1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Kim Y, Lee EJ, Kotula AP, Takagi S, Chow L, Alimperti S. Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite. J Funct Biomater 2022; 13:34. [PMID: 35466216 PMCID: PMC9036238 DOI: 10.3390/jfb13020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds' mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Eun-Jin Lee
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Anthony P. Kotula
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Shozo Takagi
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Laurence Chow
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Stella Alimperti
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| |
Collapse
|
3
|
Jang JH, Shin S, Kim HJ, Jeong J, Jin HE, Desai MS, Lee SW, Kim SY. Improvement of physical properties of calcium phosphate cement by elastin-like polypeptide supplementation. Sci Rep 2018; 8:5216. [PMID: 29581559 PMCID: PMC5980081 DOI: 10.1038/s41598-018-23577-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 11/23/2022] Open
Abstract
Calcium phosphate cements (CPCs) are synthetic bioactive cements widely used as hard tissue substitutes. Critical limitations of use include their poor mechanical properties and poor anti-washout behaviour. To address those limitations, we combined CPC with genetically engineered elastin-like polypeptides (ELPs). We investigated the effect of the ELPs on the physical properties and biocompatibility of CPC by testing ELP/CPC composites with various liquid/powder ratios. Our results show that the addition of ELPs improved the mechanical properties of the CPC, including the microhardness, compressive strength, and washout resistance. The biocompatibility of ELP/CPC composites was also comparable to that of the CPC alone. However, supplementing CPC with ELPs functionalized with octaglutamate as a hydroxyapatite binding peptide increased the setting time of the cement. With further design and modification of our biomolecules and composites, our research will lead to products with diverse applications in biology and medicine.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Sumi Shin
- Department of Conservative Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jinyoung Jeong
- Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology, KRIBB School, University of Science and Technology, Daejon, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, USA.
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Zhang J, Jia J, Kim JP, Shen H, Yang F, Zhang Q, Xu M, Bi W, Wang X, Yang J, Wu D. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605546. [PMID: 28221007 DOI: 10.1002/adma.201605546] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Jinpeng Jia
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Jimin P Kim
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Qiang Zhang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Meng Xu
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Wenzhi Bi
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
6
|
Babaie E, Lin B, Goel VK, Bhaduri SB. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements. Biomed Mater 2016; 11:055010. [DOI: 10.1088/1748-6041/11/5/055010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
8
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
9
|
Van Den Vreken NMF, Pieters IY, De Maeyer EAP, Jackers GJ, Schacht EH, Verbeeck RMH. Apatite formation in composites of α-TCP and degradable polyesters. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:953-67. [PMID: 17094635 DOI: 10.1163/156856206778366040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the conversion of alpha-Ca3(PO4)2 (alpha-TCP) in composite bone cements based on a water-degradable polyester matrix as a function of the polymer formulation and the alpha-TCP filler content. Cross-linkable dimethacrylates of epsilon-caprolactone/ D,L-lactide co-polymer or of epsilon-caprolactone/glycolide co-polymer were mixed with hydroxyethylmethacrylate, a photo-initiator and alpha-TCP to obtain composites with a filler content of 80 or 40 wt% alpha-TCP. The disk shaped composite samples were set by visible light irradiation and immersed in HEPES at 37 degrees C. At selected times the samples were removed from the solution and analysed with X-ray diffractometry and infrared spectroscopy. Conversion of alpha-TCP into calcium-deficient hydroxyapatite (CDHAp) was observed for all composites, but the reaction was not completed after 8 weeks immersion. The conversion rate of alpha-TCP and the crystallinity of the formed apatite apparently were not affected by the type of polyester used, but significantly depended on the alpha-TCP content of the composites. An increase of the amount of alpha-TCP in the composite resulted in a slower formation of CDHAp with a higher crystallinity.
Collapse
|
10
|
Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012; 8:1401-21. [PMID: 22127225 DOI: 10.1016/j.actbio.2011.11.017] [Citation(s) in RCA: 492] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/04/2011] [Accepted: 11/13/2011] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications.
Collapse
|
11
|
Perez RA, Kim HW, Ginebra MP. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 2012; 3:2041731412439555. [PMID: 22511991 PMCID: PMC3324842 DOI: 10.1177/2041731412439555] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties.
Collapse
Affiliation(s)
- Roman A Perez
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
12
|
Preparation, physical-chemical characterization, and cytocompatibility of polymeric calcium phosphate cements. Int J Biomater 2011; 2011:467641. [PMID: 21941551 PMCID: PMC3176494 DOI: 10.1155/2011/467641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/17/2011] [Indexed: 11/18/2022] Open
Abstract
Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.
Collapse
|
13
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|
14
|
Abstract
In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites.
