1
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
2
|
Kim SR, Kwak JW, Lee SK, Jung SG, Han MS, Kim BS, Kook MS, Oh HK, Park HJ. Expression of ssrA in non-pathogen-induced adaptation in the oral cavity through signal exchange with oral pathogens. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sung-Ryoul Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Jae-Woo Kwak
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Sung-Ka Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Seung-Gon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Man-Seung Han
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Bang-Sin Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Hee-Kyun Oh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| | - Hong-Ju Park
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, 2nd Stage of Brain Korea 21, Chonnam National University, Gwangju, Korea
| |
Collapse
|
3
|
Chronology and pattern of integration of tandem genomic islands associated with the tmRNA gene in Escherichia coli and Salmonella enterica. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Barends S, Kraal B, van Wezel GP. The tmRNA-tagging mechanism and the control of gene expression: a review. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:233-46. [PMID: 21957008 DOI: 10.1002/wrna.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tmRNA-mediated trans-translation system is a unique quality control system in eubacteria that combines translational surveillance with the rescue of stalled ribosomes. During trans-translation, the chimeric tmRNA molecule--which acts as both tRNA and mRNA--is delivered to the ribosomal A site by a ribonucleoprotein complex of SmpB and EF-Tu-GTP, allowing the stalled ribosome to switch template and resume translation on a small coding sequence inside the tmRNA molecule. As a result, the aberrant protein becomes tagged by a sequence that is a target for proteolytic degradation. Thus, the system elegantly combines ribosome recycling with a clean-up function when triggered by truncated transcripts or rare codons. In addition, recent observations point to a specific regulation of the translation of a small number of genes by tmRNA-mediated inhibition or stimulation. In this review, we discuss the most prominent biochemical and structural aspects of trans-translation and then focus on the specific role of tmRNA in stress management and cell-cycle control of morphologically complex bacteria.
Collapse
Affiliation(s)
- Sharief Barends
- ProteoNic, Niels Bohrweg 11-13, 2333 CA Leiden, The Netherlands
| | | | | |
Collapse
|
5
|
Barends S, Zehl M, Bialek S, de Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E, van Wezel GP. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 2009; 11:119-25. [PMID: 20019758 DOI: 10.1038/embor.2009.255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 11/09/2022] Open
Abstract
The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A, elongation factor Tu3, and the cell-cycle control proteins DasR, SsgA, SsgF and SsgR. Although tmRNA-tagged proteins are degraded swiftly, the translation of dnaK and dasR messenger RNAs (mRNAs) depends fully on tmRNA, whereas transcription is unaffected. The data unveil a surprisingly dedicated functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress.
Collapse
Affiliation(s)
- Sharief Barends
- Microbial Development, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Song HK, Eck MJ. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine. Mol Cell 2003; 12:75-86. [PMID: 12887894 DOI: 10.1016/s1097-2765(03)00271-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In prokaryotes, incomplete or misfolded polypeptides emanating from a stalled ribosome are marked for degradation by the addition of an 11 residue peptide (AANDENYALAA) to their C terminus. Substrates containing this conserved degradation signal, the SsrA tag, are targeted to specific proteases including ClpXP and ClpAP. SspB was originally characterized as a stringent starvation protein and has been found to bind specifically to SsrA-tagged proteins and to enhance recognition of these proteins by the ClpXP degradation machine. Here, we report the crystal structures of SspB alone and in complex with an SsrA peptide. Unexpectedly, SspB exhibits a fold found in Sm-family RNA binding proteins. The dimeric SspB structures explain the key determinants for recognition of the SsrA tag and define a hydrophobic channel that may bind unfolded substrates.
