1
|
Lozovska A, Korovesi AG, Dias A, Lopes A, Fowler DA, Martins GG, Nóvoa A, Mallo M. Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape. Nat Commun 2024; 15:2509. [PMID: 38509075 PMCID: PMC10954616 DOI: 10.1038/s41467-024-46870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.
Collapse
Affiliation(s)
- Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Artemis G Korovesi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandre Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Donald A Fowler
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
2
|
Matsumoto K, Matsumoto Y, Nawachi S, Asano Y, Katayama Y, Miyawaki Y, Katsuyama T, Katsuyama E, Nasu Y, Sada KE, Wada J. The first presentation of a case of nail-patella syndrome newly diagnosed at the onset of rheumatoid arthritis: a case report. BMC Musculoskelet Disord 2024; 25:139. [PMID: 38355529 PMCID: PMC10865650 DOI: 10.1186/s12891-024-07242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Nail-patella syndrome (NPS) is a rare autosomal dominant disorder that is characterized by dysplasia of the nails, hypoplasia and/or dislocation of the patella and the presence of iliac horns. Using the CARE guidelines, we present the first reported case of NPS that was newly diagnosed at the onset of rheumatoid arthritis (RA). CASE PRESENTATION A 74-year-old man was admitted to our hospital due to an 8-month history of arthralgia in bilateral wrists, elbows and fingers. He had a past history of glaucoma and left patella dislocation that had been operatively recentered at the age of 15 years. Laboratory data showed elevated levels of serum C-reactive protein and rheumatoid factor and an elevated titer of anti-SS-A antibodies, while estimated glomerular filtration rate (eGFR), titers of other antibodies and the results of a urinary test were normal. An X-ray showed deformity of bilateral radial heads and the right elbow, and magnetic resonance imaging (MRI) of his hands showed synovitis and erosion in the multiple swollen joints of the wrists and fingers. In addition to these typical features of RA, he had bilateral thumb nail dysplasia with mild hypoplasia of bilateral patellae and iliac horns as shown by the X-ray. He was diagnosed as having autosomal dominant disorder NPS co-existing with RA and he was treated with methotrexate in combination with an oral Janus kinase (JAK) inhibitor, leading to induction of remission. CONCLUSIONS We have presented a rare case of NPS that was newly diagnosed at the onset of RA. Clinical and radiographic findings of NPS are highlighted in this case report for diagnosing NPS on the basis of typical manifestations.
Collapse
Affiliation(s)
- Kazuya Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
- Department of Rheumatology, Chugoku Central Hospital, 148-13 Kamiiwanari, Miyuki-Cho, Fukuyama, 720-0001, Japan.
| | - Shoichi Nawachi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yu Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Department of Clinical Epidemiology, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, 783-8505, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
3
|
Chen J, Xiang Q, Xiao X, Xu B, Xie H, Wang H, Yang M, Liu S. Identification of a novel LMX1B nonsense variant associated with congenital talipes equinovarus by prenatal exome sequencing: A case report. Mol Genet Genomic Med 2024; 12:e2303. [PMID: 37930140 PMCID: PMC10767578 DOI: 10.1002/mgg3.2303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Congenital talipes equinovarus (CTEV) is a rotational foot deformity that affects muscles, bones, connective tissue, and vascular or neurological tissues. The etiology of CTEV is complex and unclear, involving genetic and environmental factors. Nail-patella syndrome is an autosomal dominant disorder caused by variants of the LIM homeobox transcription factor 1 beta gene (LMX1B, OMIM:602575). LMX1B plays a key role in the development of dorsal limb structures, the kidneys, and the eyes, and variants in this gene may manifest as hypoplastic or absent patella, dystrophic nails, and elbow and iliac horn dysplasia; glomerulopathy; and adult-onset glaucoma, respectively. This study aimed to identify pathogenic variants in a fetus with isolated talipes equinovarus diagnosed by ultrasound in the second trimester, whose father exhibited dysplastic nails and congenital absence of bilateral patella. METHODS Prenatal whole-exome sequencing (WES) of the fetus and parents was performed to identify the genetic variant responsible for the fetal ultrasound abnormality, followed by validation using Sanger sequencing. RESULTS A novel heterozygous nonsense variant in exon 6 of LMX1B (c.844C>T, p.Gln282*) was identified in the fetus and the affected father but was not detected in any unaffected family members. This nonsense variant resulted in a premature termination codon at position 282, which may be responsible for the clinical phenotype through the loss of function of the gene product. CONCLUSIONS Our study indicating that a fetus carrying a novel nonsense variant of LMX1B (c.844C>T, p.Gln282*) can exhibit isolated talipes equinovarus, which expands the LMX1B genotypic spectrum and is advantageous for genetic counseling.
Collapse
Affiliation(s)
- Jing Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Qinqin Xiang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Bocheng Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hanbing Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
5
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Gene expression changes during the evolution of the tetrapod limb. Biol Futur 2022; 73:411-426. [PMID: 36355308 DOI: 10.1007/s42977-022-00136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Major changes in the vertebrate anatomy have preceded the conquest of land by the members of this taxon, and continuous changes in limb shape and use have occurred during the later radiation of tetrapods. While the main, conserved mechanisms of limb development have been discerned over the past century using a combination of classical embryological and molecular methods, only recent advances made it possible to identify and study the regulatory changes that have contributed to the evolution of the tetrapod appendage. These advances include the expansion of the model repertoire from traditional genetic model species to non-conventional ones, a proliferation of predictive mathematical models that describe gene interactions, an explosion in genomic data and the development of high-throughput methodologies. These revolutionary innovations make it possible to identify specific mutations that are behind specific transitions in limb evolution. Also, as we continue to apply them to more and more extant species, we can expect to gain a fine-grained view of this evolutionary transition that has been so consequential for our species as well.