Collapse
Affiliation(s)
- Eddie Wang
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| | - Sang-Hyuk Lee
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Berkeley Nanoscience and Nanoengineering Institute, Berkeley, CA, 94720 USA
| |
Collapse
|
15
|
Preparation and characterization of alpha-tricalcium phosphate cements incorporated with polyamino acids. Macromol Res 2011. [DOI: 10.1007/s13233-011-0113-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sethuraman S, Nair LS, Singh A, Bender JD, Greish YE, Brown PW, Allcock HR, Laurencin CT. Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene– Hydroxyapatite Composites for Bone Tissue Engineering. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-845-aa5.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ASTRACT:Hydroxyapatite formed from low temperature setting calcium phosphate cements (CPC) are currently been used for various orthopaedic applications. CPCs are attractive candidates for the development of scaffolds for bone tissue engineering, since they are moldable, resorbable, set at physiological temperature without the use of toxic chemicals, and can be processed in an operating room setting. However they may have mechanical disadvantages which seriously limit them to non-load bearing orthopaedic applications. The aim of the present study was to develop composites from polyphosphazenes and calcium deficient hydroxyapatite precursors to form poorly crystalline hydroxyapatite-polymer composites. Composites were formed from calcium deficient hydroxyapatite precursors (Ca/P – 1.5, 1.6) and biodegradable polyphosphazenes, poly[bis(ethyl alanato)phosphazene] (PNEA) and poly[(50%ethyl alanato) (50%methyl phenoxy)phosphazene] (PNEA50mPh50) at physiological temperature. The results demonstrated that poorly crystalline hydroxyapatite that resembled the mineral component of bone was formed in the presence of biodegradable polyphosphazenes. The surface morphology of all the four composites was identical with a porous microstructure. The composites supported the adhesion and proliferation of osteoblast like MC3T3-E1 cells making them potential candidates for bone tissue engineering.
Collapse
|
17
|
Khashaba RM, Moussa MM, Chutkan NB, Borke JL. The response of subcutaneous connective tissue to newly developed calcium phosphate-based root canal sealers. Int Endod J 2011; 44:342-52. [PMID: 21272042 DOI: 10.1111/j.1365-2591.2010.01836.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R M Khashaba
- Departments of Oral Biology, Medical College of Georgia, Augusta, GA 30912-1129, USA
| | | | | | | |
Collapse
|
18
|
Oh SA, Lee GS, Park JH, Kim HW. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:3019-3027. [PMID: 20857323 DOI: 10.1007/s10856-010-4152-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/24/2010] [Indexed: 05/29/2023]
Abstract
Calcium phosphate cements (CPCs) have recently gained great interest as injectable bone substitutes for use in dentistry and orthopedics. α-tricalcium phosphate (α-TCP) is a popularly used precursor powder for CPCs. When mixed with appropriate content of liquid and kept under aqueous conditions, α-TCP dissolves to form a calcium-deficient hydroxyapatite and then hardens to cement. In this study, α-TCP based cement (CP) and its composite cement with chitosan (Ch-CP) were prepared and the osteoclastic responses to the cements and their elution products were evaluated. Preliminary evaluation of the cements revealed that the CP and Ch-CP hardened within ~10 min at an appropriate powder-to-liquid ratio (PL) of 3.0. In addition, CP and Ch-CP were transformed into an apatite phase following immersion in a saline solution. Moreover, the osteoblastic cells were viable on the cements for up to 10 days. Mouse-derived bone marrow cells were isolated and activated with osteoclastic differentiation medium, and the effects of the CP and Ch-CP substrates and their ionic eluants on the osteoclastic activity were investigated. Osteoclastic cells were viable for up to 14 days on both types of cements, maintaining a higher cell growth level than the control culture dish. Multi-nucleated osteoclastic cells that were tartrate-resistant acid phosphatase (TRAP)-positive were clearly observed when cultured on the cement substrates as well as treated with the cement eluants. The TRAP activity was found to be significantly higher in cells influenced by the cement substrates and their eluants with respect to the control culture dish (Ch-CP > CP ≫ control). Overall, the osteoclastic differentiation was highly stimulated by the α-TCP based experimental cements in terms of both the substrate interaction and their elution products.