Collapse
Affiliation(s)
- Hyun Kyu Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Abo T, Ueda K, Sunohara T, Ogawa K, Aiba H. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells 2002; 7:629-38. [PMID: 12081641 DOI: 10.1046/j.1365-2443.2002.00549.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have shown recently that read-through of a normal stop codon by a suppressor tRNA in specific genes possessing a Rho-independent terminator leads to SsrA-mediated tagging of extended proteins in Escherichia coli cells. Miscoding antibiotics such as kanamycin and streptomycin reduce translational fidelity by binding to the 30S ribosomal subunit. The aim of the present study was to address how miscoding antibiotics affect the read-through of stop codons and SsrA-mediated protein tagging. RESULTS Miscoding antibiotics caused translational read-through of stop codons when added to the culture medium at sublethal concentrations. Under the same conditions, the drugs enhanced SsrA-mediated tagging of bulk cellular proteins, as observed in cells carrying an ochre suppressor tRNA. Translational read-through products generated from the crp gene in the presence of the antibiotics was efficiently tagged by the SsrA system, presumably because the ribosome reached the 3' end of the mRNA defined by the terminator hairpin. The SsrA-defective cells were more sensitive to the miscoding antibiotics compared to the wild-type cells. CONCLUSION We conclude that the SsrA system contributes to the survival of cells by dealing with translational errors in the presence of low concentrations of miscoding antibiotics.
Collapse
Affiliation(s)
- Tatsuhiko Abo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
8
|
Dong G, Nowakowski J, Hoffman DW. Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBO J 2002; 21:1845-54. [PMID: 11927568 PMCID: PMC125954 DOI: 10.1093/emboj/21.7.1845] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small protein B (SmpB) is an essential component of the highly conserved tmRNA-SmpB system that has the dual function of releasing stalled ribosomes from damaged messenger RNAs and targeting incompletely synthesized protein fragments for degradation. Nuclear magnetic resonance (NMR) analysis of SmpB from Aquifex aeolicus revealed an antiparallel beta-barrel structure, with three helices packed outside the core of the barrel. While the overall structure of SmpB appears to be unique, the structure does contain an embedded oligonucleotide binding fold; in this respect SmpB has similarity to several other RNA-binding proteins that are known to be associated with translation, including IF1, ribosomal protein S17 and the N-terminal domain of aspartyl tRNA synthetase. Conserved amino acids on the protein surface that are most likely to directly interact with the tmRNA were identified. The presence of widely separated clusters of conserved amino acids suggests that SmpB could function either by stabilizing two distal regions of the tmRNA, or by facilitating an interaction between the tmRNA and another component of the translational apparatus.
Collapse
Affiliation(s)
| | - Jacek Nowakowski
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
Present address: Syrrx, Inc., 10450 Science Center Drive, Suite 100, San Diego, CA 92121, USA Corresponding author e-mail:
| | - David W. Hoffman
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
Present address: Syrrx, Inc., 10450 Science Center Drive, Suite 100, San Diego, CA 92121, USA Corresponding author e-mail:
| |
Collapse
|
9
|
Hayes CS, Bose B, Sauer RT. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:3440-5. [PMID: 11891313 PMCID: PMC122542 DOI: 10.1073/pnas.052707199] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SsrA or tmRNA quality control system intervenes when ribosomes stall on mRNAs and directs the addition of a C-terminal peptide tag that targets the modified polypeptide for degradation. Although hundreds of SsrA-tagged proteins can be detected in cells when degradation is prevented, most of these species have not been identified. Consequently, the mRNA sequence determinants that cause ribosome stalling and SsrA tagging are poorly understood. SsrA tagging of Escherichia coli ribokinase occurs at three specific sites at or near the C terminus of this protein. The sites of tagging correspond to ribosome stalling at the termination codon and at rare AGG codons encoding Arg-307 and Arg-309, the antepenultimate and C-terminal residues of E. coli ribokinase. Mutational analyses and studies of the effects of overexpressing the tRNA that decodes AGG reveal that the combination of a rare arginine codon at the C terminus and the adjacent inefficient UGA termination codon act to recruit the SsrA-tagging system, presumably by slowing the rate of translation elongation and termination.
