1
|
Hurley SP, Horwood C, Mallon J, Mangoni AA, Inglis JM. Characteristics of paracetamol poisoning in a local health network and consistency of hospital management with national guidelines. Intern Med J 2025; 55:139-142. [PMID: 39668495 DOI: 10.1111/imj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/03/2024] [Indexed: 12/14/2024]
Abstract
The management of paracetamol poisoning in our local health network and consistency with national guidelines is unclear. We conducted a 4-month retrospective study of all paracetamol poisonings identified in two South Australian hospitals. Most presentations were deliberate self-poisoning (90.7%) with immediate-release formulations (88.0%). Although most were managed in accordance with national guidelines, there were deficiencies in documentation of the poisoning details and patient weight as well as cases of underdosing of the antidote. Quality improvement initiatives are needed.
Collapse
Affiliation(s)
- Simon P Hurley
- Pharmacy Department, SA Pharmacy - Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Chris Horwood
- Department of Clinical Epidemiology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jake Mallon
- Emergency Department, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Joshua M Inglis
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Lal BB, Khanna R, Sood V, Alam S, Nagral A, Ravindranath A, Kumar A, Deep A, Gopan A, Srivastava A, Maria A, Pawaria A, Bavdekar A, Sindwani G, Panda K, Kumar K, Sathiyasekaran M, Dhaliwal M, Samyn M, Peethambaran M, Sarma MS, Desai MS, Mohan N, Dheivamani N, Upadhyay P, Kale P, Maiwall R, Malik R, Koul RL, Pandey S, Ramakrishna SH, Yachha SK, Lal S, Shankar S, Agarwal S, Deswal S, Malhotra S, Borkar V, Gautam V, Sivaramakrishnan VM, Dhawan A, Rela M, Sarin SK. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int 2024; 18:1343-1381. [DOI: https:/doi.org/10.1007/s12072-024-10720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 04/16/2025]
|
3
|
Lal BB, Khanna R, Sood V, Alam S, Nagral A, Ravindranath A, Kumar A, Deep A, Gopan A, Srivastava A, Maria A, Pawaria A, Bavdekar A, Sindwani G, Panda K, Kumar K, Sathiyasekaran M, Dhaliwal M, Samyn M, Peethambaran M, Sarma MS, Desai MS, Mohan N, Dheivamani N, Upadhyay P, Kale P, Maiwall R, Malik R, Koul RL, Pandey S, Ramakrishna SH, Yachha SK, Lal S, Shankar S, Agarwal S, Deswal S, Malhotra S, Borkar V, Gautam V, Sivaramakrishnan VM, Dhawan A, Rela M, Sarin SK. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int 2024; 18:1343-1381. [PMID: 39212863 DOI: 10.1007/s12072-024-10720-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Timely diagnosis and management of pediatric acute liver failure (PALF) is of paramount importance to improve survival. The Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition invited national and international experts to identify and review important management and research questions. These covered the definition, age appropriate stepwise workup for the etiology, non-invasive diagnosis and management of cerebral edema, prognostic scores, criteria for listing for liver transplantation (LT) and bridging therapies in PALF. Statements and recommendations based on evidences assessed using the modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) system were developed, deliberated and critically reappraised by circulation. The final consensus recommendations along with relevant published background information are presented here. We expect that these recommendations would be followed by the pediatric and adult medical fraternity to improve the outcomes of PALF patients.
Collapse
Affiliation(s)
- Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital and Research Center, Mumbai, India
- Apollo Hospital, Navi Mumbai, India
| | - Aathira Ravindranath
- Department of Pediatric Gastroenterology, Apollo BGS Hospital, Mysuru, Karnataka, India
| | - Aditi Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Akash Deep
- Department of Pediatric Intensive Care, King's College Hospital, London, UK
| | - Amrit Gopan
- Department of Pediatric Gastroenterology and Hepatology, Sir H.N Reliance Foundation Hospital, Mumbai, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arjun Maria
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Arti Pawaria
- Department of Pediatric Hepatology and Gastroenterology, Amrita Institute of Medical Sciences, Faridabad, India
| | - Ashish Bavdekar
- Department of Pediatrics, KEM Hospital and Research Centre, Pune, India
| | - Gaurav Sindwani
- Department of Organ Transplant Anesthesia and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kalpana Panda
- Department of Pediatrics, Institute of Medical Sciences & SUM Hospital, Bhubaneshwar, India
| | - Karunesh Kumar
- Department of Pediatric Gastroenterology and Liver Transplantation, Indraprastha Apollo Hospitals, New Delhi, India
| | | | - Maninder Dhaliwal
- Department of Pediatric Intensive Care, Amrita Institute of Medical Sciences, Faridabad, India
| | - Marianne Samyn
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Maya Peethambaran
- Department of Pediatric Gastroenterology and Hepatology, VPS Lakeshore Hospital, Kochi, Kerala, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Moreshwar S Desai
- Department of Paediatric Critical Care and Liver ICU, Baylor College of Medicine &Texas Children's Hospital, Houston, TX, USA
| | - Neelam Mohan
- Department of Pediatric Gastroenterology and Hepatology, Medanta the Medicity Hospital, Gurugram, India
| | - Nirmala Dheivamani
- Department of Paediatric Gastroenterology, Institute of Child Health and Hospital for Children, Egmore, Chennai, India
| | - Piyush Upadhyay
- Department of Pediatrics, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rohan Malik
- Department of Pediatric Gastroenterology and Hepatology, All India Institute of Medical Sciences, New Delhi, India
| | - Roshan Lal Koul
- Department of Neurology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Snehavardhan Pandey
- Department of Pediatric Hepatology and Liver Transplantation, Sahyadri Superspeciality Hospital Pvt Ltd Pune, Pune, India
| | | | - Surender Kumar Yachha
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Sakra World Hospital, Bangalore, India
| | - Sadhna Lal
- Division of Pediatric Gastroenterology and Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahana Shankar