Collapse
Affiliation(s)
- Sun-Ae Oh
- Department of Nanobiomedical Science and WCU Research Center, Biomaterials and Tissue Engineering Lab, Dankook University Graduate School, Cheonan, South Korea
| | | | | | | |
Collapse
|
19
|
Alge DL, Chu TMG. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. J Biomed Mater Res A 2010; 94:547-55. [PMID: 20186776 DOI: 10.1002/jbm.a.32742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating a pre-set cement with a reactive polymer and then cross-linking the polymer in situ. This method can be used to reinforce 3D calcium phosphate cement scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as a model reinforcing polymer. The compressive strength of a 3D scaffold comprised of orthogonally intersecting beams was increased from 0.31 +/- 0.06 MPa to 1.65 +/- 0.13 MPa using PEGDA 600. In addition, the mechanical properties of reinforced cement were characterized using three PEGDA molecular weights (200, 400, and 600 Da) and three cement powder to liquid (P/L) ratios (0.8, 1.0, and 1.43). Higher molecular weight increased reinforcement efficacy, and P/L controlled cement porosity and determined the extent of polymer incorporation. Although increasing polymer incorporation resulted in a transition from brittle, cement-like behavior to ductile, polymer-like behavior, maximizing polymer incorporation was not advantageous. Polymerization shrinkage produced microcracks in the cement, which reduced the mechanical properties. The most effective reinforcement was achieved with P/L of 1.43 and PEGDA 600. In this group, flexural strength increased from 0.44 +/- 0.12 MPa to 7.04 +/- 0.51 MPa, maximum displacement from 0.05 +/- 0.01 mm to 1.44 +/- 0.17 mm, and work of fracture from 0.64 +/- 0.10 J/m(2) to 677.96 +/- 70.88 J/m(2) compared to non-reinforced controls. These results demonstrate the effectiveness of our novel reinforcement method, as well as its potential for fabricating reinforced 3D calcium phosphate cement scaffolds useful for bone tissue engineering.
Collapse
Affiliation(s)
- Daniel L Alge
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47908, USA
| | | |
Collapse
|
20
|
Low KL, Tan SH, Zein SHS, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater 2010; 94:273-86. [PMID: 20336722 DOI: 10.1002/jbm.b.31619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major weakness of current orthopedic implant materials, for instance sintered hydroxyapatite (HA), is that they exist as a hardened form, requiring the surgeon to fit the surgical site around an implant to the desired shape. This can cause an increase in bone loss, trauma to the surrounding tissue, and longer surgical time. A convenient alternative to harden bone filling materials are injectable bone substitutes (IBS). In this article, recent progress in the development and application of calcium phosphate (CP)-based composites use as IBS is reviewed. CP materials have been used widely for bone replacement because of their similarity to the mineral component of bone. The main limitation of bulk CP materials is their brittle nature and poor mechanical properties. There is significant effort to reinforce or improve the mechanical properties and injectability of calcium phosphate cement (CPC) and this review resumes different alternatives presented in this specialized literature.
Collapse
Affiliation(s)
- Kah Ling Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
| | | | | | | | | | | |
Collapse
|
21
|
Polymeric-calcium phosphate cement composites-material properties: in vitro and in vivo investigations. Int J Biomater 2010; 2010. [PMID: 20811498 PMCID: PMC2927743 DOI: 10.1155/2010/691452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/01/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022] Open
Abstract
New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5-15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications.
Collapse
|
22
|
Kim SS, Seo M, Chung JW, Kwon SY, Kim YS. Polymeric calcium phosphate cements incorporated with poly-γ-glutamic acid: Comparative study of poly-γ-glutamic acid and citric acid. J Appl Polym Sci 2009. [DOI: 10.1002/app.30037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. JOURNAL OF MATERIALS SCIENCE 2009; 44:2343-2387. [DOI: 10.1007/s10853-008-3124-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 11/20/2008] [Indexed: 07/02/2024]
|
24
|
Calcium Orthophosphate Cements and Concretes. MATERIALS 2009; 2:221-291. [PMCID: PMC5445692 DOI: 10.3390/ma2010221] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 12/30/2022]
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|
25
|
Dorozhkin SV. Calcium orthophosphate cements for biomedical application. JOURNAL OF MATERIALS SCIENCE 2008; 43:3028-3057. [DOI: 10.1007/s10853-008-2527-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
26
|
Majekodunmi AO, Deb S. Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1883-8. [PMID: 17522964 DOI: 10.1007/s10856-007-3026-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 05/05/2006] [Indexed: 05/15/2023]
Abstract
Polymer modified calcium phosphate cements made with cement powders of varying tetracalcium phosphate [TTCP] content were prepared using two different molecular weight fractions of poly(acrylic acid) at four different concentrations. The ratio of the precursors (TTCP:DCPA) in the cement powder was found to influence the initial setting which decreased with increasing concentration of TTCP in the powder phase. It was also observed that cements derived from the higher molecular weight containing PAA yielded significantly (P < 0.05) shorter initial setting time (Ti) than cements containing the lower molecular weight, poly(acrylic acid) [GE7 PAA] The effect of the varying the TTCP content in the three different cement types PCPC-A, PCPC-B and PCPC-C showed that the trends of the compressive strength were specific to the concentration and molecular weight of the poly (acrylic acid). A 20% concentration of Glascol-E7 with a cement powder composed of an equimolar ratio of precursors (PCPC-B) resulted in optimal compressive strength within the range investigated. The TTCP content of the cement powder could also be varied to improve the diametral tensile strengths of the cements; the specific effects however, were again governed by both the concentration and molecular weight of the constituent poly (acrylic acid). The influence of TTCP on both the initial setting time and diametral tensile strength was related to the Ca (2+) ion concentration, which determined the rate and amount of cross-linking in the cement.
