serena Li Zhao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| |
Collapse
|
9
|
Appendino G, Gaeta S. Tigliane Diterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 125:1-189. [PMID: 39546131 DOI: 10.1007/978-3-031-67180-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The distribution, chemistry, and molecular bioactivity of tiglianes are reviewed from the very beginning of the studies on these diterpenoids, summarizing their clinical and toxicological literature mostly in its more recent and controversial aspects, and critically analyzing various proposals for their biosynthesis.
Collapse
Affiliation(s)
- Giovanni Appendino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani, 2, 28100, Novara, Italy.
| | - Simone Gaeta
- Research & Development-Chemistry Research, QBiotics Group Limited, 165, Moggill Road, Taringa, QLD, 4068, Australia
| |
Collapse
|
10
|
Das J, You Y, Mathukumalli K, Ann J, Lee J, Marquez VE. Activation of Munc13-1 by Diacylglycerol (DAG)-Lactones. Biochemistry 2023; 62:2717-2726. [PMID: 37651159 DOI: 10.1021/acs.biochem.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Munc13-1 is a key protein necessary for vesicle fusion and neurotransmitter release in the brain. Diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane and activates it. The C1 domain of Munc13-1 and protein kinase C (PKC) are homologous in terms of sequence and structure. In order to identify small-molecule modulators of Munc13-1 targeting the C1 domain, we studied the effect of three DAG-lactones, (R,Z)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (JH-131e-153), (E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (AJH-836), and (E)-(2-(hydroxymethyl)-4-(4-nitrobenzylidene)-5-oxotetrahydrofuran-2-yl)methyl 4-(dimethylamino)benzoate (130C037), on Munc13-1 activation using the ligand-induced membrane translocation assay. JH-131e-153 showed higher activation than AJH-836, and 130C037 was not able to activate Munc13-1. To understand the role of the ligand-binding site residues in the activation process, three alanine mutants were generated. For AJH-836, the order of activation was wild-type (WT) Munc13-1 > R592A > W588A > I590A. For JH-131e-153, the order of activation was WT > I590 ≈ R592A ≈ W588A. Overall, the Z isomer of DAG-lactones showed higher potency than the E isomer and Trp-588, Ile-590, and Arg-592 were important for its binding. When comparing the activation of Munc13-1 and PKC, the order of activation for JH-131e-153 was PKCα > Munc13-1 > PKCε and for AJH-836, the order of activation was PKCε > PKCα > Munc13-1. Molecular docking supported higher binding of JH-131e-153 than AJH-836 with the Munc13-1 C1 domain. Our results suggest that DAG-lactones have the potential to modulate neuronal processes via Munc13-1 and can be further developed for therapeutic intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Kavya Mathukumalli
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Victor E Marquez
- Center for Cancer Research, Chemical Biology Laboratory, NCI-Frederick, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
11
|
Otsuki K, Li W. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. J Nat Med 2023; 77:625-643. [PMID: 37294498 PMCID: PMC10465420 DOI: 10.1007/s11418-023-01713-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tigliane and daphnane diterpenoids are characteristically distributed in plants of the Thymelaeaceae family as well as the Euphorbiaceae family and are structurally diverse due to the presence of polyoxygenated functionalities in the polycyclic skeleton. These diterpenoids are known as toxic components, while they have been shown to exhibit a wide variety of biological activities, such as anti-cancer, anti-HIV, and analgesic activity, and are attracting attention in the field of natural product drug discovery. This review focuses on naturally occurring tigliane and daphnane diterpenoids from plants of the Thymelaeaceae family and provides an overview of their chemical structure, distribution, isolation, structure determination, chemical synthesis, and biological activities, with a prime focus on the recent findings.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
12
|
de Jonckheere B, Kollotzek F, Münzer P, Göb V, Fischer M, Mott K, Coman C, Troppmair NN, Manke MC, Zdanyte M, Harm T, Sigle M, Kopczynski D, Bileck A, Gerner C, Hoffmann N, Heinzmann D, Assinger A, Gawaz M, Stegner D, Schulze H, Borst O, Ahrends R. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:835-852. [PMID: 38075556 PMCID: PMC7615361 DOI: 10.1038/s44161-023-00325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.
Collapse
Affiliation(s)
- Bianca de Jonckheere
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Vanessa Göb
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Melina Fischer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Kristina Mott
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Austria
| | - Nina Nicole Troppmair
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Mailin-Christin Manke
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Monika Zdanyte
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | | | - Andrea Bileck
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Nils Hoffmann
- Institute of Analytical Chemistry, University of Vienna, Austria
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5) Jülich, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Alice Assinger
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Harald Schulze
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Austria
| |
Collapse
|
13
|
Jones AC, Kornev AP, Weng JH, Manning G, Taylor SS, Newton AC. Single-residue mutation in protein kinase C toggles between cancer and neurodegeneration. Biochem J 2023; 480:1299-1316. [PMID: 37551632 PMCID: PMC10586763 DOI: 10.1042/bcj20220397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Conventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCβ-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and down-regulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.
Collapse
Affiliation(s)
- Alexander C. Jones
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92093, U.S.A
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | | | - Susan S. Taylor
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| |
Collapse
|
14
|
Ishii T, Kobayakawa T, Matsuda K, Tsuji K, Ohashi N, Nakahata S, Noborio A, Yoshimura K, Mitsuya H, Maeda K, Tamamura H. Synthesis and evaluation of DAG-lactone derivatives with HIV-1 latency reversing activity. Eur J Med Chem 2023; 256:115449. [PMID: 37224601 PMCID: PMC10683555 DOI: 10.1016/j.ejmech.2023.115449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs. Herein, we have focused on a diacylglycerol (DAG)-lactone derivative, YSE028 (1), which is a PKC activator with latency reversing activity and no significant cytotoxicity. Caspase-3 activation of YSE028 (1) led to cell apoptosis, specifically in HIV-1 latently infected cells. Structure-activity relationship studies of YSE028 (1) have produced several useful derivatives. Among these, compound 2 is approximately ten times more potent than YSE028 (1) in reactivation of cells latently infected with HIV-1. The activity of DAG-lactone derivatives was correlated with the binding affinity for PKC and the stability against esterase-mediated hydrolysis.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan; AIDS Clinical Center, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
15
|
Binder V, Li W, Faisal M, Oyman K, Calkins DL, Shaffer J, Teets EM, Sher S, Magnotte A, Belardo A, Deruelle W, Gregory TC, Orwick S, Hagedorn EJ, Perlin JR, Avagyan S, Lichtig A, Barrett F, Ammerman M, Yang S, Zhou Y, Carson WE, Shive HR, Blachly JS, Lapalombella R, Zon LI, Blaser BW. Microenvironmental control of hematopoietic stem cell fate via CXCL8 and protein kinase C. Cell Rep 2023; 42:112528. [PMID: 37209097 PMCID: PMC10824047 DOI: 10.1016/j.celrep.2023.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
Altered hematopoietic stem cell (HSC) fate underlies primary blood disorders but microenvironmental factors controlling this are poorly understood. Genetically barcoded genome editing of synthetic target arrays for lineage tracing (GESTALT) zebrafish were used to screen for factors expressed by the sinusoidal vascular niche that alter the phylogenetic distribution of the HSC pool under native conditions. Dysregulated expression of protein kinase C delta (PKC-δ, encoded by prkcda) increases the number of HSC clones by up to 80% and expands polyclonal populations of immature neutrophil and erythroid precursors. PKC agonists such as cxcl8 augment HSC competition for residency within the niche and expand defined niche populations. CXCL8 induces association of PKC-δ with the focal adhesion complex, activating extracellular signal-regulated kinase (ERK) signaling and expression of niche factors in human endothelial cells. Our findings demonstrate the existence of reserve capacity within the niche that is controlled by CXCL8 and PKC and has significant impact on HSC phylogenetic and phenotypic fate.