Collapse
|
7
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
8
|
Tayebi N, Charng WL, Dickson PI, Dobbs MB, Gurnett CA. Diagnostic yield of exome sequencing in congenital vertical talus. Eur J Med Genet 2022; 65:104514. [PMID: 35487415 PMCID: PMC10039454 DOI: 10.1016/j.ejmg.2022.104514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/23/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Congenital vertical talus (CVT), also known as "rocker-bottom foot", is a rare foot deformity associated with a dislocation of the talonavicular joint. Although genetic causes of CVT have been described in single isolated and syndromic families, whole-exome sequencing (WES) of large cohorts have not yet been reported. METHODS In this study, 62 probands with CVT were evaluated for likely causative single nucleotide variants (SNVs) and copy number variants (CNVs) using WES. Segregation of variants within families was determined by Sanger sequencing. RESULTS In this cohort, CVT occurred as an isolated anomaly in 75.8% (47/62) and was familial in 19.3% (12/62) of cases. Analysis of WES data led to the identification of likely causative variants in known disease genes in 30.6% (19/62) of all CVT probands. More than one proband had likely causative SNVs in TSHZ1, GDF5, and LMX1B. Only two probands had likely causative CNVs: a chromosome 12q13.13 deletion of the 5' HOXC gene cluster, and a chromosome 18q22.3q23 deletion involving TSHZ1. Familial CVT was strongly predictive of identifying a molecular diagnosis [75% (9/12) of familial cases compared to 20% (10/50) of non-familial cases (Chi-square test, P-value = 0.0002)]. There was no difference in the solved rate based on isolated or syndromic presentation, unilateral or bilateral affectation, or sex. CONCLUSIONS CVT is genetically heterogeneous and more often caused by SNVs than CNVs. There is a high yield of WES in familial CVT cases (∼75%). Additional research is needed to identify the causes of sporadic CVT, which had much lower solved rates.
Collapse
Affiliation(s)
- Naeimeh Tayebi
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Patricia I Dickson
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - Matthew B Dobbs
- Department of Paley Orthopedic and Spine Institute, West Palm Beach, FL, 33401, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
9
|
Wang Y, Venkatesh A, Xu J, Xu M, Williams J, Smallwood PM, James A, Nathans J. The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development 2022; 149:275368. [PMID: 35552394 PMCID: PMC9148564 DOI: 10.1242/dev.200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
In central nervous system vascular endothelial cells, signaling via the partially redundant ligands WNT7A and WNT7B requires two co-activator proteins, GPR124 and RECK. WNT7A and RECK have been shown previously to play a role in limb development, but the mechanism of RECK action in this context is unknown. The roles of WNT7B and GPR124 in limb development have not been investigated. Using combinations of conventional and/or conditional loss-of-function alleles for mouse Wnt7a, Wnt7b, Gpr124 and Reck, including a Reck allele that codes for a protein that is specifically defective in WNT7A/WNT7B signaling, we show that reductions in ligand and/or co-activator function synergize to cause reduced and dysmorphic limb bone growth. Two additional limb phenotypes – loss of distal Lmx1b expression and ectopic growth of nail-like structures – occur with reduced Wnt7a/Wnt7b gene copy number and, respectively, with Reck mutations and with combined Reck and Gpr124 mutations. A third limb phenotype – bleeding into a digit – occurs with the most severe combinations of Wnt7a/Wnt7b, Reck and Gpr124 mutations. These data imply that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system functions as an integral unit in limb development. Summary: Genetic analyses in mice show that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system, first defined in the context of CNS angiogenesis and barrier development, also functions as an integral unit in limb development.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arjun Venkatesh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Identification of limb-specific Lmx1b auto-regulatory modules with Nail-patella syndrome pathogenicity. Nat Commun 2021; 12:5533. [PMID: 34545091 PMCID: PMC8452625 DOI: 10.1038/s41467-021-25844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis. Nail-patella syndrome (NPS) is characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma and can be caused by haploinsufficiency of LMX1B; however, not all patients harbor pathogenic LMX1B mutations. Here the authors show that loss-of-function variations in upstream enhancer sequences are responsible for a limb specific form of human NPS.
Collapse
|
11
|
Newton AH, Smith CA. Regulation of vertebrate forelimb development and wing reduction in the flightless emu. Dev Dyn 2021; 250:1248-1263. [PMID: 33368781 DOI: 10.1002/dvdy.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.
Collapse
Affiliation(s)
- Axel H Newton
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Gardin MA, Khor CC, Silva L, Krefting EA, Ritch R. Plateau iris syndrome and angle-closure glaucoma in a patient with nail-patella syndrome. Am J Ophthalmol Case Rep 2020; 20:100886. [PMID: 32954044 PMCID: PMC7486444 DOI: 10.1016/j.ajoc.2020.100886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 08/16/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To describe a case of plateau iris syndrome (PIS) and angle-closure glaucoma (ACG) in a patient with nail-patella syndrome (NPS). OBSERVATION A 33 year-old woman of Slovakian ancestry from Norway with a history of NPS presented with angle-closure secondary to plateau iris. At the time of her NPS diagnosis, she had no ocular pathology. Genetic testing revealed a rare de novo mutation in LMX1B [c.668G>C (p.Arg223Pro)]. Two years later, she experienced acute bilateral ocular pain and blurred vision in the setting of one year of reported visual loss. Subsequent ophthalmic examinations revealed closed angles and plateau iris OU with ACG OD and angle-closure OS. Perimetry showed superonasal visual field defects OD and no defects OS. Ocular coherence tomography (OCT) revealed thinning of the inferior pole of the optic nerve OD. Medical management proved ineffective. A laser peripheral iridotomy (LPI) OD was performed, without resolution of the angle-closure, and a diagnosis of plateau iris syndrome (PIS) was made. She was then treated with an argon laser peripheral iridoplasty (ALPI) and clear lens extraction with a posterior chamber intraocular lens (PCIOL) and goniosynechialysis OD, but her IOP remained elevated OU. She was referred to New York Eye and Ear Infirmary of Mount Sinai, where an LPI OS was performed, but angle-closure persisted, consistent with PIS. An ALPI OS with touch-up was performed, and her IOP normalized with dark-room gonioscopy revealing open angles OU. CONCLUSIONS AND IMPORTANCE NPS has been associated with ocular hypertension (OHTN) and open-angle glaucoma (OAG); however, to our knowledge, no association between NPS and angle-closure has previously been reported. The case described here, of a patient with a rare de novo mutation and ocular findings of PIS with associated ACG, represents a novel genetic and clinical presentation of NPS.