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Sajan Agarwal
- Department of Pediatric Gastroenterology and Hepatology, Gujarat Gastro Hospital, Surat, Gujarat, India
| | - Shivani Deswal
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplant, Narayana Health, DLF Phase 3, Gurugram, India
| | - Smita Malhotra
- Department of Pediatric Gastroenterology and Hepatology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Vibhor Borkar
- Department of Paediatric Hepatology and Gastroenterology, Nanavati Max Super Speciality Hospital, Mumbai, Maharashtra, India
| | - Vipul Gautam
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Max Superspeciality Hospital, New Delhi, India
| | | | - Anil Dhawan
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Mohamed Rela
- Department of Liver Transplantation and HPB (Hepato-Pancreatico-Biliary) Surgery, Dr. Rela Institute & Medical Center, Chennai, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
4
|
McGill MR, Curry SC. The Evolution of Circulating Biomarkers for Use in Acetaminophen/Paracetamol-Induced Liver Injury in Humans: A Scoping Review. LIVERS 2023; 3:569-596. [PMID: 38434489 PMCID: PMC10906739 DOI: 10.3390/livers3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Acetaminophen (APAP) is a widely used drug, but overdose can cause severe acute liver injury. The first reports of APAP hepatotoxicity in humans were published in 1966, shortly after the development of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as the first biomarkers of liver injury as opposed to liver function. Thus, the field of liver injury biomarkers has evolved alongside the growth in APAP hepatotoxicity incidence. Numerous biomarkers have been proposed for use in the management of APAP overdose patients in the intervening years. Here, we comprehensively review the development of these markers from the 1960s to the present day and briefly discuss possible future directions.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
- Dept. of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85006, USA
- Department of Medical Toxicology, Banner-University Medical Center Phoenix, Phoenix, AZ 85006, USA
| |
Collapse
|
5
|
Yiew NKH, Vazquez JH, Martino MR, Kennon-McGill S, Price JR, Allard FD, Yee EU, Layman AJ, James LP, McCommis KS, Finck BN, McGill MR. Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Mol Metab 2023; 77:101808. [PMID: 37716594 PMCID: PMC10561123 DOI: 10.1016/j.molmet.2023.101808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel H Vazquez
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefanie Kennon-McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jake R Price
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander J Layman
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Chiew AL, Isbister GK. Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective. Expert Opin Drug Metab Toxicol 2023; 19:601-616. [PMID: 37714812 DOI: 10.1080/17425255.2023.2259787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Acetaminophen (paracetamol) is a commonly used analgesic and antipyretic agent, which is safe in therapeutic doses. Acetaminophen poisoning due to self-harm or repeated supratherapeutic ingestion is a common cause of acute liver injury. Acetylcysteine has been a mainstay of treatment for acetaminophen poisoning for decades and is efficacious if administered early. However, treatment failures occur if administered late, in 'massive' overdoses or in high-risk patients. AREAS COVERED This review provides an overview of the mechanisms of toxicity of acetaminophen poisoning (metabolic and oxidative phase) and how this relates to the assessment and treatment of the acetaminophen poisoned patient. The review focuses on how these advances offer further insight into the utility of novel biomarkers and the role of proposed adjunct treatments. EXPERT OPINION Advances in our understanding of acetaminophen toxicity have allowed the development of novel biomarkers and a better understanding of how adjunct treatments may prevent acetaminophen toxicity. Newly proposed adjunct treatments like fomepizole are being increasingly used without robust clinical trials. Novel biomarkers (not yet clinically available) may provide better assessment of these newly proposed adjunct treatments, particularly in clinical trials. These advances in our understanding of acetaminophen toxicity and liver injury hold promise for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Angela L Chiew
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Geoffrey K Isbister
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle, Waratah, NSW, Australia
| |
Collapse
|
7
|
Alizadeh N, Yaryari A, Behnoush AH, Raoufinejad K, Behnoush B. Late N-acetylcysteine for successful recovery of acetaminophen-related acute liver failure: A case report. Clin Case Rep 2023; 11:e7946. [PMID: 37767143 PMCID: PMC10520410 DOI: 10.1002/ccr3.7946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acetaminophen toxicity is one of the leading causes of liver failure. Although N-acetylcysteine (NAC) is generally successful in preventing acetaminophen hepatotoxicity when given in a timely manner, if not prescribed in the early golden time, the only practical way to save the patient might be liver transplantation. The case presented was a 20-year-old female with an acetaminophen overdose (30 g), for which more than 24 h had passed since the ingestion. Despite the critical clinical condition, loss of consciousness (Glasgow Coma Score of 4) of the patient, and passing the golden time of antidote administration, the decision was made by the healthcare team to administer NAC. After transferring the patient to the intensive care unit, the three-bag NAC regimen was initiated and appropriate monitoring was performed. After this, the regimen of 3 g q8h was continued for the patient. The patient's condition began to improve slowly on the second day and then she was extubated on the fourth day. Finally, she was discharged on the tenth day. Although the golden period of antidote administration had passed outwardly, there was no need for a liver transplant and the patient recovered successfully with late NAC administration. Hence, clinicians can benefit from the use of NAC even in the late phases of acetaminophen liver toxicity.