Collapse
Affiliation(s)
- Vera Binder
- Dr. von Hauner Childrens' Hospital, University Hospital Ludwig Maximillian's University, Department of Pediatric Hematology/Oncology, 80337 Munich, Germany
| | - Wantong Li
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Muhammad Faisal
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Konur Oyman
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Donn L Calkins
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Jami Shaffer
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Emily M Teets
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Steven Sher
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Andrew Magnotte
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Alex Belardo
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - William Deruelle
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - T Charles Gregory
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; The Ohio State University College of Medicine, Department of Biomedical Informatics, Columbus, OH 43210, USA
| | - Shelley Orwick
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Elliott J Hagedorn
- Boston University School of Medicine, Department of Medicine, Boston, MA 02118, USA
| | - Julie R Perlin
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Asher Lichtig
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Francesca Barrett
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Michelle Ammerman
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Heather R Shive
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - James S Blachly
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; The Ohio State University College of Medicine, Department of Biomedical Informatics, Columbus, OH 43210, USA
| | - Rosa Lapalombella
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Bradley W Blaser
- The Ohio State University College of Medicine, Department of Internal Medicine, Division of Hematology, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Truebestein L, Antonioli S, Waltenberger E, Gehin C, Gavin AC, Leonard TA. Structure and regulation of the myotonic dystrophy kinase-related Cdc42-binding kinase. Structure 2023; 31:435-446.e4. [PMID: 36854301 DOI: 10.1016/j.str.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Protein kinases of the dystonia myotonica protein kinase (DMPK) family are critical regulators of actomyosin contractility in cells. The DMPK kinase MRCK1 is required for the activation of myosin, leading to the development of cortical tension, apical constriction, and early gastrulation. Here, we present the structure, conformation, and membrane-binding properties of Caenorhabditis elegans MRCK1. MRCK1 forms a homodimer with N-terminal kinase domains, a parallel coiled coil of 55 nm, and a C-terminal tripartite module of C1, pleckstrin homology (PH), and citron homology (CNH) domains. We report the high-resolution structure of the membrane-binding C1-PH-CNH module of MRCK1 and, using high-throughput and conventional liposome-binding assays, determine its binding to specific phospholipids. We further characterize the interaction of the C-terminal CRIB motif with Cdc42. The length of the coiled-coil domain of DMPK kinases is remarkably conserved over millions of years of evolution, suggesting that they may function as molecular rulers to position kinase activity at a fixed distance from the membrane.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Sumire Antonioli
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Waltenberger
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Charlotte Gehin
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany; École Polytechnique Fédérale de Lausanne (EPFL), AI 1108, Station 19, 1015 Lausanne, Switzerland
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany; University of Geneva, Department of Cell Physiology and Metabolism, CMU Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Jones AC, Kornev AP, Weng JH, Manning G, Taylor SS, Newton AC. Single-residue mutation in protein kinase C toggles between cancer and neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532226. [PMID: 36993163 PMCID: PMC10055082 DOI: 10.1101/2023.03.16.532226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conventional protein kinase C (PKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent accumulation of aberrantly active enzyme. Here, we examine how a single residue in the C1A domain of PKCβ, arginine 42 (R42), permits quality-control degradation when mutated to histidine in cancer (R42H) and blocks downregulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (R42P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and downregulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity to that of WT. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.
Collapse
|
18
|
Hammerling U, Kim YK, Quadro L. Quantum chemistry rules retinoid biology. Commun Biol 2023; 6:227. [PMID: 36854887 PMCID: PMC9974979 DOI: 10.1038/s42003-023-04602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
This Perspective discusses how retinol catalyzes resonance energy transfer (RET) reactions pivotally important for mitochondrial energy homeostasis by protein kinase C δ (PKCδ). PKCδ signals to the pyruvate dehydrogenase complex, controlling oxidative phosphorylation. The PKCδ-retinol complex reversibly responds to the redox potential of cytochrome c, that changes with the electron transfer chain workload. In contrast, the natural retinoid anhydroretinol irreversibly activates PKCδ. Its elongated conjugated-double-bond system limits the energy quantum absorbed by RET. Consequently, while capable of triggering the exergonic activating pathway, anhydroretinol fails to activate the endergonic silencing path, trapping PKCδ in the ON position and causing harmful levels of reactive oxygen species. However, physiological retinol levels displace anhydroretinol, buffer cyotoxicity and potentially render anhydroretinol useful for rapid energy generation. Intriguingly, apocarotenoids, the primary products of the mitochondrial β-carotene,9'-10'-oxygenase, have all the anhydroretinol-like features, including modulation of energy homeostasis. We predict significant conceptual advances to stem from further understanding of the retinoid-catalyzed RET.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Insertion Depth Modulates Protein Kinase C-δ-C1b Domain Interactions with Membrane Cholesterol as Revealed by MD Simulations. Int J Mol Sci 2023; 24:ijms24054598. [PMID: 36902029 PMCID: PMC10002858 DOI: 10.3390/ijms24054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Protein kinase C delta (PKC-δ) is an important signaling molecule in human cells that has both proapoptotic as well as antiapoptotic functions. These conflicting activities can be modulated by two classes of ligands, phorbol esters and bryostatins. Phorbol esters are known tumor promoters, while bryostatins have anti-cancer properties. This is despite both ligands binding to the C1b domain of PKC-δ (δC1b) with a similar affinity. The molecular mechanism behind this discrepancy in cellular effects remains unknown. Here, we have used molecular dynamics simulations to investigate the structure and intermolecular interactions of these ligands bound to δC1b with heterogeneous membranes. We observed clear interactions between the δC1b-phorbol complex and membrane cholesterol, primarily through the backbone amide of L250 and through the K256 side-chain amine. In contrast, the δC1b-bryostatin complex did not exhibit interactions with cholesterol. Topological maps of the membrane insertion depth of the δC1b-ligand complexes suggest that insertion depth can modulate δC1b interactions with cholesterol. The lack of cholesterol interactions suggests that bryostatin-bound δC1b may not readily translocate to cholesterol-rich domains within the plasma membrane, which could significantly alter the substrate specificity of PKC-δ compared to δC1b-phorbol complexes.