Collapse
Affiliation(s)
- A O Majekodunmi
- Department of Dental Biomaterials, GKT Dental Institute, Floor 17, Guy's Tower, London Bridge, London, UK
| | | |
Collapse
|
27
|
Wang X, Ye J, Wang Y, Chen L. Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement. J Biomed Mater Res B Appl Biomater 2007; 82:93-9. [PMID: 17078083 DOI: 10.1002/jbm.b.30709] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beta-dicalcium silicate was used to reinforce the injectable calcium phosphate cement (iCPC) for the first time in this study. The influence of the content of beta-dicalcium silicate on the mechanical properties, setting time, rheological properties, injectability, phase evolution, microstructure, and biodegradability of iCPC was systematically investigated. The results demonstrated that the addition of 8 wt % beta-dicalcium silicate obviously enhanced the compressive strength of the CPC from 26.5 to 47.5 MPa, and did not significantly influence the biodegradability, setting time, injectability, phase evolution, and microstructure of the CPC. The beta-dicalcium silicate-reinforced iCPC with relatively high mechanical property should have potential prospects for the wider applications in surgery such as orthopedics, oral, and maxillofacial surgery.
Collapse
Affiliation(s)
- Xiupeng Wang
- Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, Ministry of Education, South China University of Technology, Guangzhou 510641, China
| | | | | | | |
Collapse
|
28
|
Kim JS, Baek SH, Bae KS. In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers. J Endod 2004; 30:708-11. [PMID: 15448464 DOI: 10.1097/01.don.0000125318.90702.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study compared the biocompatibility of two new calcium phosphate-based root canal sealers (CAPSEAL I, CAPSEAL II) with another type of commercially available calcium phosphate sealer (Apatite Root Sealer type I, Apatite Root Sealer type II) and a zinc oxide eugenol-based sealer (Pulp Canal Sealer EWT) after implanting them in the subcutaneous tissue of rats. After 1, 2, 4, and 12 weeks, the tubes were removed with the surrounding tissues. The tissue reactions were graded as being mild or 1, moderate or 2, and severe or 3 after a histopathological examination. The results were analyzed statistically with the Kruskal-Wallis test. The biocompatibility of the materials was interpreted according to the Federation Dentaire Internationale criteria (1980). The inflammatory reactions decreased with time. The new sealers showed a lower tissue response than any of the other sealers in all the experimental periods. All the tested sealers showed an acceptable biocompatibility.
Collapse
Affiliation(s)
- Jin-Su Kim
- Department of Conservative Dentistry, College of Dentistry, Seoul National University, 28 Yonmgon-Dong, Chongno-Gu, Seoul 110-749, Korea
| | | | | |
Collapse
|
29
|
dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda AC. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs 2003; 27:412-8. [PMID: 12752199 DOI: 10.1046/j.1525-1594.2003.07248.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha-Tricalcium phosphate bone cement, as formerly designed and developed by Driessens et al., consists of a powder composed by alpha-tricalcium phosphate (alpha-TCP) and hydroxyapatite (HA) seeds, and an aqueous solution of Na2HPO4 as mixing liquid. After mixing powder and liquid, alpha-TCP dissolves into the liquid and calcium deficient hydroxyapatite (CDHA), more insoluble than the former, precipitates as an entanglement of crystals, which causes the setting and hardening of the cement. alpha-TCP bone cement offers several advantages in comparison to calcium phosphate bioceramics and acrylic bone cements as bone graft and repairing material, like perfect adaptability to the defect size and shape, osteotransductibility, and absence of thermal effect during setting. The main handicap is its low mechanical strength. Therefore, approaching its mechanical strength to that of human bone could considerably extend its applications. In the present work, an in situ polymerization system based on acrylamide (AA) and ammonium polyacrylate (PA) as liquid reducer was added to alpha-TCP cement to increase its mechanical strength. The results showed that the addition of 20 wt% of acrylamide and 1 wt% AP to the liquid increased the compressive and tensile strength of alpha-TCP bone cement by 149 and 69% (55 and 21 MPa), respectively. The improvement in mechanical strength seems to be caused by a decrease of porosity and the reinforcing effect of a polyacrylamide network coexisting with the entanglement of CDHA crystals. The studied additives do not affect the nature of the final product of the setting reaction, CDHA, but promote the reduction of its crystal size.