Collapse
Affiliation(s)
- Nafiseh Alizadeh
- Department of Pharmaceutical Care, Baharloo HospitalTehran University of Medical SciencesTehranIran
| | | | | | | | - Behnam Behnoush
- School of MedicineTehran University of Medical SciencesTehranIran
- Department of Forensic MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Shingina A, Mukhtar N, Wakim-Fleming J, Alqahtani S, Wong RJ, Limketkai BN, Larson AM, Grant L. Acute Liver Failure Guidelines. Am J Gastroenterol 2023; 118:1128-1153. [PMID: 37377263 DOI: 10.14309/ajg.0000000000002340] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
Acute liver failure (ALF) is a rare, acute, potentially reversible condition resulting in severe liver impairment and rapid clinical deterioration in patients without preexisting liver disease. Due to the rarity of this condition, published studies are limited by the use of retrospective or prospective cohorts and lack of randomized controlled trials. Current guidelines represent the suggested approach to the identification, treatment, and management of ALF and represent the official practice recommendations of the American College of Gastroenterology. The scientific evidence was reviewed using the Grading of Recommendations, Assessment, Development and Evaluation process to develop recommendations. When no robust evidence was available, expert opinions were summarized using Key Concepts. Considering the variety of clinical presentations of ALF, individualization of care should be applied in specific clinical scenarios.
Collapse
Affiliation(s)
- Alexandra Shingina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nizar Mukhtar
- Department of Gastroenterology, Kaiser Permanente, San Francisco, California, USA
| | - Jamilé Wakim-Fleming
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland Ohio, USA
| | - Saleh Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, Gastroenterology Section, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | | | - Anne M Larson
- Division of Gastroenterology and Hepatology, University of Washington, Seattle, Washington, USA
| | - Lafaine Grant
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Sato Y, Dong W, Nakamura T, Mizoguchi N, Nawaji T, Nishikawa M, Onaga T, Ikushiro S, Kobayashi M, Teraoka H. Transgenic Zebrafish Expressing Rat Cytochrome P450 2E1 (CYP2E1): Augmentation of Acetaminophen-Induced Toxicity in the Liver and Retina. Int J Mol Sci 2023; 24:ijms24044013. [PMID: 36835425 PMCID: PMC9968093 DOI: 10.3390/ijms24044013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Metabolic activation is the primary cause of chemical toxicity including hepatotoxicity. Cytochrome P450 2E (CYP2E) is involved in this process for many hepatotoxicants, including acetaminophen (APAP), one of the most common analgesics and antipyretics. Although the zebrafish is now used as a model for toxicology and toxicity tests, the CYP2E homologue in zebrafish has not been identified yet. In this study, we prepared transgenic zebrafish embryos/larvae expressing rat CYP2E1 and enhanced green fluorescent protein (EGFP) using a β-actin promoter. Rat CYP2E1 activity was confirmed by the fluorescence of 7-hydroxycoumarin (7-HC), a metabolite of 7-methoxycoumarin that was specific for CYP2 in transgenic larvae with EGFP fluorescence (EGFP [+]) but not in transgenic larvae without EGFP fluorescence (EGFP [-]). APAP (2.5 mM) caused reduction in the size of the retina in EGFP [+] larvae but not in EGFP [-] larvae, while APAP similarly reduced pigmentation in both larvae. APAP at even 1 mM reduced the liver size in EGFP [+] larvae but not in EGFP [-] larvae. APAP-induced reduction of liver size was inhibited by N-acetylcysteine. These results suggest that rat CYP2E1 is involved in some APAP-induced toxicological endpoints in the retina and liver but not in melanogenesis of the developing zebrafish.
Collapse
Affiliation(s)
- Yoshinori Sato
- School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu 069-8501, Hokkaido, Japan
| | - Wenjing Dong
- School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu 069-8501, Hokkaido, Japan
| | - Tatsuro Nakamura
- School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu 069-8501, Hokkaido, Japan
| | - Naohiro Mizoguchi
- Chemicals Evaluation and Research Institute, Japan (CERI), 3-2-7, Miyanojin, Kurume 839-0801, Fukuoka, Japan
| | - Tasuku Nawaji
- Chemicals Evaluation and Research Institute, Japan (CERI), 3-2-7, Miyanojin, Kurume 839-0801, Fukuoka, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Takenori Onaga
- School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu 069-8501, Hokkaido, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180, Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu 069-8501, Hokkaido, Japan
- Correspondence:
| |
Collapse
|
10
|
Kim JD. [Acute Liver Failure: Current Updates and Management]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:17-28. [PMID: 36695063 DOI: 10.4166/kjg.2022.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Acute liver failure (ALF) is a rare disease condition with a dynamic clinical course and catastrophic outcomes. Several etiologies are involved in ALF. Hepatitis A and B infections and indiscriminate use of untested herbs or supplemental agents are the most common causes of ALF in Korea. Noninvasive neurological monitoring tools have been used in patients with ALF in recent times. Ongoing improvements in intensive care, including continuous renal replacement therapy, therapeutic plasma exchange, vasopressor, and extracorporeal membrane oxygenation, have reduced the mortality rate of patients with ALF. However, liver transplantation is still the most effective treatment for patients with intractable ALF. There is a need for further research in the areas of better prognostication and precise selection of patients for emergency transplantation.