Collapse
MESH Headings
- Amino Acid Sequence
- Arginine/genetics
- Base Sequence
- Codon, Terminator/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Mutation/genetics
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Protein Biosynthesis
- Protein Processing, Post-Translational
- RNA, Bacterial/antagonists & inhibitors
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
10
|
Fujihara A, Tomatsu H, Inagaki S, Tadaki T, Ushida C, Himeno H, Muto A. Detection of tmRNA-mediated trans-translation products in Bacillus subtilis. Genes Cells 2002; 7:343-50. [PMID: 11918677 DOI: 10.1046/j.1365-2443.2002.00523.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bacterial tmRNA (10Sa RNA) is involved in a trans-translation reaction, which contributes to the degradation of incompletely synthesized peptides and the recycling of stalled ribosomes. To investigate the physiological roles of this reaction in Bacillus subtilis, we devised a system for detecting the proteins that are subject to in vivo trans-translation. RESULTS The wild-type tmRNA gene (ssrA) in the genome was replaced by a variant ssrA encoding a tag-peptide sequence containing six histidine residues (His-tag) and two aspartic acids at the C-terminus. The His-tagged proteins that accumulated in the cells without degradation were fractionated by Ni2+-NTA column and gel electrophoresis and were detected by Western blotting with an anti-His-tag antibody. The results showed that the trans-translation occurred more frequently at a high temperature (50 degrees C) than at a low temperature (37 degrees C). Two-dimensional (2D) gel electrophoresis of the products revealed many distinct spots, which represent specific target proteins for the trans-translation reaction. Furthermore, the 2D gel patterns of the products from cells cultured at high and low temperatures were apparently different. Several tagged proteins were identified by the N-terminal amino acid sequences of the products. CONCLUSION Trans-translation occurs more frequently at high temperature than at low temperature, and different proteins are tagged at different temperatures.
Collapse
Affiliation(s)
- Ai Fujihara
- Department of Biology, Faculty of Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ranquet C, Geiselmann J, Toussaint A. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc Natl Acad Sci U S A 2001; 98:10220-5. [PMID: 11517307 PMCID: PMC56942 DOI: 10.1073/pnas.171620598] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small regulatory RNA SsrA has both tRNA and mRNA activities. It charges alanine and interacts with stalled ribosomes, allowing for translation to resume on the SsrA mRNA moiety. Hence, unfinished peptides carry a short amino acid tag, which serves as a signal for degradation by energy-dependent proteases. In SsrA-defective Escherichia coli strains, thermoinducible mutants of the transposable bacteriophage Mu (Mucts) are no longer induced at high temperature. Here we show that truncated forms of the key regulator of Mu lysogeny, the repressor Repc, accumulate in the absence of SsrA. These forms resemble C-terminally truncated dominant Mu repressor mutants previously isolated from Mucts, which are no longer thermoinducible and bind operator DNA with a high affinity even at high temperature. Using various ssrA alleles, we demonstrate the importance of SsrA charging on the ribosome for controlling Mu prophage repression. Our results thus substantiate the previous observation that trans-translation is not the only function of the SsrA. The alternative function of SsrA appears to influence the stability of Mu lysogens by controlling the translation of the C-terminal domain of the repressor protein, which modulates the affinity of the protein for DNA and its susceptibility to proteolytic degradation.
Collapse
Affiliation(s)
- C Ranquet
- Laboratoire Plasticité et Expression des Génomes Microbiens, Centre National de la Recherche Scientifique FRE2383, Université J. Fourier, BP 53, F-38041 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
12
|
Roche ED, Sauer RT. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J Biol Chem 2001; 276:28509-15. [PMID: 11373298 DOI: 10.1074/jbc.m103864200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SsrA.SmpB quality control system adds a C-terminal degradation peptide (AANDENYALAA) to nascent chains on stalled ribosomes, thereby freeing the ribosome and ensuring proteolysis of the tagged protein. An SsrA mutant with the tag sequence AANDEHHHHHH was used to slow degradation and facilitate Ni2+-nitrilotriacetic acid affinity purification. Display of affinity-purified Escherichia coli proteins on two-dimensional gels revealed small quantities of a diverse set of SsrA-H6-tagged proteins, and mass spectroscopy identified LacI repressor, lambda cI repressor, YbeL, GalE, RbsK, and a SlyD-kan(R) fusion protein as members of this set. For lambda repressor and YbeL, the SsrA-H6 tag was added after the natural C terminus of the protein, suggesting that tagging occurred while the ribosome idled at the termination codon of these genes. Potential causes of tagging for the other proteins include interference from translation of downstream reading frames, rare codons, and gene disruption. These and previous results support a broad role for the SsrA.SmpB system in freeing stalled ribosomes and in directing degradation of the products of these frustrated protein synthesis reactions.