Collapse
|
20
|
You Y, Mathukumali K, Das J. Comparison of the ligand binding site of C1 domains: a molecular dynamics simulation study of the C1 domain-phorbol 13-acetate-membrane system. J Biomol Struct Dyn 2023; 41:11796-11809. [PMID: 36602779 PMCID: PMC10319914 DOI: 10.1080/07391102.2022.2163699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
C1 domains are lipid-binding structural units of about 50 residues. Typical C1 domains associate with the plasma membrane and bind to diacylglycerol/phorbol ester during the activation of the proteins containing these domains. Although the overall structure of the C1 domains are similar, there are differences in their primary sequence and in the orientation of the ligand/lipid binding residues. To gain structural insights into the ligand/lipid binding, we performed molecular docking of phorbol 13-acetate into the C1 domain and 1.0 μs molecular dynamics simulation on the C1 domain-ligand-lipid ternary system for PKCθ C1A, PKCδ C1B, PKCβII C1B, PKCθ C1B, Munc13-1 C1, and βII-Chimaerin C1. We divided these C1 domains into three types based on the orientations of Gln-27 and Trp/Tyr-22. In type 1, Trp/Tyr-22 is outside and Gln-27 is inside the ligand binding pocket. In type 2, both Trp/Tyr-22 and Gln-27 are outside the ligand binding pocket, and in type 3, Trp/Tyr-22 is inside and Gln-27 is outside the pocket. The type 1 C1 domains showed higher ligand binding and higher membrane binding with a shorter distance between the C1 domain and the membrane than the type 2 and type 3. For ligand binding, Pro-11 plays a major role in the type 1 and 2, and Gly-23 in the type 1 and type 3 C1 domains. This study elucidates the role of Gln-27, Trp-22, Pro-11 and Gly-23 in ligand/lipid binding in typical C1 domains and bears significance in developing selective modulators of C1 domain-containing proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| | - Kavya Mathukumali
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, U.S.A
| |
Collapse
|
21
|
Tubiana T, Sillitoe I, Orengo C, Reuter N. Dissecting peripheral protein-membrane interfaces. PLoS Comput Biol 2022; 18:e1010346. [PMID: 36516231 PMCID: PMC9797079 DOI: 10.1371/journal.pcbi.1010346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral membrane proteins (PMPs) include a wide variety of proteins that have in common to bind transiently to the chemically complex interfacial region of membranes through their interfacial binding site (IBS). In contrast to protein-protein or protein-DNA/RNA interfaces, peripheral protein-membrane interfaces are poorly characterized. We collected a dataset of PMP domains representative of the variety of PMP functions: membrane-targeting domains (Annexin, C1, C2, discoidin C2, PH, PX), enzymes (PLA, PLC/D) and lipid-transfer proteins (START). The dataset contains 1328 experimental structures and 1194 AphaFold models. We mapped the amino acid composition and structural patterns of the IBS of each protein in this dataset, and evaluated which were more likely to be found at the IBS compared to the rest of the domains' accessible surface. In agreement with earlier work we find that about two thirds of the PMPs in the dataset have protruding hydrophobes (Leu, Ile, Phe, Tyr, Trp and Met) at their IBS. The three aromatic amino acids Trp, Tyr and Phe are a hallmark of PMPs IBS regardless of whether they protrude on loops or not. This is also the case for lysines but not arginines suggesting that, unlike for Arg-rich membrane-active peptides, the less membrane-disruptive lysine is preferred in PMPs. Another striking observation was the over-representation of glycines at the IBS of PMPs compared to the rest of their surface, possibly procuring IBS loops a much-needed flexibility to insert in-between membrane lipids. The analysis of the 9 superfamilies revealed amino acid distribution patterns in agreement with their known functions and membrane-binding mechanisms. Besides revealing novel amino acids patterns at protein-membrane interfaces, our work contributes a new PMP dataset and an analysis pipeline that can be further built upon for future studies of PMPs properties, or for developing PMPs prediction tools using for example, machine learning approaches.
Collapse
Affiliation(s)
- Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Wender PA, Gentry ZO, Fanelli DJ, Luu-Nguyen QH, McAteer OD, Njoo E. Practical synthesis of the therapeutic leads tigilanol tiglate and its analogues. Nat Chem 2022; 14:1421-1426. [PMID: 36192432 PMCID: PMC10079359 DOI: 10.1038/s41557-022-01048-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Tigilanol tiglate is a natural product diterpenoid in clinical trials for the treatment of a broad range of cancers. Its unprecedented protein kinase C isoform selectivity make it and its analogues exceptional leads for PKC-related clinical indications, which include human immunodeficiency virus and AIDS eradication, antigen-enhanced cancer immunotherapy, Alzheimer's disease and multiple sclerosis. Currently, the only source of tigilanol tiglate is a rain forest tree, Fontainea picrosperma, whose limited number and restricted distribution (northeastern Australia) has prompted consideration of designed tree plantations to address supply needs. Here we report a practical laboratory synthesis of tigilanol tiglate that proceeds in 12 steps (12% overall yield, >80% average yield per step) and can be used to sustainably supply tigilanol tiglate and its analogues, the latter otherwise inaccessible from the natural source. The success of this synthesis is based on a unique strategy for the installation of an oxidation pattern common to many biologically active tiglianes, daphnanes and their analogues.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Department of Systems and Chemical Biology, Stanford University, Stanford, CA, USA.
| | | | - David J Fanelli
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Owen D McAteer
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Edward Njoo
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Rovers E, Liu L, Schapira M. ProxyBind: a Compendium of Binding Sites for Proximity-Induced Pharmacology. Comput Struct Biotechnol J 2022; 20:6163-6171. [PMID: 36420167 PMCID: PMC9674861 DOI: 10.1016/j.csbj.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Proximity-induced pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 236 kinases, 45 phosphatases, 37 deubiquitinases, 14 methyltransferases, 11 acetyltransferases, 13 glycosyltransferases, 4 deacetylases, 7 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential and reveals novel opportunities to pharmacologically rewire molecular circuitries. All data is available from the ProxyBind database at https://polymorph.sgc.utoronto.ca/proxybind/index.php.