Collapse
Affiliation(s)
- Jin Dong Kim
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| |
Collapse
|
11
|
Bateman DN. Large paracetamol overdose-Higher dose acetylcysteine is required. Br J Clin Pharmacol 2023; 89:34-38. [PMID: 34957591 DOI: 10.1111/bcp.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Paracetamol poisoning continues to be a worldwide problem and, despite the availability of an effective antidote, acetylcysteine (NAC), the optimal way to use this antidote, particularly following very large doses of paracetamol, has not been established. Recent case series have shown an increased toxicity from high doses of paracetamol, even in those receiving prompt NAC therapy, particularly in patients above the 300 mg/L nomogram treatment line. Clinical trial evidence supporting shorter NAC dosing now allows the possibility for intensifying treatment without the risk of very high rates of ADRs. New biomarkers also show the possibility of early identification of patients at risk of liver injury who might also benefit from increased intensity treatment. This article discusses these data and proposes a logical therapy for increasing NAC dosing which now requires clinical trial testing.
Collapse
Affiliation(s)
- D Nicholas Bateman
- Clinical Toxicology, Pharmacology and Toxicology, Queen's Medical Research Institute, University of Edinburgh, UK
| |
Collapse
|
12
|
Lamichhane P, Pokhrel KM, Bhandari B, Agrawal A, Ghimire B, Shilpakar O. Successful management of delayed presentation of massive paracetamol overdose in a resource-limited setting: A case report from Nepal. Clin Case Rep 2022; 10:e6733. [PMID: 36523377 PMCID: PMC9744716 DOI: 10.1002/ccr3.6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
We present a case of self-poisoning with a massive dose of paracetamol by a young Nepalese female patient who presented late to our emergency department. This report highlights the successful management of the patient with the extended use of N-acetylcysteine over 4 days and continuous supportive therapy as required. The case is an example of the management of delayed presentation of a massive paracetamol poisoning in a resource-limited setting, where intensive care units and hemodialysis facilities are not easily available. However, when available, massive poisoning should always be managed in continuous monitoring units under the expertise of a toxicologist.
Collapse
Affiliation(s)
| | | | - Bijay Bhandari
- Drug and Patient Safety UnitLumbini Provincial HospitalRupandehiNepal
| | - Anushka Agrawal
- Maharajgunj Medical CampusInstitute of MedicineKathmanduNepal
| | - Bhumika Ghimire
- Maharajgunj Medical CampusInstitute of MedicineKathmanduNepal
| | | |
Collapse
|
13
|
Tandra HV, Rupakumar T, Vijayasekharan K, V R P, C S G, T PK. A stitch in time saves nine: timely use of N-acetyl cysteine (NAC) for chemotherapy-induced veno-occlusive disease (VOD)-is it a cost-effective alternative? Support Care Cancer 2022; 30:8611-8614. [PMID: 35963952 DOI: 10.1007/s00520-022-07321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Chemotherapy-induced veno-occlusive disease (VOD) is a rare liver dysfunction seen among pediatric cancer patients which could lead to severe morbidity and mortality. Defibrotide is the commonly used antidote in the management of both stem cell transplant and chemotherapy-associated VOD along with liver supportive measures. Defibrotide is costly and generally not accessible to majority of patients treated at resource poor settings. In this report, we describe the successful management of chemotherapy-induced VOD with timely administration of N-acetyl cysteine.
Collapse
Affiliation(s)
- Harish Varma Tandra
- Department of Pediatric Oncology, Regional Cancer Centre, Trivandrum, Kerala, 695011, India
| | - Thirumala Rupakumar
- Department of Pediatric Oncology, Regional Cancer Centre, Trivandrum, Kerala, 695011, India
| | | | - Prasanth V R
- Department of Pediatric Oncology, Regional Cancer Centre, Trivandrum, Kerala, 695011, India
| | - Guruprasad C S
- Department of Pediatric Oncology, Regional Cancer Centre, Trivandrum, Kerala, 695011, India
| | - Priya Kumari T
- Department of Pediatric Oncology, Regional Cancer Centre, Trivandrum, Kerala, 695011, India
| |
Collapse
|
14
|
Licata A, Minissale MG, Stankevičiūtė S, Sanabria-Cabrera J, Lucena MI, Andrade RJ, Almasio PL. N-Acetylcysteine for Preventing Acetaminophen-Induced Liver Injury: A Comprehensive Review. Front Pharmacol 2022; 13:828565. [PMID: 36034775 PMCID: PMC9399785 DOI: 10.3389/fphar.2022.828565] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/03/2022] [Indexed: 12/28/2022] Open
Abstract
Aims: N-Acetylcysteine (NAC) is used as an antidote in acetaminophen (APAP) overdose to prevent and mitigate drug-induced liver injury (DILI). Our objective was to systematically review evidence of the use of NAC as a therapeutic option for APAP overdose and APAP-related DILI in order to define the optimal treatment schedule and timing to start treatment. Methods: Bibliographic databases (PubMed, Web of Science, Embase, and MEDLINE) were searched for retrospective and prospective cohort studies, case series, and clinical trials. The prespecified primary outcomes were DILI-related mortality, hepatotoxicity, and adverse events (AEs). Results: In total, 34 studies of NAC usage in APAP-related DILI cases with 19,580 patients were identified, of which 2,376 patients developed hepatotoxicities. The mortality rate across different studies ranged from 0 to 52%. Large variability of NAC regimens was found, i.e., intravenous (I.V.) (100-150 mg/kg) and oral (70-140 mg/kg), and length of treatment varied-12, 24, or 48 h for I.V. regimen and 72 h for oral administration. The timing of initiation of NAC treatment showed different results in terms of occurrence of hepatotoxicity and mortality; if started within 8 h and no more than 24 h from APAP overdose, either intravenously or orally, NAC administration was efficacious in terms of mortality. The most frequent AEs reported were anaphylactic reactions, followed by cutaneous AEs for the IV route and intestinal AEs for the oral one. Conclusion: NAC improves hepatotoxicity and reduces mortality. Timing of treatment, ranging from 8 to 24 h from APAP overdose, regardless of the regimen or route of administration, is important to prevent or minimize liver damage, particularly in children and in elderly and obese patients.