Collapse
Affiliation(s)
- E D Roche
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
13
|
Abo T, Inada T, Ogawa K, Aiba H. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 2000; 19:3762-9. [PMID: 10899129 PMCID: PMC313975 DOI: 10.1093/emboj/19.14.3762] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SsrA RNA of Escherichia coli, also known as 10Sa RNA or tmRNA, acts both as tRNA and mRNA when ribosomes are paused at the 3' end of an mRNA lacking a stop codon. This process, referred to as trans-translation, leads to the addition of a short peptide tag to the C-terminus of the incomplete nascent polypeptide. The tagged polypeptide is then degraded by C-terminal-specific proteases. Here, we focused on endogenous targets for the SsrA system and on a potential regulatory role of SsrA RNA. First, we show that trans-translation events occur frequently in normally growing E. COLI: cells. More specifically, we report that the lacI mRNA encoding Lac repressor (LacI) is a specific natural target for trans-translation. The binding of LacI to the lac operators results in truncated lacI mRNAs that are, in turn, recognized by the SsrA system. The SsrA-mediated tagging and proteolysis of LacI appears to play a role in cellular adaptation to lactose availability by supporting a rapid induction of lac operon expression.
Collapse
Affiliation(s)
- T Abo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
14
|
Karzai AW, Roche ED, Sauer RT. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. NATURE STRUCTURAL BIOLOGY 2000; 7:449-55. [PMID: 10881189 DOI: 10.1038/75843] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria contain a remarkable RNA molecule - known alternatively as SsrA RNA, tmRNA, or 10Sa RNA - that acts both as a tRNA and as an mRNA to direct the modification of proteins whose biosynthesis has stalled or has been interrupted. These incomplete proteins are marked for degradation by cotranslational addition of peptide tags to their C-termini in a reaction that is mediated by ribosome-bound SsrA RNA and an associated protein factor, SmpB. This system plays a key role in intracellular protein quality control and also provides a mechanism to clear jammed or obstructed ribosomes. Here the structural, functional and phylogenetic properties of this unique RNA and its associated factors are reviewed, and the intracellular proteases that act to degrade the proteins tagged by this system are also discussed.
Collapse
Affiliation(s)
- A W Karzai
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
15
|
Julio SM, Heithoff DM, Mahan MJ. ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis. J Bacteriol 2000; 182:1558-63. [PMID: 10692360 PMCID: PMC94452 DOI: 10.1128/jb.182.6.1558-1563.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 12/20/1999] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5' end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22.
Collapse
Affiliation(s)
- S M Julio
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
16
|
Ogura M, Hirao S, Ohshiro Y, Tanaka T. Positive regulation of Bacillus subtilis sigD by C-terminal truncated LacR at translational level. FEBS Lett 1999; 457:112-6. [PMID: 10486575 DOI: 10.1016/s0014-5793(99)01022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DegR is a positive regulator for degradative enzyme synthesis in Bacillus subtilis. The degR gene is transcribed by RNA polymerase containing delta D, and the level of its expression is low in a mecA-deficient mutant. In a search for suppressors of the mecA effect through mini-Tn10 transposon mutagenesis, a lacR mutation designated lacR288 was discovered. The B. subtilis lacR gene encodes the repressor for lacA which specifies beta-galactosidase, and therefore, inactivation of the lacR gene results in overproduction of the enzyme. In the lacR288 mutant, however, the expression of lacA was at a negligible level, indicating that the repressor activity was not destroyed by the mutation. The putative gene product of the lacR288-containing gene is a 288-amino acid protein lacking the C-terminal 42 amino acids of intact LacR and carries no extra amino acids derived from the transposon sequence. The suppression by lacR288 of the decreased degR expression in the mecA background was found to be caused by an increase in the delta D level as shown by Western blot analysis. Furthermore, the increase was due to post-transcriptional regulation of sigD, the gene encoding delta D, as revealed by using both transcriptional and translational sigD-lacZ fusions. The lacR288 mutation had no effect on the stability of the delta D protein. Based on these results we conclude that the lacR288 mutation stimulates sigD expression at the translational level.