Collapse
|
24
|
Hu Y, Zhang RQ, Wang ZG, Liu SL. In Situ Quantification of Lipids in Live Cells by Using Lipid-Binding Domain-Based Biosensors. Bioconjug Chem 2022; 33:2076-2087. [DOI: 10.1021/acs.bioconjchem.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Heinonen S, Lautala S, Koivuniemi A, Bunker A. Insights into the behavior of unsaturated diacylglycerols in mixed lipid bilayers in relation to protein kinase C activation-A molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183961. [PMID: 35568204 DOI: 10.1016/j.bbamem.2022.183961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The lipid second messenger diacylglycerol (DAG) is known for its involvement in many types of cellular signaling, especially as an endogenous agonist for protein kinase C (PKC). Evidence has emerged that the degree of saturation of the DAG molecules can affect PKC activation. DAG molecules with different acyl chain saturation have not only been observed to induce varying extents of PKC activation, but also to express selectivity towards different PKC isozymes. Both qualities are important for precise therapeutic activation of PKC; understanding DAG behavior at the molecular level in different environments has much potential in the development of drugs to target PKC. We used molecular dynamics simulations to study the behavior of two different unsaturated DAG species in lipid environments with varying degrees of unsaturation. We focus on phosphatidylethanolamine (PE) instead of phosphatidylcholine (PC) to more accurately model the relevant biomembranes. The effect of cholesterol (CHOL) on these systems was also explored. We found that both high level of unsaturation in the acyl chains of the DAG species and presence of CHOL in the surrounding membrane increase DAG molecule availability at the lipid-water interface. This can partially explain the previously observed differences in PKC activation strength and specificity, the complete mechanism is, however, likely to be more complex. Our simulations coupled with the current understanding of lipids highlight the need for more simulations of biologically accurate lipid environments in order to determine the correct correlations between molecular mechanisms and biological behavior when studying PKC activation.
Collapse
Affiliation(s)
- Suvi Heinonen
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Saara Lautala
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Artturi Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
26
|
Aulakh SS, Bozelli JC, Epand RM. Exploring the AlphaFold Predicted Conformational Properties of Human Diacylglycerol Kinases. J Phys Chem B 2022; 126:7172-7183. [PMID: 36041230 DOI: 10.1021/acs.jpcb.2c04533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diacylglycerol kinases (DGKs) are important enzymes in molecular membrane biology, as they can lower the concentration of diacylglycerol through phosphorylation while at the same time producing phosphatidic acid. Dysfunction of DGK is linked with multiple diseases including cancer and autoimmune disorders. Currently, the high-resolution structures have not been determined for any of the 10 human DGK paralogs, which has made it difficult to gain a more complete understanding of the enzyme's mechanism of action and regulation. In the present study, we have taken advantage of the significant developments in protein structural prediction technology by artificial intelligence (i.e., Alphafold 2.0), to conduct a comprehensive investigation on the properties of all 10 human DGK paralogs. Structural alignment of the predictions reveals that the C1, catalytic, and accessory domains are conserved in their spatial arrangement relative to each other, across all paralogs. This suggests a critical role played by this domain architecture in DGK function. Moreover, docking studies corroborate the existence of a conserved ATP-binding site between the catalytic and accessory domains. Interestingly, the ATP bound to the interdomain cleft was also found to be in proximity of the conserved glycine-rich motif, which in protein kinases has been suggested to function in ATP binding. Lastly, the spatial arrangement of DGK, with respect to the membrane, reveals that most paralogs possess a more energetically favorable interaction with curved membranes. In conclusion, AlphaFold predictions of human DGKs provide novel insights into the enzyme's structural and functional properties while also paving the way for future experimentation.
Collapse
Affiliation(s)
- Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
27
|
Shoba VM, Munkanatta Godage DNP, Chaudhary SK, Deb A, Siriwardena SU, Choudhary A. Synthetic Reprogramming of Kinases Expands Cellular Activities of Proteins. Angew Chem Int Ed Engl 2022; 61:e202202770. [DOI: 10.1002/anie.202202770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Veronika M. Shoba
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Dhanushka N. P. Munkanatta Godage
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Santosh K. Chaudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Sachini U. Siriwardena
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
28
|
Yanagita RC, Otani M, Hatanaka S, Nishi H, Miyake S, Hanaki Y, Sato M, Kawanami Y, Irie K. Analysis of binding mode of vibsanin A with protein kinase C C1 domains: An experimental and molecular dynamics simulation study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Shoba VM, Munkanatta Godage DNP, Chaudhary SK, Deb A, Siriwardena SU, Choudhary A. Synthetic Reprogramming of Kinases Expands Cellular Activities of Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veronika M. Shoba
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Dhanushka N. P. Munkanatta Godage
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Santosh K. Chaudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Sachini U. Siriwardena
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
30
|
Katti SS, Krieger IV, Ann J, Lee J, Sacchettini JC, Igumenova TI. Structural anatomy of Protein Kinase C C1 domain interactions with diacylglycerol and other agonists. Nat Commun 2022; 13:2695. [PMID: 35577811 PMCID: PMC9110374 DOI: 10.1038/s41467-022-30389-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Diacylglycerol (DAG) is a versatile lipid whose 1,2-sn-stereoisomer serves both as second messenger in signal transduction pathways that control vital cellular processes, and as metabolic precursor for downstream signaling lipids such as phosphatidic acid. Effector proteins translocate to available DAG pools in the membranes by using conserved homology 1 (C1) domains as DAG-sensing modules. Yet, how C1 domains recognize and capture DAG in the complex environment of a biological membrane has remained unresolved for the 40 years since the discovery of Protein Kinase C (PKC) as the first member of the DAG effector cohort. Herein, we report the high-resolution crystal structures of a C1 domain (C1B from PKCδ) complexed to DAG and to each of four potent PKC agonists that produce different biological readouts and that command intense therapeutic interest. This structural information details the mechanisms of stereospecific recognition of DAG by the C1 domains, the functional properties of the lipid-binding site, and the identities of the key residues required for the recognition and capture of DAG and exogenous agonists. Moreover, the structures of the five C1 domain complexes provide the high-resolution guides for the design of agents that modulate the activities of DAG effector proteins.
Collapse
Affiliation(s)
- Sachin S. Katti
- grid.264756.40000 0004 4687 2082Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840 USA
| | - Inna V. Krieger
- grid.264756.40000 0004 4687 2082Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840 USA
| | - Jihyae Ann
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jeewoo Lee
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - James C. Sacchettini
- grid.264756.40000 0004 4687 2082Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840 USA
| | - Tatyana I. Igumenova
- grid.264756.40000 0004 4687 2082Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840 USA
| |
Collapse
|
31
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Recombinant humanized IgG1 maintain liver triglyceride homeostasis through Arylacetamide deacetylase in ApoE -/- mice. Int Immunopharmacol 2022; 108:108741. [PMID: 35397394 DOI: 10.1016/j.intimp.2022.108741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Hyperlipidemia is a lipid metabolism disorder associated with elevated serum triglyceride (TG) and/or cholesterol. Over the years, studies have shown that hyperlipidemia is associated with combordities, incluing diabetes and obesity, gradually becoming a public health concern. Current treatment approaches remain limited due to the lack of effective drugs. Here we investigated the function of recombinant humanized IgG1 in maintaining liver TG homeostasis and the underlying mechanisms. METHODS ApoE-/- mice were fed a high-fat diet (HFD) for 20 weeks to induce hyperlipidemia. RNA sequencing (RNA-Seq) was performed to identify differences in gene expression in different groups of ApoE-/- mice liver. In vitro lipid accumulation in primary mouse hepatocytes was induced using a free fatty acid (FFA) mixture. Gene and protein expression were assessed in primary mouse hepatocytes by qPCR and Western blot. Gene reporter assays and ChIP-PCR were used to determine arylacetamide deacetylase (Aadac) promoter activity. RESULTS Recombinant humanized IgG1 could significantly decrease the serum level of TG and low-density lipoproteins (LDL-C). Moreover, hepatic TG and lipid droplets were also reduced compared to the HFD group. Mouse liver RNA-Seq revealed that administration of recombinant humanized IgG1 significantly elevated the expression of Aadac. In vitro, knock-down of Aadac could nullify the effect of recombinant humanized IgG1 on decreasing the lipid droplets induced by FFA in primary mouse hepatocytes. Gene Reporter assays and ChIP-PCR demonstrated that the foxa1 response element in the Aadac promoter played a key role in Aadac expression induced by recombinant humanized IgG1. Moreover, recombinant humanized IgG1 repressed phosphorylation of PKCδ and resulted in foxa1 elevation. Finally, neonatal Fc receptor (FcRn) knock-down reversed the effect of recombinant humanized IgG1 on the expression of PKCδ phosphorylation, foxa1 and Aadac. CONCLUSIONS Our findings suggest that recombinant humanized IgG1 plays an important role in maintaining liver TG homeostasis via the FcRn/PKCδ/foxa1/Aadac pathway.