Collapse
Affiliation(s)
- Margot A. Gardin
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th St, New York, NY, 10003, USA
| | - Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Luis Silva
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th St, New York, NY, 10003, USA
| | - Einar A. Krefting
- Eye Department, University Hospital of North Norway, Sykehusvegen 38, 9019, Tromsø, Norway
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th St, New York, NY, 10003, USA
| |
Collapse
|
14
|
Heron CE, Flowers RH. Absent fingernails and missing finger skin folds in a 16-month-old boy. Pediatr Dermatol 2020; 37:e83-e84. [PMID: 33283927 DOI: 10.1111/pde.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Courtney E Heron
- Department of Dermatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - R Hal Flowers
- Department of Dermatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Abstract
The vertebrate limb continues to serve as an influential model of growth, morphogenesis and pattern formation. With this Review, we aim to give an up-to-date picture of how a population of undifferentiated cells develops into the complex pattern of the limb. Focussing largely on mouse and chick studies, we concentrate on the positioning of the limbs, the formation of the limb bud, the establishment of the principal limb axes, the specification of pattern, the integration of pattern formation with growth and the determination of digit number. We also discuss the important, but little understood, topic of how gene expression is interpreted into morphology.
Collapse
Affiliation(s)
- Caitlin McQueen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
17
|
Stewart TA, Lemberg JB, Taft NK, Yoo I, Daeschler EB, Shubin NH. Fin ray patterns at the fin-to-limb transition. Proc Natl Acad Sci U S A 2020; 117:1612-1620. [PMID: 31888998 PMCID: PMC6983361 DOI: 10.1073/pnas.1915983117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fin-to-limb transition was marked by the origin of digits and the loss of dermal fin rays. Paleontological research into this transformation has focused on the evolution of the endoskeleton, with little attention paid to fin ray structure and function. To address this knowledge gap, we study the dermal rays of the pectoral fins of 3 key tetrapodomorph taxa-Sauripterus taylori (Rhizodontida), Eusthenopteron foordi (Tristichopteridae), and Tiktaalik roseae (Elpistostegalia)-using computed tomography. These data show several trends in the lineage leading to digited forms, including the consolidation of fin rays (e.g., reduced segmentation and branching), reduction of the fin web, and unexpectedly, the evolution of asymmetry between dorsal and ventral hemitrichia. In Eusthenopteron, dorsal rays cover the preaxial endoskeleton slightly more than ventral rays. In Tiktaalik, dorsal rays fully cover the third and fourth mesomeres, while ventral rays are restricted distal to these elements, suggesting the presence of ventralized musculature at the fin tip analogous to a fleshy "palm." Asymmetry is also observed in cross-sectional areas of dorsal and ventral rays. Eusthenopteron dorsal rays are slightly larger than ventral rays; by contrast, Tiktaalik dorsal rays can be several times larger than ventral rays, and degree of asymmetry appears to be greater at larger sizes. Analysis of extant osteichthyans suggests that cross-sectional asymmetry in the dermal rays of paired fins is plesiomorphic to crown group osteichthyans. The evolution of dermal rays in crownward stem tetrapods reflects adaptation for a fin-supported elevated posture and resistance to substrate-based loading prior to the origin of digits.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637;
| | - Justin B Lemberg
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Natalia K Taft
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141
| | - Ihna Yoo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Edward B Daeschler
- Department of Vertebrate Zoology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637;
| |
Collapse
|
18
|
Lan L, Wang W, Huang Y, Bu X, Zhao C. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. J Cell Biochem 2019; 120:18588-18598. [PMID: 31271226 DOI: 10.1002/jcb.29217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both β-catenin dependent pathway, and β-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.
Collapse
Affiliation(s)
- Lihui Lan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.,Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Huang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xianmin Bu
- Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
19
|
PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:96. [PMID: 31043858 PMCID: PMC6460850 DOI: 10.1186/s12935-019-0800-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background The homeodomain transcription factor, PITX2 is associated with tumorigenesis of multiple cancers. In this research, we aimed to study the expression, function and mechanism of PITX2 in lung adenocarcinoma (LUAD). Methods The TCGA dataset was used to analyze the expression and clinical significance of PITX2 in LUAD. The expression of PITX2 in tumor samples and LUAD cell lines was examined by quantitative real-time PCR (qRT-PCR) and western blotting. Small interfering RNAs (siRNAs) were constructed to knockdown PITX2 and to determine the physiological function of PITX2 in vitro. Xenograft model was used to confirm the role of PITX2 in vivo. Results PITX2 was overexpressed in LUAD and patients with high level of PITX2 had a worse overall survival and an advanced clinical stage. Knockdown of PITX2 inhibited cell proliferation, migration and invasion of LUAD cells. Further study revealed that the oncogenic role of PITX2 was dependent on activating Wnt/β-catenin signaling pathway, especially by transcriptionally regulating the Wnt gene family member, WNT3A. Lastly, we identified miR-140-5p as a negative mediator of PITX2 by binding its 3′UTR and ectopic expression of miR-140-5p inhibited progression of LUAD cells via suppressing the expression of PITX2. Conclusions Up-regulation of PITX2 acts as an oncogene in LUAD by activating Wnt/β-catenin signaling pathway, suggesting that PITX2 may serve as a novel diagnostic and prognostic biomarker in LUAD. Electronic supplementary material The online version of this article (10.1186/s12935-019-0800-7) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Song JY, Pineault KM, Wellik DM. Development, repair, and regeneration of the limb musculoskeletal system. Curr Top Dev Biol 2019; 132:451-486. [PMID: 30797517 DOI: 10.1016/bs.ctdb.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The limb musculoskeletal system provides a primary means for locomotion, manipulation of objects and protection for most vertebrate organisms. Intricate integration of the bone, tendon and muscle tissues are required for function. These three tissues arise largely independent of one another, but the connections formed during later development are maintained throughout life and are re-established following injury. Each of these tissues also have mesenchymal stem/progenitor cells that function in maintenance and repair. Here in, we will review the major events in the development of limb skeleton, tendon, and muscle tissues, their response to injury, and discuss current knowledge regarding resident progenitor/stem cells within each tissue that participate in development, repair, and regeneration in vivo.