Collapse
|
30
|
Lee YK, Lim BS, Kim CW. Mechanical properties of calcium phosphate based dental filling and regeneration materials. J Oral Rehabil 2003; 30:418-25. [PMID: 12631167 DOI: 10.1046/j.1365-2842.2003.01061.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the mechanical properties of calcium phosphate cements (CPC) for possible dental applications with varied liquid and powder compositions under the same testing condition. Cements studied in this experiment were divided into two groups of CPC not containing polymer and polymeric CPC (PCPC). Cement powder was formed by combining equimolar amounts of dicalcium phosphate anhydrous and tetracalcium phosphate, or acrylic resin polymer powder mixture. The CPC specimens for the compressive strength (CS) and diametral tensile strength (DTS) measurements were prepared by mixing powder and liquid for 30 s with a powder/liquid ratio of 3:1, and subsequently packing the paste into a brass mould. The specimens were kept at 37 degrees C and 100% relative humidity for 24 h before measurements were conducted on a Universal Testing Machine with a cross-head speed of 1 mm min-1. The CS of CPC was 0.14-10.29 MPa and that of PCPC was 0.26-117.58 MPa. The DTS of CPC was 0.10-4.56 MPa and that of PCPC was 0.07-22.54 MPa. The CS and DTS were very diverse depending on the composition of powder and liquid. Some compositions showed higher values than commercial liners. Thus compositions of 2% carboxymethyl cellulose + 35% citric acid in phosphate buffered saline (PBS), 20% gelatin in PBS, 2% sodium alginate in PBS, 20-40% aqueous acrylic-maleic copolymer solution, and some of the HPMC and PMVE-Ma solutions exhibited promising formulae for dentine regenerating materials. Acrylic resin-PCPC group showed generally higher CS and DTS values. Based on this study, further studies on the reaction with odontoblast and resultant dentine regeneration should be performed using promising compositions.
Collapse
Affiliation(s)
- Y-K Lee
- Department of Dental Biomaterials, College of Dentistry and Intellectual Biointerface Engineering Center, Seoul National University, Seoul, Korea.
| | | | | |
Collapse
|
31
|
Synthesis and characterization of (co)polymers containing a phosphonate function for use in dental composites. POLYMER 2002. [DOI: 10.1016/s0032-3861(02)00656-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Mickiewicz RA, Mayes AM, Knaack D. Polymer--calcium phosphate cement composites for bone substitutes. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 61:581-92. [PMID: 12115448 DOI: 10.1002/jbm.10222] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of self-setting calcium phosphate cements (CPCs) as bioresorbable bone-replacement implant materials presently is limited to non-load-bearing applications because of their low compressive strength relative to natural bone. The present study investigated the possibility of strengthening a commercially available CPC, alpha-BSM, by incorporating various water-soluble polymers into the cement paste during setting. Several polyelectrolytes, poly(ethylene oxide), and the protein bovine serum albumin (BSA) were added in solution to the cement paste to create calcium phosphate-polymer composites. Composites formulated with the polycations poly(ethylenimine) and poly(allylamine hydrochloride) exhibited compressive strengths up to six times greater than that of pure alpha-BSM material, with a maximum value reached at intermediate polymer content and for the highest molecular weight studied. Composites containing BSA developed compressive strengths twice that of the original cement at protein concentrations of 13-25% by weight. In each case, XRD studies correlate the improvement in compressive strength with reduced crystallite dimensions, as evidenced by a broadening of the (0,0,2) reflection. This suggests that polycation or BSA adsorption inhibits crystal growth and possibly leads to a larger crystal aspect ratio. SEM results indicate a denser, more interdigitated microstructure. The increased strength was attributed to the polymer's capacity to bridge between multiple crystallites (thus forming a more cohesive composite) and to absorb energy through plastic flow.
Collapse
Affiliation(s)
- Rafal A Mickiewicz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
33
|
Ginebra MP, Rilliard A, Fernández E, Elvira C, San Román J, Planell JA. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 57:113-8. [PMID: 11416857 DOI: 10.1002/1097-4636(200110)57:1<113::aid-jbm1149>3.0.co;2-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A polymeric acrylic system supporting a derivative of the aminosalicylic acid was incorporated in a calcium phosphate cement, with the aim not only to achieve some pharmacological effects but to obtain an improvement of its mechanical and rheological properties. It is known that, besides the analgesic and anti-inflammatory properties, the salicylic group presents a calcium complexation ability. The inorganic phase of the cement consisted of alpha-tricalcium phosphate [alpha-Ca(3)(PO(4))(2)] and precipitated hydroxyapatite added as a seed. The liquid phase was an aqueous solution of Na(2)HPO(4). The polymeric drug increased the injectability of the cement. The hydrolysis of the alpha-tricalcium phosphate into calcium-deficient hydroxyapatite proceeded at a lower rate because of the addition of the polymeric drug. As a consequence, the cement hardening was slightly slower, although the final compressive strength was 25% higher. The bending strength increased from 5 to 9 MPa with the addition of the polymeric drug. The strengthening of the structure was related to the reduction of porosity and the lower size of the precipitated crystals, as observed by scanning electron microscopy.