Collapse
Affiliation(s)
- Anna Licata
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Maria Giovanna Minissale
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Simona Stankevičiūtė
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Judith Sanabria-Cabrera
- UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Madrid, Spain
| | - Maria Isabel Lucena
- UCICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Madrid, Spain
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Piero Luigi Almasio
- Medicina Interna ed Epatologia, Dipartimento di Promozione della Salute, Materno-infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro,” PROMISE, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
15
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
16
|
Schepers AG, Shan J, Cox AG, Huang A, Evans H, Walesky C, Fleming HE, Goessling W, Bhatia SN. Identification of NQO2 As a Protein Target in Small Molecule Modulation of Hepatocellular Function. ACS Chem Biol 2021; 16:1770-1778. [PMID: 34427427 DOI: 10.1021/acschembio.1c00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The utility of in vitro human disease models is mainly dependent on the availability and functional maturity of tissue-specific cell types. We have previously screened for and identified small molecules that can enhance hepatocyte function in vitro. Here, we characterize the functional effects of one of the hits, FH1, on primary human hepatocytes in vitro, and also in vivo on primary hepatocytes in a zebrafish model. Furthermore, we conducted an analogue screen to establish the structure-activity relationship of FH1. We performed affinity-purification proteomics that identified NQO2 to be a potential binding target for this small molecule, revealing a possible link between inflammatory signaling and hepatocellular function in zebrafish and human hepatocyte model systems.
Collapse
Affiliation(s)
- Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Jing Shan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ada Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Helen Evans
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wolfram Goessling
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, Ferreira-Gonzalez S, Homer N, Wang Y, Starkey Lewis PJ, M Toledo E, Mellado-Gomez E, Simpson J, Flint O, Jaiswal H, Beer NL, Karlsen AE, Forbes SJ, Dear JW, Hughes J, Hay DC. Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. iScience 2021; 24:102552. [PMID: 34151225 PMCID: PMC8188562 DOI: 10.1016/j.isci.2021.102552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-β signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.
Collapse
Affiliation(s)
- Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Drive, Edinburgh EH16 4TJ, UK
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Natalie Homer
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Yu Wang
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Philip J. Starkey Lewis
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Enrique M Toledo
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Esther Mellado-Gomez
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Joanna Simpson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Oliver Flint
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Himjyot Jaiswal
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Nicola L. Beer
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Allan E. Karlsen
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - James W. Dear
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Drive, Edinburgh EH16 4TJ, UK
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
18
|
Yarema MC, Johnson DW, Sivilotti MLA, Nettel-Aguirre A, DeWitt C, Gosselin S, Murphy N, Victorino C, Bailey B, Dong K, Haney E, Purssell R, Thompson M, Lord JA, Spyker DA, Rumack BH. Predicting mortality from acetaminophen poisoning shortly after hospital presentation. Br J Clin Pharmacol 2021; 87:3332-3343. [PMID: 33507553 DOI: 10.1111/bcp.14755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Early identification of patients likely to die after acetaminophen (APAP) poisoning remains challenging. We sought to compare the sensitivity and time to fulfilment (latency) of established prognostic criteria. METHODS Three physician toxicologists independently classified every in-hospital death associated with APAP overdose from eight large Canadian cities over three decades using the Relative Contribution to Fatality scale from the American Association of Poison Control Centres. The sensitivity and latency were calculated for each of the following criteria: King's College Hospital (KCH), Model for End Stage Liver Disease (MELD) ≥33, lactate ≥3.5 mmol/L, phosphate ≥1.2 mmol/L 48+ hours post-ingestion, as well as combinations thereof. RESULTS A total of 162 in-hospital deaths were classified with respect to APAP as follows: 26 Undoubtedly, 40 Probably, 27 Contributory, 14 Probably not, 25 Clearly not, and 30 Unknown. Cases from the first three classes (combined into n = 93 "APAP deaths") typically presented with supratherapeutic APAP concentrations, hepatotoxicity, acidaemia, coagulopathy and/or encephalopathy, and began antidotal treatment a median of 12 hours (IQR 3.4-30 h) from the end of ingestion. Among all patients deemed "APAP deaths", meeting either KCH or lactate criteria demonstrated the highest sensitivity (94%; 95% CI 86-98%), and the shortest latency from hospital arrival to criterion fulfilment (median 4.2 h; IQR 1.0-16 h). In comparison, the MELD criterion demonstrated a substantially lower sensitivity (55%; 43-66%) and longer latency (52 h; 4.4-∞ h, where "∞" denotes death prior to criterion becoming positive). CONCLUSIONS Meeting either KCH or serum lactate criteria identifies most patients who die from acetaminophen poisoning at or shortly after hospital presentation.