Collapse
Affiliation(s)
- Jane Y Song
- Program in Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Kyriel M Pineault
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - Deneen M Wellik
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
21
|
Oberg KC. Classification of congenital upper limb anomalies: towards improved communication, diagnosis, and discovery. J Hand Surg Eur Vol 2019; 44:4-14. [PMID: 30269619 DOI: 10.1177/1753193418801280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently the International Federation of Societies for Surgery of the Hand replaced the Swanson scheme for classifying congenital upper limb anomalies with the Oberg, Manske, Tonkin (OMT) classification. This review explores the reasons for this change after nearly 50 years of using the Swanson classification. In particular, it documents the state of our understanding regarding genetics and limb development at the time Swanson generated his classification. It also describes the continued progress in clinical genetics and developmental biology. Such progress drives the need to embrace and incorporate these changes within a new classification scheme; one that will improve communication, diagnosis, and support further discovery of the pathogenesis of congenital hand anomalies.
Collapse
Affiliation(s)
- Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
22
|
Jakhar D, Grover C, Kaur I. Circumferential Nail. Skin Appendage Disord 2019; 5:238-241. [DOI: 10.1159/000496748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/09/2019] [Indexed: 11/19/2022] Open
Abstract
Circumferential nail is an extremely rare congenital anomaly of nail development. Only a few case reports have been published in the past. We report a 20-year-old male with circumferential nail without any other congenital malformation.
Collapse
|
23
|
Cesario JM, Landin Malt A, Chung JU, Khairallah MP, Dasgupta K, Asam K, Deacon LJ, Choi V, Almaidhan AA, Darwiche NA, Kim J, Johnson RL, Jeong J. Anti-osteogenic function of a LIM-homeodomain transcription factor LMX1B is essential to early patterning of the calvaria. Dev Biol 2018; 443:103-116. [PMID: 29852132 DOI: 10.1016/j.ydbio.2018.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022]
Abstract
The calvaria (upper part of the skull) is made of plates of bone and fibrous joints (sutures and fontanelles), and the proper balance and organization of these components are crucial to normal development of the calvaria. In a mouse embryo, the calvaria develops from a layer of head mesenchyme that surrounds the brain from shortly after mid-gestation. The mesenchyme just above the eye (supra-orbital mesenchyme, SOM) generates ossification centers for the bones, which then grow toward the apex gradually. In contrast, the mesenchyme apical to SOM (early migrating mesenchyme, EMM), including the area at the vertex, does not generate an ossification center. As a result, the dorsal midline of the head is occupied by sutures and fontanelles at birth. To date, the molecular basis for this regional difference in developmental programs is unknown. The current study provides vital insights into the genetic regulation of calvarial patterning. First, we showed that osteogenic signals were active in both EMM and SOM during normal development, which suggested the presence of an anti-osteogenic factor in EMM to counter the effect of these signals. Subsequently, we identified Lmx1b as an anti-osteogenic gene that was expressed in EMM but not in SOM. Furthermore, head mesenchyme-specific deletion of Lmx1b resulted in heterotopic ossification from EMM at the vertex, and craniosynostosis affecting multiple sutures. Conversely, forced expression of Lmx1b in SOM was sufficient to inhibit osteogenic specification. Therefore, we conclude that Lmx1b plays a key role as an anti-osteogenic factor in patterning the head mesenchyme into areas with different osteogenic competence. In turn, this patterning event is crucial to generating the proper organization of the bones and soft tissue joints of the calvaria.
Collapse
Affiliation(s)
- Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - André Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Michael P Khairallah
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Lindsay J Deacon
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Veronica Choi
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Asma A Almaidhan
- Department of Orthodontics, New York University College of Dentistry, New York, NY, United States
| | - Nadine A Darwiche
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jimin Kim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
24
|
Vanlerberghe C, Boutry N, Petit F. Genetics of patella hypoplasia/agenesis. Clin Genet 2018; 94:43-53. [PMID: 29322497 DOI: 10.1111/cge.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
The patella is a sesamoid bone, crucial for knee stability. When absent or hypoplastic, recurrent knee subluxations, patellofemoral dysfunction and early gonarthrosis may occur. Patella hypoplasia/agenesis may be isolated or observed in syndromic conditions, either as the main clinical feature (Nail-patella syndrome, small patella syndrome), as a clue feature which can help diagnosis assessment, or as a background feature that may be disregarded. Even in the latter, the identification of patella anomalies is important for an appropriate patient management. We review the clinical characteristics of these rare diseases, provide guidance to facilitate the diagnosis and discuss how the genes involved could affect patella development.