Collapse
|
33
|
Qin X, Liu B, Gao F, Hu Y, Chen Z, Xu J, Zhang X. Gluconolactone Alleviates Myocardial Ischemia/Reperfusion Injury and Arrhythmias via Activating PKCε/Extracellular Signal-Regulated Kinase Signaling. Front Physiol 2022; 13:856699. [PMID: 35360251 PMCID: PMC8964113 DOI: 10.3389/fphys.2022.856699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Gluconolactone (D-glucono-1,5-lactone or GDL) is a food additive which presents in dietary products such as tofu, yogurt, cheese, bread, wine, etc. GDL has long been considered as a free radical scavenger; however, its role in cardioprotection remains elusive. In this study, using a mouse model of myocardial ischemia/reperfusion (I/R) injury and a model of hypoxia/reoxygenation (H/R) in neonatal rat cardiomyocytes (NRCM), we explored the role of GDL in I/R injury. We found that GDL (5 mg/kg, i.p.) attenuated myocardial I/R injury as evidenced by decreased infarct size, release of cardiac injury markers and apoptosis. Additionally, GDL decreased reperfusion-induced arrhythmias and oxidative stress. These effects were also observed in parallel in vitro studies. Mechanistically, we found that GDL treatment was strongly associated with activation of pro-survival extracellular signal-regulated kinase (ERK) signaling both in vivo and in vitro, and pharmacological inhibition of ERK signaling via U0126 attenuated GDL-induced cardioprotection against H/R injury in NRCM cells. To reveal how GDL regulates ERK signaling, we predicted the putative targets of GDL by Swiss Target Prediction, and protein kinase C (PKC) emerged as the most promising target for GDL. By pharmacological intervention and immunofluorescence, we found that PKCε, an important member of the PKC family, was activated after GDL treatment in heart, thereby leading to ERK activation and cardioprotection against I/R injury. Taken together, our results demonstrated that GDL acts as a potent activator of PKCε and, thus, provides cardioprotection against I/R injury via activation of ERK signaling.
Collapse
Affiliation(s)
- Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Binghua Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Feng Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yuanyuan Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Ziwei Chen
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi’an Medical University, Xi’an, China
| | - Jie Xu
- Department of Cardiology, 986th Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jie Xu,
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Xing Zhang,
| |
Collapse
|
34
|
El-Desoky AHH, Eguchi K, Kishimoto N, Asano T, Kato H, Hitora Y, Kotani S, Nakamura T, Tsuchiya S, Kawahara T, Watanabe M, Wada M, Nakajima M, Watanabe T, Misumi S, Tsukamoto S. Isolation, Synthesis, and Structure-Activity Relationship Study on Daphnane and Tigliane Diterpenes as HIV Latency-Reversing Agents. J Med Chem 2022; 65:3460-3472. [PMID: 35113551 DOI: 10.1021/acs.jmedchem.1c01973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Three new diterpenes, stellejasmins A (1) and B (2) and 12-O-benzoylphorbol-13-heptanoate (3), were isolated from the roots of Stellera chamaejasme L. The structures of 1-3 were elucidated by extensive NMR and mass spectroscopic analyses. Compounds 1 and 2 are the first derivatives containing a hydroxy group at C-2 in the family of daphnane and tigliane diterpenes. The presence of a chlorine atom in 1 is unique in the plant metabolite. Compound 3 has an odd-number acyl group, which is biosynthetically notable. Human immunodeficiency virus (HIV) LTR-driven transcription activity was tested with 1-3 and 17 known diterpenes isolated from S. chamaejasme L. and Wikstroemia retusa A.Gray. Among these, gnidimacrin (4), stelleralide A (5), and wikstroelide A (20) were highly potent, with EC50 values of 0.14, 0.33, and 0.39 nM, respectively. The structure-activity relationship (SAR) was investigated using 20 natural and eight synthetic diterpenes. This is the first SAR study on natural daphnane and tigliane diterpenes.
Collapse
Affiliation(s)
- Ahmed H H El-Desoky
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.,Pharmaceutical Industries Research Division, Pharmacognosy Department, National Research Centre, 33 El Bohouth Street (Former El Tahrir Street), P.O. Box 12622, Dokki, Giza 12511, Egypt
| | - Keisuke Eguchi
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Toshifumi Asano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hikaru Kato
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.,Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Teruya Nakamura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Teppei Kawahara
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Masato Watanabe
- Technical Division, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Mikiyo Wada
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Takashi Watanabe
- Department of Medicinal Botany, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
35
|
Maki J, Oshimura A, Tsukano C, Yanagita RC, Saito Y, Sakakibara Y, Irie K. AI and computational chemistry-accelerated development of an alotaketal analogue with conventional PKC selectivity. Chem Commun (Camb) 2022; 58:6693-6696. [DOI: 10.1039/d2cc01759h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein kinase C (PKC) family consists of ten isozymes and is a potential target for treating cancer, Alzheimer’s disease, and HIV infection. Since known natural PKC agonists have little...