Collapse
Affiliation(s)
- M Ogura
- Department of Marine Science, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Minimal secondary structures of the bacterial and plastid tmRNAs were derived by comparative analyses of 50 aligned tmRNA sequences. The structures include 12 helices and four pseudoknots and are refinements of earlier versions, but include only those base pairs for which there is comparative evidence. Described are the conserved and variable features of the tmRNAs from a wide phylogenetic spectrum, the structural properties specific to the bacterial subgroups and preliminary 3-dimensional models from the pseudoknotted regions.
Collapse
Affiliation(s)
- C Zwieb
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
18
|
Withey J, Friedman D. Analysis of the role of trans-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J Bacteriol 1999; 181:2148-57. [PMID: 10094693 PMCID: PMC93628 DOI: 10.1128/jb.181.7.2148-2157.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small, stable RNA molecule encoded by ssrA, known as tmRNA or 10Sa RNA, is required for the growth of certain hybrid lambdaimmP22 phages in Escherichia coli. tmRNA has been shown to tag partially synthesized proteins for degradation in vivo by attaching a short peptide sequence, encoded by tmRNA, to the carboxyl termini of these proteins. This tag sequence contains, at its C terminus, an amino acid sequence that is recognized by cellular proteases and leads to degradation of tagged proteins. A model describing this function of tmRNA, the trans-translation model (K. C. Keiler, P. R. Waller, and R. T. Sauer, Science 271:990-993, 1996), proposes that tmRNA acts first as a tRNA and then as a mRNA, resulting in release of the original mRNA template from the ribosome and translocation of the nascent peptide to tmRNA. Previous work from this laboratory suggested that tmRNA may also interact specifically with DNA-binding proteins, modulating their activity. However, more recent results indicate that interactions between tmRNA and DNA-binding proteins are likely nonspecific. In light of this new information, we examine the effects on lambdaimmP22 growth of mutations eliminating activities postulated to be important for two different steps in the trans-translation model, alanine charging of tmRNA and degradation of tagged proteins. This mutational analysis suggests that, while charging of tmRNA with alanine is essential for lambdaimmP22 growth in E. coli, degradation of proteins tagged by tmRNA is required only to achieve optimal levels of phage growth. Based on these results, we propose that trans-translation may have two roles, the primary role being the release of stalled ribosomes from their mRNA template and the secondary role being the tagging of truncated proteins for degradation.
Collapse
Affiliation(s)
- J Withey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
19
|
Abstract
The pilA gene of Neisseria gonorrhoeae was initially identified in a screen for transcriptional regulators of pilE, the expression locus for pilin, the major structural component of gonococcal pili. The predicted protein sequence for PilA has significant homology to two GTPases of the mammalian signal recognition particle (SRP), SRP54 and SRalpha. Homologs of SRP54 and SRalpha were subsequently identified in bacteria (Ffh and FtsY, respectively) and appear to form an SRP-like apparatus in prokaryotes. Of the two proteins, PilA is the most similar to FtsY (47% identical and 67% similar at the amino acid level). Like FtsY, PilA is essential for viability and hydrolyzes GTP. The similarities between PilA and the bacterial FtsY led us to ask whether PilA might function as the gonococcal FtsY. In this work, we show that overproduction of PilA in Escherichia coli leads to an accumulation of pre-beta-lactamase, similar to previous observations with other bacterial SRP components. Low-level expression of pilA in an ftsY conditional mutant can complement the ftsY mutation and restore normal growth to this strain under nonpermissive conditions. In addition, purified PilA can replace FtsY in an in vitro translocation assay using purified E. coli SRP components. A PilA mutant that is severely affected in its GTPase activity cannot replace FtsY in vivo or in vitro. However, overexpression of the GTPase mutant leads to the accumulation of pre-beta-lactamase, suggesting that the mutant protein may interact with the SRP apparatus to affect protein maturation. Taken together, these results show that the gonococcal PilA is an FtsY homolog and that the GTPase activity is necessary for its function.