Collapse
Affiliation(s)
- C Vanlerberghe
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| | - N Boutry
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Service de Radiopédiatrie, Lille, France
| | - F Petit
- Univ. Lille, EA7364 RADEME, Lille, France.,CHU Lille, Clinique de Génétique Médicale, Lille, France
| |
Collapse
|
25
|
Kondo M, Sekine T, Miyakoshi T, Kitajima K, Egawa S, Seki R, Abe G, Tamura K. Flight feather development: its early specialization during embryogenesis. ZOOLOGICAL LETTERS 2018; 4:2. [PMID: 29372073 PMCID: PMC5771061 DOI: 10.1186/s40851-017-0085-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Flight feathers, a type of feather that is unique to extant/extinct birds and some non-avian dinosaurs, are the most evolutionally advanced type of feather. In general, feather types are formed in the second or later generation of feathers at the first and following molting, and the first molting begins at around two weeks post hatching in chicken. However, it has been stated in some previous reports that the first molting from the natal down feathers to the flight feathers is much earlier than that for other feather types, suggesting that flight feather formation starts as an embryonic event. The aim of this study was to determine the inception of flight feather morphogenesis and to identify embryological processes specific to flight feathers in contrast to those of down feathers. RESULTS We found that the second generation of feather that shows a flight feather-type arrangement has already started developing by chick embryonic day 18, deep in the skin of the flight feather-forming region. This was confirmed by shh gene expression that shows barb pattern, and the expression pattern revealed that the second generation of feather development in the flight feather-forming region seems to start by embryonic day 14. The first stage at which we detected a specific morphology of the feather bud in the flight feather-forming region was embryonic day 11, when internal invagination of the feather bud starts, while the external morphology of the feather bud is radial down-type. CONCLUSION The morphogenesis for the flight feather, the most advanced type of feather, has been drastically modified from the beginning of feather morphogenesis, suggesting that early modification of the embryonic morphogenetic process may have played a crucial role in the morphological evolution of this key innovation. Co-optation of molecular cues for axial morphogenesis in limb skeletal development may be able to modify morphogenesis of the feather bud, giving rise to flight feather-specific morphogenesis of traits.
Collapse
Affiliation(s)
- Mao Kondo
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoe Sekine
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Taku Miyakoshi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Keiichi Kitajima
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Ryohei Seki
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Gembu Abe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
26
|
Mitogawa K, Makanae A, Satoh A. Hyperinnervation improves Xenopus laevis limb regeneration. Dev Biol 2018; 433:276-286. [DOI: 10.1016/j.ydbio.2017.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
|
27
|
Zhang Z, Yi D, Xie R, Hamilton JL, Kang QL, Chen D. Postaxial limb hypoplasia (PALH): the classification, clinical features, and related developmental biology. Ann N Y Acad Sci 2017; 1409:67-78. [PMID: 28990185 PMCID: PMC5730483 DOI: 10.1111/nyas.13440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/18/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022]
Abstract
Postaxial limb hypoplasia (PALH) is a group of nonhereditary diseases with congenital lower limb deficiency affecting the fibular ray, including fibular hemimelia, proximal femoral focal deficiency, and tarsal coalition. The etiology and the developmental biology of the anomaly are still not fully understood. Here, we review the previous classification systems, present the clinical features, and discuss the developmental biology of PALH.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedic Surgery, Shanghai Jiao-Tong University Affiliated the Sixth People’s Hospital, Shanghai, China
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - John L. Hamilton
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Qing-Lin Kang
- Department of Orthopedic Surgery, Shanghai Jiao-Tong University Affiliated the Sixth People’s Hospital, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
28
|
Delgado I, Torres M. Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 2017; 429:382-386. [DOI: 10.1016/j.ydbio.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
|
29
|
Santos syndrome is caused by mutation in the WNT7A gene. J Hum Genet 2017; 62:1073-1078. [PMID: 28855715 DOI: 10.1038/jhg.2017.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023]
Abstract
We have recently described a family with a condition (Santos syndrome (SS; MIM 613005)) characterized by fibular agenesis/hypoplasia, hypoplastic femora and grossly malformed/deformed clubfeet with severe oligodactyly, ungual hypoplasia/anonychia, sometimes associated with mild brachydactyly and occasional pre-axial polydactyly. Autosomal dominant inheritance with incomplete penetrance was suggested, but autosomal recessive inheritance could not be ruled out, due to the high frequency of consanguineous matings in the region where the family lived. This report deals with linkage studies and exome sequencing, disclosing a novel variant in WNT7A, c.934G>A (p.Gly312Ser), as the cause of this syndrome. This variant was present in homozygous state in five individuals typically affected by the SS syndrome, and in heterozygous state in the son of one affected homozygous individual. The heterozygous boy presented only unilateral complex polysyndactyly and we hypothesize that he either presents a distinct defect or that his phenotype results from a rare, mild clinical manifestation of the variant in heterozygous state. Variants in WNT7A are known to cause at least two other limb defect disorders, the syndromes of Fuhrmann and Al-Awadi/Raas-Rothschild. Despite their variable degree of expressivity and overlap, the three related conditions can be differentiated phenotypically in most instances.
Collapse
|
30
|
|
31
|
Haro E, Watson BA, Feenstra JM, Tegeler L, Pira CU, Mohan S, Oberg KC. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization. Development 2017; 144:2009-2020. [DOI: 10.1242/dev.146332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/17/2017] [Indexed: 12/28/2022]
Abstract
Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b at E12.5 followed by next generation sequencing (ChIP-seq). Nearly 84% (n=617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis-regulatory modules (PCRMs). In addition, 73 LBIs mapped to known CRMs active during limb development. We compared Lmx1b-bound PCRMs to genes differentially expressed by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontologic analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization.
Collapse
Affiliation(s)
- Endika Haro
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| | - Billy A. Watson
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| | - Jennifer M. Feenstra
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| | - Luke Tegeler
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| | - Charmaine U. Pira
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA HealthCare System, Loma Linda, CA, USA
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
32
|
Wang B, Wang W, Ni F. Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing. Plast Reconstr Surg 2017. [DOI: 10.1007/978-981-10-5101-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow. Sci Rep 2016; 6:36411. [PMID: 28000662 PMCID: PMC5175267 DOI: 10.1038/srep36411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw.