Collapse
Affiliation(s)
- Mark C Yarema
- Poison and Drug Information Service, Alberta Health Services, Calgary, Alberta.,Section of Clinical Pharmacology and Toxicology, Alberta Health Services, Calgary, Alberta.,Department of Emergency Medicine, University of Calgary, Calgary, Alberta.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta.,Department of Emergency Medicine, University of Alberta, Edmonton, Alberta.,Department of Critical Care Medicine, University of Calgary, Calgary, Alberta
| | - David W Johnson
- Poison and Drug Information Service, Alberta Health Services, Calgary, Alberta.,Section of Clinical Pharmacology and Toxicology, Alberta Health Services, Calgary, Alberta.,Department of Pediatrics, University of Calgary, Calgary, Alberta.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta
| | - Marco L A Sivilotti
- Departments of Emergency Medicine, and of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario.,Ontario Poison Centre, Toronto, Ontario
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, University of Calgary, Calgary, Alberta.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta.,Alberta Children's Hospital Research Institute for Child & Maternal Health, Calgary, Alberta
| | - Chris DeWitt
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia.,British Columbia Drug and Poison Information Centre, Vancouver, British Columbia
| | - Sophie Gosselin
- Department of Emergency Medicine, Centre Intégré de Santé et Services Sociaux Montérégie-Centre, Greenfield Park, Québec.,Departments of Medicine and Emergency Medicine, McGill University Health Centre, Montréal, Quebec.,Centre Antipoison du Québec, Québec City, Québec
| | - Nancy Murphy
- Centre Antipoison du Québec, Québec City, Québec.,IWK Poison Centre and Department of Emergency Medicine, Dalhousie University, Halifax, Nova Scotia
| | | | - Benoit Bailey
- Department of Pediatric Emergency Medicine, CHU Sainte Justine, Montréal, Quebec
| | - Kathryn Dong
- Department of Emergency Medicine, University of Alberta, Edmonton, Alberta
| | - Elizabeth Haney
- Division of Emergency Medicine, Western University, London, Ontario
| | - Roy Purssell
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia.,British Columbia Drug and Poison Information Centre, Vancouver, British Columbia
| | - Margaret Thompson
- Ontario Poison Centre, Toronto, Ontario.,Division of Emergency Medicine and Department of Pediatrics, University of Toronto, Toronto, Ontario
| | - Jason A Lord
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta
| | - Daniel A Spyker
- Department of Emergency Medicine, Oregon Health Sciences University, Portland, Oregon
| | - Barry H Rumack
- Departments of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| |
Collapse
|
19
|
Affiliation(s)
- O. Detry
- Department of Abdominal Surgery and Transplantation, University Hospital of Liège, University of Liège, Sart Tilman B35, B-4000 Liège, Belgium
| | - P. Honoré
- Department of Abdominal Surgery and Transplantation, University Hospital of Liège, University of Liège, Sart Tilman B35, B-4000 Liège, Belgium
| | - M. Meurisse
- Department of Abdominal Surgery and Transplantation, University Hospital of Liège, University of Liège, Sart Tilman B35, B-4000 Liège, Belgium
| | - N. Jacquet
- Department of Abdominal Surgery and Transplantation, University Hospital of Liège, University of Liège, Sart Tilman B35, B-4000 Liège, Belgium
| |
Collapse
|
20
|
Arshad A, Irshad L, Nabavi T, Whitehouse T. Acute-on-chronic liver failure: to admit to intensive care or not? Br J Hosp Med (Lond) 2020; 81:1-6. [PMID: 32990068 DOI: 10.12968/hmed.2020.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute-on-chronic liver failure is used to describe an acute decline in liver function in a patient with existing liver disease combined with other organ failure. Acute-on-chronic liver failure is associated with high short-term mortality, and the greater the number and severity of organ failures, the higher the mortality. The most commonly identified precipitants of acute-on-chronic liver failure include bacterial infection, gastrointestinal haemorrhage, viral hepatitis and recent excessive alcohol intake. Since some of these aetiologies are treatable, organ failure may return to pre-decompensation levels in up to 55% of patients. As a result, a trial of critical care treatment may be appropriate for many of these patients. Clinical scoring tools may help clinicians recognise futility, allowing timely withdrawal of organ support and shifting the focus of care toward palliation.
Collapse
Affiliation(s)
- Asif Arshad
- Department of Critical Care, University Hospital Birmingham, Birmingham, UK
| | - Lylah Irshad
- University of Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Theodore Nabavi
- University of Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Tony Whitehouse
- Department of Critical Care, University Hospital Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Stefanello ST, de Carvalho NR, Reis SB, Soares FAA, Barcelos RP. Acetaminophen Oxidation and Inflammatory Markers - A Review of Hepatic Molecular Mechanisms and Preclinical Studies. Curr Drug Targets 2020; 21:1225-1236. [PMID: 32386489 DOI: 10.2174/1389450121666200510014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
Acetaminophen is a widely used analgesic for pain management, especially useful in chronic diseases, such as rheumatoid arthritis. However, easy access to this medicine has increased the occurrence of episodes of poisoning. Patients often develop severe liver damage, which may quickly lead to death. Consequently, numerous studies have been conducted to identify new biomarkers that allow the prediction of the degree of acetaminophen intoxication and thus intervene in a timely manner to save patients' lives. This review highlights the main mechanisms of the induction and progression of liver damage arising from acetaminophen poisoning. In addition, we have discussed the possibility of using new clinical biomarkers for detecting acetaminophen poisoning.