Collapse
|
36
|
You Y, Das J. Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane. J Biomol Struct Dyn 2022; 40:14160-14175. [PMID: 34779746 PMCID: PMC9482821 DOI: 10.1080/07391102.2021.2001375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Munc13-1 is a presynaptic active zone protein that plays a critical role in priming the synaptic vesicle and releasing neurotransmitters in the brain. Munc13-1 acts as a scaffold and is activated when diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane. Our previous studies showed that bryostatin 1 activated the Munc13-1, but resveratrol inhibited the phorbol ester-induced Munc13-1 activity. To gain structural insights into the binding of the ligand into Munc13-1 C1 in the membrane, we conducted 1.0 μs molecular dynamics (MD) simulation on Munc13-1 C1-ligand-lipid ternary system using phorbol 13-acetate, bryostatin 1 and resveratrol as ligands. Munc13-1 C1 shows higher conformational stability and less mobility along membrane with phorbol 13-acetate and bryostatin 1 than with resveratrol. Bryostatin 1 and phorbol ester remained in the protein active site, but resveratrol moved out of Munc13-1 C1 during the MD simulation. While bryostatin 1-bound Munc13-1 C1 showed two different positioning in the membrane, phorbol 13-acetate and resveratrol-bound Munc13-1 C1 only showed one positioning. Phorbol 13-acetate formed hydrogen bond with Ala-574 and Gly-589. Bryostatin 1 had more hydrogen bonds with Trp-588 and Arg-592 than with other residues. Resveratrol formed hydrogen bond with Ile-590. This study suggests that different ligands control Munc13-1 C1's mobility and positioning in the membrane differently. Ligand also has a critical role in the interaction between Munc13-1 C1 and lipid membrane. Our results provide structural basis of the pharmacological activity of the ligands and highlight the importance of membrane in Munc13-1 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Joydip Das
- To whom to address correspondence at: Joydip Das, Department of Pharmacological and Pharmaceutical Sciences, Health 2, 4849 Calhoun Road, Room 3044, Houston TX 77204-5037. ; Tel: 713-743-1708; FAX 713-743-1229
| |
Collapse
|
37
|
Linciano P, Nasti R, Listro R, Amadio M, Pascale A, Potenza D, Vasile F, Minneci M, Ann J, Lee J, Zhou X, Mitchell GA, Blumberg PM, Rossi D, Collina S. Chiral 2-phenyl-3-hydroxypropyl esters as PKC-alpha modulators: HPLC enantioseparation, NMR absolute configuration assignment, and molecular docking studies. Chirality 2021; 34:498-513. [PMID: 34962318 DOI: 10.1002/chir.23406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. In our previous work, we identified in racemate 1-2, based on the 2-benzyl-3-hydroxypropyl ester scaffold, two new potent and promising PKCα and PKCδ ligands, targeting the C1 domain of these two kinases. Herein, we report the resolution of the racemates by enantioselective semi-preparative HPLC. The attribution of the absolute configuration (AC) of homochirals 1 was performed by NMR, via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (MTPA or Mosher's acid). Moreover, the match between the experimental and predicted electronic circular dichroism (ECD) spectra confirmed the assigned AC. These results proved that Mosher's esters can be properly exploited for the determination of the AC also for chiral primary alcohols. Lastly, homochiral 1 and 2 were assessed for binding affinity and functional activity against PKCα. No significative differences in the Ki of the enantiopure compounds was observed, thus suggesting that chirality does not seem to play a significant role in targeting PKC C1 domain. These results are in accordance with the molecular docking studies performed using a new homology model for the human PKCαC1B domain.
Collapse
Affiliation(s)
| | - Rita Nasti
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Alessia Pascale
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | | | - Marco Minneci
- Department of Chemistry, University of Milan, Milan, Italy
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiaoling Zhou
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Agarwal P, Saha S, Hariprasad P. Agro-industrial-residues as potting media: physicochemical and biological characters and their influence on plant growth. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1-24. [PMID: 34660165 PMCID: PMC8500816 DOI: 10.1007/s13399-021-01998-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Nursery cultivation is recognized globally as an intensive production system to support quality seedlings as well as to manage resources efficiently. Apart from other factors, potting media (PM) play a crucial role in determining the success of nursery cultivation. Worldwide, peat is the most commonly used substrate in PM because of its favorable physicochemical properties. However, due to ascending environmental and ecological concerns regarding the use of peat, a variety of new substrates have been used/tested by researchers/practitioners/growers as PM. Bark, coir pith, wood fiber, compost derived from various agro-residues, and vermicompost either alone or in combination are some of the commonly explored substrates and found to have the potential to replace peat to a greater extent. In lieu of availability, abundance, low cost, and no/low processing requirement, the use of agro-industrial residue (AIR) in the PM is the current trend. However, challenges associated with their adoption cannot be ignored. The present review is focused on providing collective information, scientific knowledge and detailed analysis of various AIR used in PM. The critical evidence-based review would help in developing a consistent approach for the identification, selection and characterization of a new renewable substrate. In addition, it would help in developing a rationale understanding of the practical and economic realities involved in the adoption of the same in PM. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13399-021-01998-6.
Collapse
Affiliation(s)
- Pratibha Agarwal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi India
| | - P. Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi India
| |
Collapse
|
39
|
Zhang S, Xu Y, Zeng L, An X, Su D, Qu Y, Ma J, Tang X, Wang X, Yang J, Mishra C, Chandra SR, Ai J. Epigallocatechin-3-Gallate Allosterically Activates Protein Kinase C-α and Improves the Cognition of Estrogen Deficiency Mice. ACS Chem Neurosci 2021; 12:3672-3682. [PMID: 34505505 DOI: 10.1021/acschemneuro.1c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein kinase C (PKC) isozymes play essential roles in biological processes, and activation of PKC is proposed to alleviate the symptoms of a variety of diseases. It would be of great significance to find effective pharmacological modulators of PKC isozymes that can be translated for clinical use. Here, using in vitro activity assay, we demonstrated that green tea extract (-)-epigallocatechin-3-gallate (EGCG) dose-dependently activated PKCα with a half effective concentration (EC50) of 0.49 μM. We also performed surface plasmon resonance analysis and found that EGCG binds PKCα with an equilibrium dissociation constant (KD) value of 4.11 × 10-6 mol/L. Further computational flexible docking analysis revealed that EGCG interacted with the catalytic C3-C4 domain of PKCα (PDB: 4RA4) through establishing polar hydrogen bonds with V420, T401, E387, and K368 of PKCα, and the benzene ring group of EGCG hydrophobically interacted with the hydrophobic pocket formed by L345, M470, I479, and V353 of PKCα. Interestingly, the PKCα-selective blocker Ro-32-0432 could compete with EGCG for the same substrate-binding pocket of PKCα. Moreover, we found that EGCG dose-dependently improved the spatial memory, object recognition ability, and hippocampal long-term potentiation of ovariectomized mice, which was offset by Ro-32-0432. Collectively, our findings reveal a novel PKCα agonist and open the way to a new perspective on PKCα pharmacology and the treatment of PKCα-related diseases, including cognitive impairment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lu Zeng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiaobin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Dan Su
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xin Tang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Junkai Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Shah Ram Chandra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
40
|
Neehus AL, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, Karakoc-Aydiner E, Baris S, Yildiran A, Altundag E, Roynard M, Haake K, Migaud M, Dorgham K, Gorochov G, Abel L, Lachmann N, Dogu F, Haskologlu S, İnce E, El-Benna J, Uzel G, Kiykim A, Boztug K, Roderick MR, Shahrooei M, Brogan PA, Abolhassani H, Hancioglu G, Parvaneh N, Belot A, Ikinciogullari A, Casanova JL, Puel A, Bustamante J. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med 2021; 218:e20210501. [PMID: 34264265 PMCID: PMC8288504 DOI: 10.1084/jem.20210501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Ahmet Özen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Alisan Yildiran
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Engin Altundag
- Department of Medical Genetics, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Karim Dorgham
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Guy Gorochov
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Erdal İnce
- Department of Pediatric Infectious Disease, Ankara University School of Medicine, Ankara, Turkey
| | - Jamel El-Benna
- University of Paris, Institut National de la Santé et de la Recherche Médical U1149, Centre National de la Recherche Scientifique-ERL8252, Paris, France
- Center for Research on Inflammation, Laboratory of Excellence Inflamex, Faculty of Medicine, Xavier Bichat, Paris, France
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University Pediatric Training and Research Hospital, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Marion R. Roderick
- Pediatric Immunology and Infectious Disease, Bristol Royal Hospital for Children, Bristol, UK
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul A. Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, University College London Institute of Child Health, London, UK
| | - Hassan Abolhassani
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Gonca Hancioglu
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Nima Parvaneh
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Reference Center for Rare Rheumatic and Autoimmune Diseases in Children, Pediatric Rheumatology, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, UMS3444/US8 Lyon University, Lyon, France
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| |
Collapse
|
41
|
Cole TR, Igumenova TI. Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopy. Front Mol Biosci 2021; 8:728711. [PMID: 34447788 PMCID: PMC8382798 DOI: 10.3389/fmolb.2021.728711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd2+ spontaneously replaced Zn2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd2+ substitution for Zn2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys3His metal-ion sites of C1B have higher affinity to Cd2+ than Zn2+, but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd2+. Our results indicate that Cd2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.