Collapse
|
34
|
Alrabai HM, Farr A, Bettelheim D, Weber M, Farr S. Prenatal diagnosis of congenital upper limb differences: a current concept review. J Matern Fetal Neonatal Med 2016; 30:2557-2563. [PMID: 27809626 DOI: 10.1080/14767058.2016.1256989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Congenital upper limb differences are frequently associated with complex syndromes. Ultrasonography is considered as the first-line diagnostic modality, and fetal MRI can be useful to further evaluate ill-defined areas. Genetic and non-invasive prenatal testing help to identify the underlying genetic disorder. The diagnostic assessment is a multidisciplinary task that should involve early prenatal consultations with specialists involved in case management and treatment planning. Obstetricians, geneticists, radiologists, psychologists and dedicated surgeons are needed to provide good parental education, prenatal and postnatal care, and successful outcomes. The purpose of this review is to provide an overview of the clinicopathologic background, current diagnostic and imaging procedures in affected fetuses.
Collapse
Affiliation(s)
- Hamza M Alrabai
- a Department of Orthopaedics , King Saud University , Riyadh , Saudi Arabia
| | - Alex Farr
- b Department of Obstetrics and Gynaecology , Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna , Vienna , Austria , and
| | - Dieter Bettelheim
- b Department of Obstetrics and Gynaecology , Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna , Vienna , Austria , and
| | - Myriam Weber
- b Department of Obstetrics and Gynaecology , Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna , Vienna , Austria , and
| | - Sebastian Farr
- c Department of Pediatric Orthopaedics and Adult Foot and Ankle Surgery , Orthopaedic Hospital Speising , Vienna , Austria
| |
Collapse
|
35
|
Poliak S, Norovich AL, Yamagata M, Sanes JR, Jessell TM. Muscle-type Identity of Proprioceptors Specified by Spatially Restricted Signals from Limb Mesenchyme. Cell 2016; 164:512-25. [PMID: 26824659 DOI: 10.1016/j.cell.2015.12.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/18/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character, we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint. Analysis of three of these genes, cadherin13 (cdh13), semaphorin5a (sema5a), and cartilage-acidic protein-1 (crtac1), reveals expression in proprioceptor subsets that supply muscle groups located at restricted dorsoventral and proximodistal domains of the limb. Genetically altering the dorsoventral character of the limb mesenchyme elicits a change in the profile of proprioceptor cdh13, sema5a, and crtac1 expression. These findings indicate that proprioceptors acquire aspects of their muscle-type identity in response to mesenchymal signals expressed in restricted proximodistal and dorsoventral domains of the developing limb.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Biochemistry, and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Amy L Norovich
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Masahito Yamagata
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Thomas M Jessell
- Department of Neuroscience, Biochemistry, and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Elmakky A, Stanghellini I, Landi A, Percesepe A. Role of Genetic Factors in the Pathogenesis of Radial Deficiencies in Humans. Curr Genomics 2016; 16:264-78. [PMID: 26962299 PMCID: PMC4765521 DOI: 10.2174/1389202916666150528000412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Radial deficiencies (RDs), defined as under/abnormal development or absence of any of the
structures of the forearm, radial carpal bones and thumb, occur with a live birth incidence ranging
from 1 out of 30,000 to 1 out 6,000 newborns and represent about one third/one fourth of all the congenital
upper limb anomalies. About half of radial disorders have a mendelian cause and pattern of
inheritance, whereas the remaining half appears sporadic with no known gene involved. In sporadic
forms certain anomalies, such as thumb or radial hypoplasia, may occur either alone or in association
with systemic conditions, like vertebral abnormalities or renal defects. All the cases with a mendelian inheritance are syndromic
forms, which include cardiac defects (in Holt-Oram syndrome), bone marrow failure (in Fanconi anemia), platelet
deficiency (in thrombocytopenia-absent-radius syndrome), ocular motility impairment (in Okihiro syndrome). The
genetics of radial deficiencies is complex, characterized by genetic heterogeneity and high inter- and intra-familial clinical
variability: this review will analyze the etiopathogenesis and the genotype/phenotype correlations of the main radial deficiency
disorders in humans.
Collapse
Affiliation(s)
- Amira Elmakky
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| | - Ilaria Stanghellini
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| | - Antonio Landi
- Hand Surgery and Microsurgery, Department of Locomotor System Diseases, University Hospital of Modena, Modena, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Medical and Surgical Sciences, University Hospital of Modena, Italy
| |
Collapse
|
37
|
Gradients, waves and timers, an overview of limb patterning models. Semin Cell Dev Biol 2016; 49:109-15. [DOI: 10.1016/j.semcdb.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 11/21/2022]
|
38
|
Getting a handle on embryo limb development: Molecular interactions driving limb outgrowth and patterning. Semin Cell Dev Biol 2016; 49:92-101. [DOI: 10.1016/j.semcdb.2015.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
|
39
|
Poliak S, Morales D, Croteau LP, Krawchuk D, Palmesino E, Morton S, Cloutier JF, Charron F, Dalva MB, Ackerman SL, Kao TJ, Kania A. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. eLife 2015; 4. [PMID: 26633881 PMCID: PMC4764565 DOI: 10.7554/elife.10841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI:http://dx.doi.org/10.7554/eLife.10841.001 The ability of animals to walk and perform skilled movements depends on particular groups of muscles contracting in a coordinated manner. Muscles are activated by nerve cells called motor neurons found in the spinal cord. The connections between the motor neurons and muscles are established in the developing embryo. Each motor neuron produces a long projection called an axon whose growth is guided towards the target muscle by signal proteins. The motor neurons are exposed to many such signal proteins at the same time and it is not clear how they integrate all this information so that their axons target the correct muscles. Poliak, Morales et al. used a variety of genetic and biochemical approaches to study the formation of motor neuron and muscle connections in the limbs of mice and chicks. The experiments show that a signal protein called Netrin-1 is produced in the limbs of developing embryos and attracts the axons of some types of motor neurons and repels others. This is due to the motor neurons producing different types of receptor proteins to detect Netrin-1. Further experiments show that individual axons can combine information from attractive or repulsive Netrin-1 signals together with repulsive signals from another family of proteins called ephrins in a 'synergistic' manner. That is, the combined effect of both cues is stronger than their individual effects added together. This synergy involves ligand-dependent interactions between the Netrin-1 and ephrin receptor proteins, and the activation of a common enzyme. Poliak, Morales et al.’s findings reveal a new role for Netrin-1 in guiding the development of motor neurons in the limb. Future work will focus on further understanding the mechanism of synergy between Netrin-1 and ephrins. Netrin-1 and ephrins are also involved in the formation of blood vessels and many other developmental processes, so understanding how they work together would have a wide-reaching impact on research into human health and disease. DOI:http://dx.doi.org/10.7554/eLife.10841.002