Collapse
Affiliation(s)
- C G Arvidson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, L220, Portland, Oregon 97201-3098, USA. arvidson@ohsu
| | | | | | | |
Collapse
|
20
|
Rozanov DV, D'Ari R, Sineoky SP. RecA-independent pathways of lambdoid prophage induction in Escherichia coli. J Bacteriol 1998; 180:6306-15. [PMID: 9829941 PMCID: PMC107717 DOI: 10.1128/jb.180.23.6306-6315.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Escherichia coli genes, expressed from multicopy plasmids, are shown to cause partial induction of prophage lambda in recA mutant lysogens. One is rcsA, which specifies a positive transcriptional regulator of the cps genes, which are involved in capsular polysaccharide synthesis. The other is dsrA, which specifies an 85-nucleotide RNA that relieves repression of the rcsA gene by histone-like protein H-NS. Genetic contexts known to increase Cps expression also cause RecA-independent lambda induction: the rcsC137 mutation, which causes constitutive Cps expression, and the lon and rcsA3 mutations, which stabilize RcsA. Lambdoid phages 21, phi80, and 434 are also induced by RcsA and DsrA overexpression in recA lysogens. Excess lambda cI repressor specifically blocks lambda induction, suggesting that induction involves repressor inactivation rather than repressor bypass. RcsA-mediated induction requires RcsB, the known effector of the cps operon, whereas DsrA-mediated induction is RcsB independent in stationary phase, pointing to the existence of yet another RecA-independent pathway of prophage induction.
Collapse
Affiliation(s)
- D V Rozanov
- State Scientific Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 113545, Russia
| | | | | |
Collapse
|
21
|
Lease RA, Cusick ME, Belfort M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A 1998; 95:12456-61. [PMID: 9770507 PMCID: PMC22852 DOI: 10.1073/pnas.95.21.12456] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DsrA is an 87-nt untranslated RNA that regulates both the global transcriptional silencer and nucleoid protein H-NS and the stationary phase and stress response sigma factor RpoS (sigmas). We demonstrate that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation. We also give evidence that supports a role for RNA:RNA interactions at the rpoS locus to enhance RpoS translation. Negative regulation of hns by DsrA is achieved by the RNA:RNA interaction blocking translation of hns RNA. In contrast, results suggest that positive regulation of rpoS by DsrA occurs by formation of an RNA structure that activates a cis-acting translational operator. Sequences within DsrA complementary to three additional genes, argR, ilvIH, and rbsD, suggest that DsrA is a riboregulator of gene expression that acts coordinately via RNA:RNA interactions at multiple loci.
Collapse
Affiliation(s)
- R A Lease
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, P.O. Box 22002, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
22
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
23
|
Liou J, Jeng K, Lin C, Hu C, Chang C. A novel regulator inhibits HBV gene expression. J Biomed Sci 1998; 5:343-54. [PMID: 9758908 DOI: 10.1007/bf02253444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- J Liou
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Shih-Pai, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
24
|
Gottesman S, Roche E, Zhou Y, Sauer RT. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 1998; 12:1338-47. [PMID: 9573050 PMCID: PMC316764 DOI: 10.1101/gad.12.9.1338] [Citation(s) in RCA: 652] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interruption of translation in Escherichia coli can lead to the addition of an 11-residue carboxy-terminal peptide tail to the nascent chain. This modification is mediated by SsrA RNA (also called 10Sa RNA and tmRNA) and marks the tagged polypeptide for proteolysis. Degradation in vivo of lambda repressor amino-terminal domain variants bearing this carboxy-terminal SsrA peptide tag is shown here to depend on the cytoplasmic proteases ClpXP and ClpAP. Degradation in vitro of SsrA-tagged substrates was reproduced with purified components and required a substrate with a wild-type SsrA tail, the presence of both ClpP and either ClpA or ClpX, and ATP. Clp-dependent proteolysis accounts for most degradation of SsrA-tagged amino-domain substrates at 32 degrees C, but additional proteases contribute to the degradation of some of these SsrA-tagged substrates at 39 degrees C. The existence of multiple cytoplasmic proteases that function in SsrA quality-control surveillance suggests that the SsrA tag is designed to serve as a relatively promiscuous signal for proteolysis. Having diverse degradation systems able to recognize this tag may increase degradation capacity, permit degradation of a wide variety of different tagged proteins, or allow SsrA-tagged proteins to be degraded under different growth conditions.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
tmRNA (also known as 10Sa RNA) is so-named for its dual tRNA-like and mRNA-like nature. It is employed in a remarkable trans -translation process to add a C-terminal peptide tag to the incomplete protein product of a broken mRNA; the tag targets the abnormal protein for proteolysis. tmRNA sequences have been identified in genomes of diverse bacterial phyla, including the most deeply branching. They have also been identified in plastids of the 'red' lineage. The tmRNA Website (http://www.wi.mit. edu/bartel/tmRNA/home ) contains a database currently including sequences from 37 species, with provisional alignments, as well as the tentatively predicted proteolysis tag sequences. A brief review and guide to the literature is also provided.