Collapse
Affiliation(s)
- Silvio Terra Stefanello
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | | | - Simone Beder Reis
- Institudo de Ciencias Biologicas (ICB), Programa de Posgraduacao em Bioexperimentacao, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Felix Alexandre Antunes Soares
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
22
|
Rotundo L, Pyrsopoulos N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J Hepatol 2020; 12:125-136. [PMID: 32685105 PMCID: PMC7336293 DOI: 10.4254/wjh.v12.i4.125] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Drug induced liver injury (DILI) is a common cause of acute liver injury. Paracetamol, also known as acetaminophen, is a widely used anti-pyretic that has long been established to cause liver toxicity once above therapeutic levels. Hepatotoxicity from paracetamol overdose, whether intentional or non-intentional, is the most common cause of DILI in the United States and remains a global issue. Given the increased prevalence of combination medications in the form of pain relievers and antihistamines, paracetamol can be difficult to identify and remains a significant cause of acute hepatotoxicity, as evidenced by its contribution to over half of all acute liver failure cases in the United States. This is especially concerning given that, when co-ingested with other medications, the rise in serum paracetamol levels may be delayed past the 4-hour post-ingestion mark that is currently used to determine patients that require medical therapy. This review serves to describe the clinical and pathophysiologic features of hepatotoxicity secondary to paracetamol and provide an update on current available knowledge and treatment options.
Collapse
Affiliation(s)
- Laura Rotundo
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
23
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
24
|
Management of liver failure in general intensive care unit. Anaesth Crit Care Pain Med 2020; 39:143-161. [PMID: 31525507 DOI: 10.1016/j.accpm.2019.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022]
|
25
|
Abstract
Drug-induced liver injury (DILI) is the most common cause of acute liver failure (ALF) in Western countries. Without liver transplantation, the mortality rate for ALF approaches greater than 80%. Acetaminophen-related ALF may be associated with a rapid progression but fortunately has a high chance for spontaneous survival compared with idiosyncratic DILI-related ALF. Several prognostic scoring systems for severe DILI have been developed to aid clinicians in selecting patients who require urgent liver transplantation. Patients who undergo liver transplantation for ALF are at risk for early graft loss and death and should be closely followed.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Department of Physiology, Chulalongkorn University, Pattayapat Building, 10th Floor, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand; Division of Gastroenterology, Department of Medicine, Chulalongkorn University, Pattayapat Building, 10th Floor, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand.
| | - Thomas D Schiano
- Division of Liver Diseases, Department of Medicine, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, Icahn Building, 3rd Floor, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
26
|
|
27
|
Tavabie OD, Bernal W. How to manage: acute liver failure. Frontline Gastroenterol 2020; 11:70-74. [PMID: 31885843 PMCID: PMC6914301 DOI: 10.1136/flgastro-2018-101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 02/04/2023] Open
Abstract
Acute liver failure (ALF) is a rare but life-threatening clinical syndrome with a broad range of causes. Significant improvements in outcome have occurred over the last 50 years, resulting not only from incremental improvements in specialist critical care and a step-change following the introduction of transplantation for this indication, but also better and more effective treatment started early at the site of first presentation.1 2 Emergency liver transplantation (LTx) remains an important intervention and the decision regarding the need for LTx remains key to management, though non-transplant therapies now appear effective for many causes of the condition. In this short review, we will outline issues in the recognition and management of ALF and ongoing challenges in its treatment.
Collapse
Affiliation(s)
| | - William Bernal
- Institute of Liver Studies, Kings College Hospital, London, UK
| |
Collapse
|
28
|
Seetharam A. Intensive Care Management of Acute Liver Failure: Considerations While Awaiting Liver Transplantation. J Clin Transl Hepatol 2019; 7:384-391. [PMID: 31915608 PMCID: PMC6943205 DOI: 10.14218/jcth.2019.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure is a unique clinical phenomenon characterized by abrupt deterioration in liver function and altered mentation. The development of high-grade encephalopathy and multisystem organ dysfunction herald poor prognosis. Etiologic-specific treatments and supportive measures are routinely employed; however, liver transplantation remains the only chance for cure in those who do not spontaneously recover. The utility of artificial and bioartificial assist therapies as supportive care-to allow time for hepatic recovery or as a bridge to liver transplantation-has been examined but studies have been small, with mixed results. Given the severity of derangements, intensive critical care is needed to successfully bridge patients to transplant, and evaluation of candidates occurs rapidly in parallel with serial reassessments of operative fitness. Psychosocial assessment is often suboptimal and relative contraindications to transplant, such as ventilator-dependence may be overlooked. While often employed to guide evaluation, no single prognostic model discriminates those who will spontaneously recover and those who will require transplant. The purpose of this review will be to summarize approaches in critical care, prognostic modeling, and medical evaluation of the acute liver failure transplant candidate.
Collapse
Affiliation(s)
- Anil Seetharam
- Correspondence to: Anil Seetharam, Banner Transplant and Advanced Liver Disease, University of Arizona College of Medicine, 441 N. 12th Street, 2nd Floor, Phoenix, AZ 85006, USA. Tel: +1-602-521-5800; Fax: +1-602-521-5337, E-mail:
| |
Collapse
|
29
|
Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. THE THERAPEUTIC USE OF N-ACETYLCYSTEINE (NAC) IN MEDICINE 2019. [PMCID: PMC7120747 DOI: 10.1007/978-981-10-5311-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism.
Collapse
|
30
|
Zhao HJ, Li MJ, Zhang MP, Wei MK, Shen LP, Jiang M, Zeng T. Allyl methyl trisulfide protected against acetaminophen (paracetamol)-induced hepatotoxicity by suppressing CYP2E1 and activating Nrf2 in mouse liver. Food Funct 2019; 10:2244-2253. [DOI: 10.1039/c9fo00170k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to investigate the protective effects of allyl methyl trisulfide (AMTS) on acetaminophen (APAP)-induced hepatotoxicity, 75 KM mice were randomized into 5 groups, i.e. a control group, an APAP group, and three AMTS/APAP groups.