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Dayana Krawchuk
- Institut de recherches cliniques de Montréal, Montréal, Canada.,The Jackson Laboratory, Bar Harbor, United States
| | - Elena Palmesino
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Susan Morton
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Jean-François Cloutier
- Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Montréal Neurological Institute, Montréal, Canada
| | - Frederic Charron
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Matthew B Dalva
- Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Susan L Ackerman
- The Jackson Laboratory, Bar Harbor, United States.,Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
| | - Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
40
|
Zhou C, Yang G, Chen M, He L, Xiang L, Ricupero C, Mao JJ, Ling J. Lhx6 and Lhx8: cell fate regulators and beyond. FASEB J 2015; 29:4083-91. [PMID: 26148970 PMCID: PMC4566936 DOI: 10.1096/fj.14-267500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
As transcription factors of the lines (LIN)-11/Islet (Isl)-1/mitosis entry checkpoint (MEC)-3 (LIM)-homeobox subfamily, LIM homeobox (Lhx)6 and -8 are remarkably conserved and involved in the morphogenesis of multiple organ systems. Lhx6 and -8 play overlapping and distinctive roles, but in general act as cell fate mediators and in turn are regulated by several transcriptional factors, such as sonic hedgehog, fibroblast growth factors, and wingless-int (Wnt)/β-catenin. In this review, we first summarize Lhx6 and -8 distributions in development and then explore how Lhx6 and -8 act as transcription factors and coregulators of cell lineage specification. Known Lhx6 and -8 functions and targets are outlined in neurogenesis, craniofacial development, and germ cell differentiation. The underlying mechanisms of Lhx6 and -8 in regulating cell fate remain elusive. Whether Lhx6 and -8 affect functions in tissues and organs other than neural, craniofacial, oocytes, and germ cells is largely unexplored. Taken together, Lhx6 and -8 are important regulators of cell lineage specification and may act as one of the pivotal mediators of stem cell fate. Undoubtedly, future investigations of Lhx6 and -8 biology will continue to yield fascinating insights into tissue development and homeostasis, in addition to their putative roles in tissue regeneration and ageing.
Collapse
Affiliation(s)
- Chen Zhou
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guodong Yang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mo Chen
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ling He
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lusai Xiang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Christopher Ricupero
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jeremy J Mao
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junqi Ling
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Tadeu AMB, Lin S, Hou L, Chung L, Zhong M, Zhao H, Horsley V. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. PLoS One 2015; 10:e0122493. [PMID: 25849374 PMCID: PMC4388500 DOI: 10.1371/journal.pone.0122493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/22/2015] [Indexed: 11/18/2022] Open
Abstract
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.
Collapse
Affiliation(s)
- Ana Mafalda Baptista Tadeu
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Samantha Lin
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
| | - Lin Hou
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Lisa Chung
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Mei Zhong
- Yale University, Yale Stem Cell Center, Genomics Facility, New Haven, CT, 06520, United States of America
| | - Hongyu Zhao
- Yale University, Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06520, United States of America
| | - Valerie Horsley
- Yale University, Department of Molecular, Cell and Developmental Biology, New Haven, CT, 06511, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sivakumar B, Adamthwaite J, Smith P. Congenital hand differences. Plast Reconstr Surg 2015. [DOI: 10.1002/9781118655412.ch49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Engrailed 1 mediates correct formation of limb innervation through two distinct mechanisms. PLoS One 2015; 10:e0118505. [PMID: 25710467 PMCID: PMC4340014 DOI: 10.1371/journal.pone.0118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Engrailed-1 (En1) is expressed in the ventral ectoderm of the developing limb where it plays an instructive role in the dorsal-ventral patterning of the forelimb. Besides its well-described role as a transcription factor in regulating gene expression through its DNA-binding domain, En1 may also be secreted to form an extracellular gradient, and directly impact on the formation of the retinotectal map. We show here that absence of En1 causes mispatterning of the forelimb and thus defects in the dorsal-ventral pathfinding choice of motor axons in vivo. In addition, En1 but not En2 also has a direct and specific repulsive effect on motor axons of the lateral aspect of the lateral motor column (LMC) but not on medial LMC projections. Moreover, an ectopic dorsal source of En1 pushes lateral LMC axons to the ventral limb in vivo. Thus, En1 controls the establishment of limb innervation through two distinct molecular mechanisms.
Collapse
|
44
|
Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol 2015; 60:310-26. [PMID: 25907525 DOI: 10.1016/j.survophthal.2015.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/30/2022]
Abstract
Glaucoma, a progressive degenerative condition that results in the death of retinal ganglion cells, is one of the leading causes of blindness, affecting millions worldwide. The mechanisms underlying glaucoma are not well understood, although years of studies have shown that the largest risk factors are elevated intraocular pressure, age, and genetics. Eleven genes and multiple loci have been identified as contributing factors. These genes act by a number of mechanisms, including mechanical stress, ischemic/oxidative stress, and neurodegeneration. We summarize the recent advances in the understanding of glaucoma and propose a unified hypothesis for glaucoma pathogenesis. Glaucoma does not result from a single pathological mechanism, but rather a combination of pathways that are influenced by genes, age, and environment. In particular, we hypothesize that, in the presence of genetic risk factors, exposure to environment stresses results in an earlier age of onset for glaucoma. This hypothesis is based upon the overlap of the molecular pathways in which glaucoma genes are involved. Because of the interactions between these processes, it is likely that there are common therapies that may be effective for different subtypes of glaucoma.