Collapse
Affiliation(s)
- M P Ginebra
- Research Centre in Biomedical Engineering (CREB), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
dos Santos LA, De Oliveria LC, Rigo EC, Carrodeguas RG, Boschi AO, De Arruda AC. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement. Bone 1999; 25:99S-102S. [PMID: 10458286 DOI: 10.1016/s8756-3282(99)00143-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, great attention has been paid to calcium phosphate cements, because of their advantages in comparison with conventional calcium phosphate bioceramics employed for bone repairing, regarding in situ handling, and shaping abilities. Nevertheless, the calcium phosphate cements exhibit relatively low mechanical strength. The aim of this work was the improvement of the compressive strength of alpha-tricalcium phosphate-based cement. The hydraulic setting reaction of this system produces a calcium-deficient hydroxyapatite phase suitable for bone repairing: alpha-Ca3(PO4)2 + H2O --> Ca9(HPO4)(PO4)5OH. Mechanical strength can be improved using technological solutions developed for other applications, such as Portland cement and dual-setting glass-ionomers, by using polymeric additives. The additives used in this work were sodium alginate, sodium polyacrylate, and an in situ polymerization system resulting in a polyacrylamide crosslinked hydrogel. Parameters evaluated were setting time, compressive strength before and after immersion in simulated body fluid, density, porosity, crystalline phases, and microstructure. Sodium alginate and sodium polyacrylate were deleterious to both setting time and mechanical strength. When the in situ polymerization system was added, two setting reactions progressed in parallel: the conventional hydraulic reaction and the copolymerization of acrylamide and crosslinking water-soluble monomers. The initial and final setting times of the "dual-setting" cement were 9 and 35 min, respectively, and they can be regulated varying the initiator, catalyst, and monomers concentrations. The initial compressive strength of the dual-setting cement (6.8 MPa at 0 h, and 15.2 MPa at 24 h) is higher than that of unmodified cement. The major crystalline phase after setting is hydroxyapatite. The dual-setting cement seems to be suitable for clinical applications in bone repairing and remodeling.
Collapse
Affiliation(s)
- L A dos Santos
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Park MS, Eanes ED, Antonucci JM, Skrtic D. Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites. Dent Mater 1998; 14:137-41. [PMID: 10023203 DOI: 10.1016/s0109-5641(98)00020-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether amorphous calcium phosphate (ACP)-containing composites, which have the ability to release mineralizing levels of Ca and PO4 ions, have appropriate mechanical properties for use as base and lining materials. METHODS Composites of pyrophosphate-stabilized ACP particulates (mass fraction of 40%) and photo-activated methacrylate resins (mass fraction of 60%) were tested for biaxial flexure strength (BFS), diametral tensile strength (DTS), and compressive strength (CS). Hydroxyapatite (HAP; mass fraction of 40%), and micro-sized glass (mass fraction of 50%) composites as well as a commercial visible light curable base/liner were also tested. The significance between mean values was determined by Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS BFS of dry and wet (24 h at 37 degrees C in water) ACP composites (60.3 and 62.0 MPa, respectively) were significantly lower than those of the comparison materials (79.2-109.3 MPa). CS values were likewise lower (62.9 MPa dry and 67.6 MPa wet vs 80.6-196.8 MPa) except for the wet base/liner (58.5 MPa). DTS of the dry ACP composite (21.8 MPa) was comparable with that of the HAP (22.8 MPa) and glass (25.5 MPa) composites, but lower than that of the base/liner (36.2 MPa). DTS decreased significantly when the ACP composite was wet (17.8 MPa). SIGNIFICANCE These results suggest that the remineralizing ACP polymeric composites, although mechanically weaker in some respects than other polymeric composites, have properties suitable for use as base and lining materials.