Collapse
Affiliation(s)
- Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
42
|
Elhalem E, Bellomo A, Cooke M, Scravaglieri A, Pearce LV, Peach ML, Gandolfi Donadío L, Kazanietz MG, Comin MJ. Design, Synthesis, and Characterization of Novel sn-1 Heterocyclic DAG-Lactones as PKC Activators. J Med Chem 2021; 64:11418-11431. [PMID: 34279947 DOI: 10.1021/acs.jmedchem.1c00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DAG-lactones represent useful templates for the design of potent and selective C1 domain ligands for PKC isozymes. The ester moiety at the sn-1 position, a common feature in this template, is relevant for C1 domain interactions, but it represents a labile group susceptible to endogenous esterases. An interesting challenge involves replacing the ester group of these ligands while still maintaining biological activity. Here, we present the synthesis and functional characterization of novel diacylglycerol-lactones containing heterocyclic ring substituents at the sn-1 position. Our results showed that the new compound 10B12, a DAG-lactone with an isoxazole ring, binds PKCα and PKCε with nanomolar affinity. Remarkably, 10B12 displays preferential selectivity for PKCε translocation in cells and induces a PKCε-dependent reorganization of the actin cytoskeleton into peripheral ruffles in lung cancer cells. We conclude that introducing a stable isoxazole ring as an ester surrogate in DAG-lactones emerges as a novel structural approach to achieve PKC isozyme selectivity.
Collapse
Affiliation(s)
- Eleonora Elhalem
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
| | - Ana Bellomo
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania 19141, United States
| | - Antonella Scravaglieri
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
| | - Larry V Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, United States
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Lucía Gandolfi Donadío
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - María J Comin
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina
| |
Collapse
|
43
|
Watson L, Soliman TN, Davis K, Kelly J, Lockwood N, Yang X, Lynham S, Scott JD, Crossland V, McDonald NQ, Mann DJ, Armstrong A, Eggert U, Parker PJ. Co-ordinated control of the Aurora B abscission checkpoint by PKCε complex assembly, midbody recruitment and retention. Biochem J 2021; 478:2247-2263. [PMID: 34143863 PMCID: PMC8238520 DOI: 10.1042/bcj20210283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
A requirement for PKCε in exiting from the Aurora B dependent abscission checkpoint is associated with events at the midbody, however, the recruitment, retention and action of PKCε in this compartment are poorly understood. Here, the prerequisite for 14-3-3 complex assembly in this pathway is directly linked to the phosphorylation of Aurora B S227 at the midbody. However, while essential for PKCε control of Aurora B, 14-3-3 association is shown to be unnecessary for the activity-dependent enrichment of PKCε at the midbody. This localisation is demonstrated to be an autonomous property of the inactive PKCε D532N mutant, consistent with activity-dependent dissociation. The C1A and C1B domains are necessary for this localisation, while the C2 domain and inter-C1 domain (IC1D) are necessary for retention at the midbody. Furthermore, it is shown that while the IC1D mutant retains 14-3-3 complex proficiency, it does not support Aurora B phosphorylation, nor rescues division failure observed with knockdown of endogenous PKCε. It is concluded that the concerted action of multiple independent events facilitates PKCε phosphorylation of Aurora B at the midbody to control exit from the abscission checkpoint.
Collapse
Affiliation(s)
- Lisa Watson
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Tanya N. Soliman
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Joanna Kelly
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Xiaoping Yang
- Proteomics Facility, King's College London, Denmark Hill Campus, London SE5 9NU, U.K
| | - Steven Lynham
- Proteomics Facility, King's College London, Denmark Hill Campus, London SE5 9NU, U.K
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Victoria Crossland
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Neil Q. McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, U.K
| | - David J. Mann
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Alan Armstrong
- Department of Chemistry, Imperial College London White City Campus, London W12 0BZ, U.K
| | - Ulrike Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, U.K
- Department of Chemistry, King's College London, London SE1 1UL, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, U.K
| |
Collapse
|
44
|
Serrano-López EM, López-Martínez D, Gómez-Fernández JC, Egea-Jiménez AL, Corbalán-García S. PKCε controls the fusion of secretory vesicles in mast cells in a phosphatidic acid-dependent mode. Int J Biol Macromol 2021; 185:377-389. [PMID: 34147527 DOI: 10.1016/j.ijbiomac.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
PKCε is highly expressed in mast cells and plays a fundamental role in the antigen-triggered activation of the allergic reaction. Although its regulation by diacylglycerols has been described, its regulation by acidic phospholipids and how this regulation leads to the control of downstream vesicle secretion is barely known. Here, we used structural and evolutionary studies to find the molecular mechanism that explains the selectivity of the C1B domain of PKCε by Phosphatidic Acid (PA). This resided in a collection of Arg residues that form a specific rim on the outer surface of the C1B domain, around the diacylglycerol binding cleft. In RBL-2H3 cells, this basic rim allowed the kinase to respond specifically to phosphatidic acid signals that induced its translocation to the plasma membrane and subsequent activation. Further experiments in cells that overexpress PKCε and a mutant of the PA binding site, showed that PA-dependent PKCε activation increased vesicle degranulation in RBL-2H3 cells, and this correlated with increased SNAP23 phosphorylation. Over-expression of PKCε in these cells also induced an increase in the number of docked vesicles containing SNAP23, when stimulated with PA. This accumulation could be attributed to the stabilizing effect of phosphorylation on the formation of the SNARE complex, which ultimately led to increased release of content in the presence of Ca2+ during the fusion process. Therefore, these findings reinforce the importance of PA signaling in the activation of PKCε, which could be an important target to inhibit the exacerbated responses of these cells in the allergic reaction.