Collapse
Affiliation(s)
- Lance P Doucette
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Alexandra Rasnitsyn
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Morteza Seifi
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Michael A Walter
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
45
|
Hirata T, Zheng Q, Chen Z, Kinoshita H, Okamoto J, Kratz J, Li H, Lui N, Do H, Cheng T, Tseng HHK, Koizumi K, Shimizu K, Zhou HM, Jablons D, He B. Wnt7A is a putative prognostic and chemosensitivity marker in human malignant pleural mesothelioma. Oncol Rep 2015; 33:2052-60. [PMID: 25632963 PMCID: PMC4358089 DOI: 10.3892/or.2015.3771] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor that has a poor prognosis, limited treatment options, and a worldwide incidence that is expected to increase in the next decade. We evaluated Wnt7A expression in 50 surgically resected tumor specimens using quantitative PCR. The expression values, were assessed by clinicopathological factors and K-M and Cox's regression with OS. The mean level of Wnt7A expression had a significant correlation with International Mesothelioma Interest Group (IMIG) stage (P<0.034), gender, smoking history and ethnicity, respectively (P=0.020, P=0.014, P=0.039). In the univariate analysis, low Wnt7A expression was a significant negative factor for overall survival (P=0.043, HR=2.30). However, multivariate Cox's regression revealed no significant factors for overall survival (low Wnt7A: P=0.051, HR=2.283; non-epithelioid subtype: P=0.050, HR=2.898). In patients with epithelioid tumors, those with low Wnt7A expression had significantly worse prognosis (P=0.019, HR=2.98). In patients with epithelioid tumors, females had significantly better prognosis than males (P=0.035). In patients who did not have neoadjuvant chemotherapy, prognosis was significantly more favorable for patients with high Wnt7A expression than for those with low Wnt7A expression (P=0.031). Among the patients with low Wnt7A-expressing tumors, those who received neoadjuvant chemotherapy had better prognosis than those who did not (P=0.024). The results of our study suggest that Wnt7A expression is a putative prognostic factor and a predictor of chemosensitivity.
Collapse
Affiliation(s)
- Tomomi Hirata
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Qingfeng Zheng
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Zhao Chen
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Hiroyasu Kinoshita
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Junichi Okamoto
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Johannes Kratz
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Hui Li
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Natalie Lui
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Hanh Do
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Tiffany Cheng
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Hsin-Hui Katty Tseng
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Kiyoshi Koizumi
- Department of Surgery, Division of Thoracic Surgery, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Kazuo Shimizu
- Department of Surgery, Division of Thoracic Surgery, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Hai-Meng Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - David Jablons
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| |
Collapse
|
46
|
Verma PK, El-Harouni AA. Review of literature: genes related to postaxial polydactyly. Front Pediatr 2015; 3:8. [PMID: 25717468 PMCID: PMC4324078 DOI: 10.3389/fped.2015.00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Postaxial polydactyly (PAP) is one of the commonest congenital malformations and usually is associated to several syndromes. There is no primary investigational strategy for PAP cases with single gene disorder in literature. PAP cases with single gene disorder can be classified according to common pathways and molecular basis. Molecular classification may help in diagnostic approach. MATERIALS AND METHODS All single gene disorders associated with PAP reported on PubMed and OMIM are analyzed and classified according to molecular basis. RESULTS Majority of genes related to cilia structure and functions are associated with PAP, so we classified them as ciliopathies and non-ciliopathies groups. Genes related to Shh-Gli3 pathway was the commonest group in non-ciliopathies. CONCLUSION Genes related to cilia are most commonly related to PAP due to their indirect relationship to Shh-Gli3 signaling pathway. Initially, PAP may be the only clinical finding with ciliopathies so those cases need follow up. Proper diagnosis is helpful for management and genetic counseling. Molecular approach may help to define pleiotropy.
Collapse
Affiliation(s)
- Prashant Kumar Verma
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ashraf A El-Harouni
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah , Saudi Arabia ; Department of Clinical Genetics, National Research Center , Cairo , Egypt
| |
Collapse
|
47
|
Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development. PLoS Genet 2014; 10:e1004468. [PMID: 25166858 PMCID: PMC4148220 DOI: 10.1371/journal.pgen.1004468] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/14/2014] [Indexed: 12/27/2022] Open
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning. In this report we examined the functional roles of Sp6 and Sp8 during limb development using compound loss-of-function mutants. Sp6 and Sp8, two members of the Sp gene family, are expressed in the limb bud ectoderm and function downstream of WNT/βcatenin signaling for Fgf8 induction. The analysis of the allelic series shows that the progressive reduction in the dose of Sp6 and Sp8 gene products leads to predictable morphology, from syndactyly, to split hand/foot malformation, oligodactyly, truncation and finally amelia, indicating that these two factors act in a complementary manner. The molecular characterization of the mutant limbs reveal that Sp6/Sp8 are required in a dose-dependent manner for Fgf8 and En1 induction, thereby placing them as an important link between the induction of the AER and the establishment of dorsal-ventral patterning during limb development.
Collapse
|
48
|
Raspopovic J, Marcon L, Russo L, Sharpe J. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 2014; 345:566-70. [PMID: 25082703 DOI: 10.1126/science.1252960] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation.
Collapse
Affiliation(s)
- J Raspopovic
- Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - L Marcon
- Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - L Russo
- Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - J Sharpe
- Systems Biology Program, Centre for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
49
|
WANG XI, HE CHAO, HU XIAOTONG. LIM homeobox transcription factors, a novel subfamily which plays an important role in cancer (Review). Oncol Rep 2014; 31:1975-85. [DOI: 10.3892/or.2014.3112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
|
50
|
|