Collapse
Affiliation(s)
- M S Park
- Phil Dental Clinic, Kyung Ki Do, Korea
| | | | | | | |
Collapse
|
36
|
Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater 1996; 12:295-301. [PMID: 9170997 DOI: 10.1016/s0109-5641(96)80037-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The rationale for this study was based on the hypothesis that the mechanical strength of methacrylate composites containing the bioactive filler, amorphous calcium phosphate, can be enhanced by synthesizing this filler in the presence of glass-forming agents. Specifically, this study was conducted to prepare composites with zirconia- and silica-modified amorphous calcium phosphate fillers, and to determine whether the remineralization potential from the release of calcium and phosphate ions and the mechanical properties of the corresponding methacrylate composites were enhanced. METHODS The modified amorphous calcium phosphates were synthesized at pH 10.5 by mixing 800 mmol/L Ca(NO3)2 solutions and either 250 mmol/L zirconylchloride (ZrOCl2) or 4.4 mol/L tetraethoxysilane (TEOS) solutions with solutions containing 525 mmol/L Na2HPO4 and 11 mmol/L Na4P2O7. After washing and drying, the amorphous calcium phosphates were mixed with visible light-activated resins and photopolymerized to form composite disks that were then examined for their ability to release Ca2+ and total ionic phosphate (PO4(3-) + HPO4(2-) + H2PO4-, hereafter indicated as PO4) by immersion in HEPES-buffered (pH 7.4) saline at 37 degrees C. Solution ion concentrations were compared at regular intervals up to 265 h. Biaxial flexural strengths of the composites before and after immersion were compared, and significant differences were established by Student's test (p < 0.05). RESULTS Both ZrOCl2- and TEOS-modified amorphous calcium phosphate composite disks released Ca2+ and PO4 ions at sustained levels requisite for remineralization to occur. The transformation of amorphous calcium phosphate into hydroxyapatite within the composites was also retarded, particularly in the case of amorphous calcium phosphate modified with ZrOCl2. Biaxial flexure strength values of composite disks showed that TEOS- and ZrOCl2-amorphous calcium phosphate-filled composites increased in strength by 33% and 21% before immersion and by 25% and 27% after immersion, respectively, compared to unmodified amorphous calcium phosphate composites (controls). All strength increases except TEOS after immersion were significant (p < 0.05). SIGNIFICANCE Properly modified amorphous calcium phosphate fillers can be used to prepare bioactive composites with enhanced mechanical properties for more demanding dental applications without compromising their remineralizing potential.
Collapse
Affiliation(s)
- D Skrtic
- National Institute of Dental Research, Research Associate Program, Maryland, USA
| | | | | |
Collapse
|
37
|
Matsuya Y, Antonucci JM, Matsuya S, Takagi S, Chow LC. Polymeric calcium phosphate cements derived from poly(methyl vinyl ether-maleic acid). Dent Mater 1996; 12:2-7. [PMID: 8598246 DOI: 10.1016/s0109-5641(96)80056-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES The purpose of this study was to assess the feasibility of forming polymeric calcium phosphate cements from a mixed powder of dicalcium phosphate/tetracalcium phosphate or only tetracalcium phosphate and poly(methyl vinyl ether-maleic acid) (PMVE-Ma), and to study their setting reaction. METHODS The setting reaction process of the polymeric cements was evaluated by mechanical strength tests, infrared spectroscopy and x-ray diffraction analysis and compared with that of a water-setting calcium phosphate cement. The mechanical strength data were analyzed using ANOVA and Scheffé's multiple comparisons test. RESULTS Cements prepared from the mixed powder and 25-30 wt% aqueous solutions of PMVE-Ma had high mechanical strength after 24 h storage in distilled water at 37 degrees C. The hardening mechanism depended on an acid-base reaction between the carboxyl groups of PMVE-Ma and the mixed powder, especially its tetracalcium phosphate component. The formation of hydroxyapatite in the polymeric calcium phosphate cement was not detected and is apparently inhibited as a result of the competing reaction of PMVE-Ma with the mixed powder. SIGNIFICANCE The cement-forming reaction was significantly faster than that of a water-setting calcium phosphate cement and slower than that observed with the mixed powder and polyacids such as poly(acrylic acid). The characteristics of the polymeric cements suggest that the materials may be useful in cavity lining or endodontic sealing.
Collapse
Affiliation(s)
- Y Matsuya
- Department of Conservative Dentistry II, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
38
|
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1995; 29:1537-43. [PMID: 8600144 DOI: 10.1002/jbm.820291210] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ideal mechanical strength and critical porosity of calcium phosphate cement (CPC) were estimated to help determine ways to improve its properties. CPC at various porosities was made by packing CPC paste, at various powder-to-liquid (P/L) ratios (2.0-6.0), into a mold under various pressures (0-173 MPa). The mechanical strength of CPC, in terms of diametral tensile strength (DTS), increased with decreases in porosity. Intercrystalline fracture was observed in specimens made without the application of pressure, while fracture within the crystals increased with the packing pressure. These observations support the application of the relationship between DTS and porosity in fractographic equations. The ideal wet DTS and critical porosity of CPC were estimated to be 102 MPa and 63%, respectively. The minimum porosity of the currently used CPC was approximately 26-28%, even when it was packed under 173 MPa, and the maximum DTS value was thus approximately 13-14 MPa. Because reducing the porosity of currently used CPC would be difficult, we conclude that in CPC-related research, we should focus on ways in which to accelerate bone-replacing behavior, in addition to improving the mechanical strength of CPC.