Collapse
Affiliation(s)
- K P Williams
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
26
|
Abstract
Bacterial tmRNA (transfer-messenger RNA, also known as 10Sa RNA) contains a tRNA-like structure in the 5'- and 3'-end sequences and an internal reading frame encoding a 'tag' peptide. The dual function of this molecule as both a tRNA and an mRNA facilitates a trans-translation reaction, in which a ribosome can switch between translation of a truncated mRNA and the tmRNA's tag sequence. The result is a chimeric protein with the tag peptide attached to the C-terminus of the truncated peptide.
Collapse
Affiliation(s)
- A Muto
- Department of Biology, Faculty of Science, Hirosaki University, Japan.
| | | | | |
Collapse
|
27
|
Watanabe T, Sugiura M, Sugita M. A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301. FEBS Lett 1997; 416:302-6. [PMID: 9373174 DOI: 10.1016/s0014-5793(97)01237-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We isolated a novel RNA species from the unicellular cyanobacterium Synechococcus PCC6301 and determined its gene sequence. This novel RNA was termed 6Sa RNA from its length (185 nt). Cross-hybridization of 6Sa RNA to other related microorganisms suggests that its existence is restricted to the Synechococcus genus or related organisms. A high level of accumulation of this RNA was observed by Northern analysis, indicating that 6Sa RNA is stable in cells. Computer-aided prediction of the 6Sa RNA secondary structure also supports its stability.
Collapse
Affiliation(s)
- T Watanabe
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
28
|
Billington SJ, Johnston JL, Rood JI. Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett 1996; 145:147-56. [PMID: 8961550 DOI: 10.1111/j.1574-6968.1996.tb08570.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ovine footrot is a debilitating and highly infectious disease that is primarily caused by the Gram-negative, anaerobic bacterium Dichelobacter nodosus. The major antigens implicated in virulence are the type IV fimbriae and extracellular proteases. The fimbriae show sequence and structural similarity to other type IV fimbriae, this similarity extends to genes that are involved in fimbrial biogenesis. Several acidic and basic extracellular serine proteases are produced by both virulent and benign isolates of D. nodosus. Subtle functional differences in these proteases appear to be important in virulence. In addition, there are two chromosomal regions that have a genotypic association with virulence. The partially duplicated and rearranged vap regions appear to have arisen from the insertion of a plasmid into a tRNA gene via an integrase-mediated site-specific insertion event. The 27 kb vrl region has several genes often found on bacteriophages and has inserted into an ssrA gene that may have a regulatory role in the cell. The determination of the precise role that each of these genes and gene regions has in virulence awaits the development of methods for the genetic analysis and manipulation of D. nodosus.
Collapse
Affiliation(s)
- S J Billington
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
29
|
Liu L, Nakano MM, Lee OH, Zuber P. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 1996; 178:5144-52. [PMID: 8752331 PMCID: PMC178310 DOI: 10.1128/jb.178.17.5144-5152.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The establishment of genetic competence in Bacillus subtilis is controlled by a vast signal transduction network involving the products of genes that function in several postexponential-phase processes. Two of these proteins, SinR and DegU, serve as molecular switches that influence a cell's decision to undergo either sporulation or genetic competence development. In order to determine the roles of SinR and DegU in competence control, multicopy suppression experiments with plasmid-amplified comS, SinR, and degU genes were undertaken. Multicopy comS was found to elevate competence gene transcription and transformation efficiency in both wild-type and sinR mutant cells but not in degU mutant cells. Multicopy degU failed to suppress comS or sinR mutations. No suppression of comS or degU by multicopy sinR was observed. The expression of a comS'::'lacZ translational fusion and srf-lacZ operon fusion was examined in sinR cells and cells bearing plasmid-amplified sinR. The expression of comS'::'lacZ gene fusion was reduced by the sinR mutation, but both comS'::'lacZ and srf-lacZ were repressed by multicopy sinR. Cells bearing plasmid-amplified sinR were poorly competent. These results suggest that sinR is required for optimal comS expression but not transcription from the srf promoter and that SinR at high concentrations represses srf transcription initiation.