Collapse
Affiliation(s)
- Emilio M Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain
| | - David López-Martínez
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain
| | - Juan C Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain.
| | - Antonio Luis Egea-Jiménez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe labellisée LIGUE 2018, Aix-Marseille Université, Marseille F-13284, France; Inserm U1068, Institut Paoli-Calmettes, and CNRS UMR7258, Marseille F-13009, France.
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, IMIB, CEIR Campus Mare Nostrum (CMN), Campus Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
45
|
Rufenach B, Van Petegem F. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 2021; 297:100874. [PMID: 34129875 PMCID: PMC8258685 DOI: 10.1016/j.jbc.2021.100874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, an intriguing mechanical coupling exists between two ion channels from different membranes: the L-type voltage-gated calcium channel (CaV1.1), located in the plasma membrane, and ryanodine receptor 1 (RyR1) located in the sarcoplasmic reticulum membrane. Excitable cells rely on Cavs to initiate Ca2+ entry in response to action potentials. RyRs can amplify this signal by releasing Ca2+ from internal stores. Although this process can be mediated through Ca2+ as a messenger, an overwhelming amount of evidence suggests that RyR1 has recruited CaV1.1 directly as its voltage sensor. The exact mechanisms that underlie this coupling have been enigmatic, but a recent wave of reports have illuminated the coupling protein STAC3 as a critical player. Without STAC3, the mechanical coupling between Cav1.1 and RyR1 is lost, and muscles fail to contract. Various sequence variants of this protein have been linked to congenital myopathy. Other STAC isoforms are expressed in the brain and may serve as regulators of L-type CaVs. Despite the short length of STACs, several points of contacts have been proposed between them and CaVs. However, it is currently unclear whether STAC3 also forms direct interactions with RyR1, and whether this modulates RyR1 function. In this review, we discuss the 3D architecture of STAC proteins, the biochemical evidence for their interactions, the relevance of these connections for functional modulation, and their involvement in myopathy.
Collapse
Affiliation(s)
- Britany Rufenach
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
46
|
Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021; 10:cells10051191. [PMID: 34068055 PMCID: PMC8152464 DOI: 10.3390/cells10051191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.
Collapse
|
47
|
Ezzanad A, Gómez-Oliva R, Escobar-Montaño F, Díez-Salguero M, Geribaldi-Doldan N, Dominguez-Garcia S, Botubol-Ares JM, Reyes CDL, Durán-Patrón R, Nunez-Abades P, Macías-Sánchez AJ, Castro C, Hernández-Galán R. Phorbol Diesters and 12-Deoxy-16-hydroxyphorbol 13,16-Diesters Induce TGFα Release and Adult Mouse Neurogenesis. J Med Chem 2021; 64:6070-6084. [PMID: 33945688 DOI: 10.1021/acs.jmedchem.1c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A small library of phorbol 12,13-diesters bearing low lipophilicity ester chains was prepared as potential neurogenic agents in the adult brain. They were also used in a targeted UHPLC-HRMS screening of the latex of Euphorbia resinifera. Two new 12-deoxy-16-hydroxyphorbol 13,16-diesters were isolated, and their structures were deduced using two-dimensional NMR spectroscopy and NOE experiments. The ability of natural and synthetic compounds to stimulate transforming growth factor alpha (TFGα) release, to increase neural progenitor cell proliferation, and to stimulate neurogenesis was evaluated. All compounds that facilitated TGFα release promoted neural progenitor cell proliferation. The presence of two acyloxy moieties on the tigliane skeleton led to higher levels of activity, which decreased when a free hydroxyl group was at C-12. Remarkably, the compound bearing isobutyryloxy groups was the most potent on the TGFα assay and at inducing neural progenitor cell proliferation in vitro, also leading to enhanced neurogenesis in vivo when administered intranasally to mice.
Collapse
Affiliation(s)
- Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Felipe Escobar-Montaño
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Mónica Díez-Salguero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain
| | | | - Samuel Dominguez-Garcia
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - José Manuel Botubol-Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Carolina de Los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain.,Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain.,Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
48
|
You Y, Katti S, Yu B, Igumenova TI, Das J. Probing the Diacylglycerol Binding Site of Presynaptic Munc13-1. Biochemistry 2021; 60:1286-1298. [PMID: 33818064 PMCID: PMC8906797 DOI: 10.1021/acs.biochem.1c00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Munc13-1 is a presynaptic active zone protein that acts as a master regulator of synaptic vesicle priming and neurotransmitter release in the brain. It has been implicated in the pathophysiology of several neurodegenerative diseases. Diacylglycerol and phorbol ester activate Munc13-1 by binding to its C1 domain. The objective of this study is to identify the structural determinants of ligand binding activity of the Munc13-1 C1 domain. Molecular docking suggested that residues Trp-588, Ile-590, and Arg-592 of Munc13-1 are involved in ligand interactions. To elucidate the role of these three residues in ligand binding, we generated W588A, I590A, and R592A mutants in full-length Munc13-1, expressed them as GFP-tagged proteins in HT22 cells, and measured their ligand-induced membrane translocation by confocal microscopy and immunoblotting. The extent of 1,2-dioctanoyl-sn-glycerol (DOG)- and phorbol ester-induced membrane translocation decreased in the following order: wild type > I590A > W588A > R592A and wild type > W588A > I590A > R592A, respectively. To understand the effect of the mutations on ligand binding, we also measured the DOG binding affinity of the isolated wild-type C1 domain and its mutants in membrane-mimicking micelles using nuclear magnetic resonance methods. The DOG binding affinity decreased in the following order: wild type > I590A > R592A. No binding was detected for W588A with DOG in micelles. This study shows that Trp-588, Ile-590, and Arg-592 are essential determinants for the activity of Munc13-1 and the effects of the three residues on the activity are ligand-dependent. This study bears significance for the development of selective modulators of Munc13-1.
Collapse
Affiliation(s)
- Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| | - Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Binhan Yu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
49
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
50
|
Katti S, Igumenova TI. Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Adv Biol Regul 2021; 79:100784. [PMID: 33526356 PMCID: PMC8867786 DOI: 10.1016/j.jbior.2020.100784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Protein Kinase C isoenzymes (PKCs) are the key mediators of the phosphoinositide signaling pathway, which involves regulated hydrolysis of phosphatidylinositol (4,5)-bisphosphate to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate. Dysregulation of PKCs is implicated in many human diseases making this class of enzymes an important therapeutic target. Specifically, the DAG-sensing cysteine-rich conserved homology-1 (C1) domains of PKCs have emerged as promising targets for pharmaceutical modulation. Despite significant progress, the rational design of the C1 modulators remains challenging due to difficulties associated with structure determination of the C1-ligand complexes. Given the dearth of experimental structural data, computationally derived models have been instrumental in providing atomistic insight into the interactions of the C1 domains with PKC agonists. In this review, we provide an overview of the in silico approaches for seven classes of C1 modulators and outline promising future directions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States.
| |
Collapse
|