Collapse
Affiliation(s)
- K Ishikawa
- Department of Dental Engineering, School of Dentistry, Tokushima University, Japan
| | | |
Collapse
|
39
|
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995; 16:855-60. [PMID: 8527601 DOI: 10.1016/0142-9612(95)94147-d] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The in vivo setting behaviour of fast-setting calcium phosphate cement (FSCPC) between femoral muscles of the rat was investigated to evaluate the possible value of FSCPC for medical and dental application. Conventional CPC (c-CPC) and FSCPC were implanted between femoral muscles, and various aspects of the setting behaviour such as setting time, mechanical strength and conversion ratio of cement into hydroxyapatite (HAP: Ca10(PO4)6(OH)2) were measured by the Vicat needle method, diametral tensile strength (DTS) measurement, and quantitative powder X-ray diffraction (XRD) analysis, respectively. The setting time of FSCPC in vivo was 5-7 min, in contrast to 48 min for c-CPC. As a result of its fast setting, set specimens of FSCPC showed higher mechanical strength from the initial stage than c-CPC. Higher DTS values were observed in FSCPC than c-CPC implanted after 24 h. Powder XRD analysis revealed faster conversion of FSCPC than c-CPC into HAP, which was responsible both for the faster setting and higher mechanical strength from the initial stage. We concluded, therefore, that FSCPC may be used for a wide range of clinical applications, i.e. fields where fast setting is required such as orthopaedic, plastic and reconstructive, and oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Jendresen MD, Allen EP, Bayne SC, Donovan TE, Hansson TL, Klooster J, Kois JC. Annual review of selected dental literature: report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 1994; 72:39-77. [PMID: 8083840 DOI: 10.1016/0022-3913(94)90214-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Dickens-Venz SH, Takagi S, Chow LC, Bowen RL, Johnston AD, Dickens B. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent Mater 1994; 10:100-6. [PMID: 7758844 DOI: 10.1016/0109-5641(94)90048-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The purpose of this study was to improve the handling and physical properties of a self-setting, water-based calcium phosphate cement by combining it with polymerizable resins and to study the setting reactions involved. METHODS Dual-cured composite cements were prepared from a calcium phosphate cement powder and dental monomers that contain carboxylated hydrophilic resins or resin/water mixtures. The setting reaction of the calcium phosphate cement in the presence of the resins was evaluated by pH measurements, infrared spectroscopy, diametral tensile strength, x-ray diffraction analysis, and scanning electron microscopy. RESULTS Carboxylated resins were chosen because they can form ionic bonds to the mineral filler, which was confirmed by appearance of an infrared absorbance peak at 1552 cm-1 within 24 h after mixing due to the formation of a carboxylate salt. Hydroxyapatite did not develop in composites prepared from resin and calcium phosphate cement. However, composites from calcium phosphate cement, resin and water showed approximately 40% hydroxyapatite. The resulting composite cements have moderately high DTS of 14-15 MPa and high pH. SIGNIFICANCE Hydrophilic acidic resins allows mixing with water and/or allow rapid diffusion of water into the resinous cement so that the dissolution and reprecipitation processes required for the conversion of the calcium phosphate components to hydroxyapatite can occur. The characteristics of the resulting composite cements suggest that the materials may be useful in pulp capping and/or cavity lining.
Collapse
Affiliation(s)
- S H Dickens-Venz
- American Dental Association Health Foundation, Paffenbarger Research Center, Gaithersburg, MD 20899, USA
| | | | | | | | | | | |
Collapse
|
42
|
Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC. Polymeric calcium phosphate cements: setting reaction modifiers. Dent Mater 1993; 9:46-50. [PMID: 8299870 DOI: 10.1016/0109-5641(93)90105-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, the effects of several additives on the setting behavior and mechanical properties of polymeric calcium phosphate cements were investigated. The cements were derived from a polycarboxylic acid (PCA) and a calcium phosphate cement (CPC) powder that consisted of equimolar amounts of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA). Retardation of the setting reaction in the PCA-CPC cements was observed by adding tribasic sodium phosphate and fluorides such as stannous fluoride, zirconium(IV) fluoride and titanium(IV) fluoride. It was found that increasing the concentration of these additives decreased the mechanical strength of the cements. However, improvements in both setting and mechanical properties for the PCA-CPC cements were observed by the combined use of 8% (w/w) stannous fluoride and 10% (w/w) tartaric acid. The mechanical properties of the PCA-CPC cement also were improved by adding calcium acetate, calcium methacrylate, zirconium(IV) sulfate and phosphonoacetic acid.
Collapse
Affiliation(s)
- K Miyazaki
- Department of Dental Materials and Devices, Fukuoka Dental College, Japan
| | | | | | | | | |
Collapse
|