Collapse
Affiliation(s)
- L Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, USA
| | | | | | | |
Collapse
|
30
|
hsp 83 mutation is a dominant enhancer of lethality associated with absence of the non-protein codinghsrω locus inDrosophila melanogaster. J Biosci 1996. [DOI: 10.1007/bf02703109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
|
32
|
Keiler KC, Waller PR, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996; 271:990-3. [PMID: 8584937 DOI: 10.1126/science.271.5251.990] [Citation(s) in RCA: 834] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Variants of lambda repressor and cytochrome b562 translated from messenger RNAs without stop codons were modified by carboxyl terminal addition of an ssrA-encoded peptide tag and subsequently degraded by carboxyl terminal-specific proteases present in both the cytoplasm and periplasm of Escherichia coli. The tag appears to be added to the carboxyl terminus of the nascent polypeptide chain by cotranslational switching of the ribosome from the damaged messenger RNA to ssrA RNA.
Collapse
Affiliation(s)
- K C Keiler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | | | |
Collapse
|
33
|
Affiliation(s)
- S Jentsch
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany.
| |
Collapse
|
34
|
Ando H, Kitabatake M, Inokuchi H. 10Sa RNA complements the temperature-sensitive phenotype caused by a mutation in the phosphoribosyl pyrophosphate synthetase (prs) gene in Escherichia coli. Genes Genet Syst 1996; 71:47-50. [PMID: 8925474 DOI: 10.1266/ggs.71.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
From Escherichia coli cells with a deletion in the ssrA gene that encodes 10Sa RNA after treatment with a mutagen, we isolated two temperature-sensitive mutants, which we designated TS15 and TS101. The temperature-sensitive (ts) phenotype of the mutants could be overcome by introduction of the wild-type ssrA gene but not by the mutants of ssrA. By a complementation test using Kohara's mini-set of clones and by subcloning of a fragment from the phage clone 246, we found that both mutations were in the prs gene that encodes phosphoribosyl pyrophosphate synthetase. Sequencing of the mutant prs gene of TS101 showed that residues 215, cysteine, in the encoded protein had been changed to tyrosine. That such a mutant exists suggests that 10Sa RNA associate with the prs gene product in a functional way.
Collapse
Affiliation(s)
- H Ando
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
35
|
Muto A, Sato M, Tadaki T, Fukushima M, Ushida C, Himeno H. Structure and function of 10Sa RNA: trans-translation system. Biochimie 1996; 78:985-91. [PMID: 9150876 DOI: 10.1016/s0300-9084(97)86721-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
10Sa RNA is a small stable bacterial RNA in which the 5'- and 3'-end sequences are folded into a tRNA-like structure. The RNA is aminoacylatable with alanine in vitro, and it interacts with 70S ribosomes in the cell. Recently, Escherichia coli 10Sa RNA has been shown to contain the sequence-encoding tag-peptides, which are found to attach to the C-termini of truncated peptides synthesized in vivo. We have found that the E coli 10Sa RNA stimulates incorporation of the tag-specific amino acids into proteins depending on the poly(U)-directed poly-phenylalanine synthesis in the in vitro translation system. Our finding supports the 'trans-translation' model proposed for the tag synthesis, in which alanyl-10Sa RNA enters the ribosome when translation stops at the 3'-end of the truncated mRNA lacking a stop codon, and translation of the tag-peptide occurs by switching the template from mRNA to 10Sa RNA. In this unique reaction, 10Sa RNA acts both as a tRNA and as an mRNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteria/genetics
- Bacteria/metabolism
- Base Sequence
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Reading Frames
- Ribosomes/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- A Muto
- Department of Biology, Faculty of Science, Hirosaki University, Japan
| | | | | | | | | | | |
Collapse
|