Collapse
Affiliation(s)
| | - Ming-Jun Li
- Institute of Toxicology
- School of Public Health
- Shandong University
- China
| | | | - Meng-Ke Wei
- School of Public Health
- Shandong University
- China
| | | | - Min Jiang
- School of Public Health
- Shandong University
- China
| | - Tao Zeng
- Institute of Toxicology
- School of Public Health
- Shandong University
- China
| |
Collapse
|
31
|
The Role of Acetyl Cysteine in Cocaethylene (Non-Acetaminophen) Acute Liver Failure. Case Rep Emerg Med 2018; 2018:4393064. [PMID: 30356434 PMCID: PMC6178182 DOI: 10.1155/2018/4393064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Acute liver failure can result from acetaminophen overdose, viral infection, toxins, and other disease conditions. Liver transplant is available in limited fashion and the criteria are strict as to who should get an available liver. N- Acetyl Cysteine (NAC) has been used in non-acetaminophen induced liver failure with success. Here we report a case of acute liver failure from cocaethylene that was reversed with NAC along with other medical therapy. Case Presentation A 50-year-old female patient presented to the Emergency Department (ED) with a two-day history of coffee ground vomiting and hematemesis. She reported occasional substance abuse and heavy alcoholism. She reported shortness of breath and chest pain from the recurrent forceful vomiting. The rest of the review of systems was unremarkable except a fall from intoxication. Physical examination revealed anicteric conjunctiva and nontender abdomen and her vital signs were within normal limits. Initial blood work revealed acute liver and renal failure. The patient was started with general medical management and liver transplant service rejected the case due to active substance abuse. She underwent brief hemodialysis and was started on NAC. Over the course of her hospital stay her liver function and kidney function improved significantly and patient was discharged to home. Conclusion In cases where liver transplant is not an option for various reasons including active substance abuse, a trial of N-Acetyl Cysteine may be beneficial and should be considered in the Emergency Department.
Collapse
|
32
|
Abstract
Acute liver failure (ALF) is a rare life-threatening condition characterized by rapid progression and death. Causes vary according to geographic region, with acetaminophen and drug-induced ALF being the most common causes in the United States. Determining the cause aids in predicting the prognosis and the presentation of manifestations and guides providers to perform cause-specific management. At initial presentation, nonspecific symptoms are present but may progress to complications, including cerebral edema, infection, coagulopathy, renal failure, cardiopulmonary failure, and acid-base and/or metabolic disturbances. Although some cases of ALF resolve with conservative measures, liver transplantation is the ultimate treatment in many cases.
Collapse
Affiliation(s)
- Sarah Zahra Maher
- Internal Medicine, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | - Ian Roy Schreibman
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
33
|
Abstract
Acetaminophen (APAP) is the leading cause of acute liver failure (ALF), although the worldwide frequency is variable. APAP hepatotoxicity develops either following intentional overdose or unintentional ingestion (therapeutic misadventure) in the background of several factors, such as concomitant use of alcohol and certain medications that facilitate the formation of reactive and toxic metabolites. Spontaneous survival is more common in APAP-induced ALF compared with non-APAP etiologies. N-acetylcysteine is recommended for all patients with APAP-induced ALF and it reduces mortality. Liver transplantation should be offered early to those who are unlikely to survive based on described prognostic criteria.
Collapse
|
34
|
Gerlach J, Ziemer R, Neuhaus P. Fulminant Liver Failure: Relevance of Extracorporeal Hybrid Liver Support Systems. Int J Artif Organs 2018. [DOI: 10.1177/039139889601900103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J. Gerlach
- Virchow-Klinikum, Chirurgische Universitätsklinik, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin - Germany
| | - R. Ziemer
- Virchow-Klinikum, Chirurgische Universitätsklinik, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin - Germany
| | - P. Neuhaus
- Virchow-Klinikum, Chirurgische Universitätsklinik, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin - Germany
| |
Collapse
|
35
|
Abstract
BACKGROUND Paracetamol (acetaminophen) is the most widely used non-prescription analgesic in the world. Paracetamol is commonly taken in overdose either deliberately or unintentionally. In high-income countries, paracetamol toxicity is a common cause of acute liver injury. There are various interventions to treat paracetamol poisoning, depending on the clinical status of the person. These interventions include inhibiting the absorption of paracetamol from the gastrointestinal tract (decontamination), removal of paracetamol from the vascular system, and antidotes to prevent the formation of, or to detoxify, metabolites. OBJECTIVES To assess the benefits and harms of interventions for paracetamol overdosage irrespective of the cause of the overdose. SEARCH METHODS We searched The Cochrane Hepato-Biliary Group Controlled Trials Register (January 2017), CENTRAL (2016, Issue 11), MEDLINE (1946 to January 2017), Embase (1974 to January 2017), and Science Citation Index Expanded (1900 to January 2017). We also searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov database (US National Institute of Health) for any ongoing or completed trials (January 2017). We examined the reference lists of relevant papers identified by the search and other published reviews. SELECTION CRITERIA Randomised clinical trials assessing benefits and harms of interventions in people who have ingested a paracetamol overdose. The interventions could have been gastric lavage, ipecacuanha, or activated charcoal, or various extracorporeal treatments, or antidotes. The interventions could have been compared with placebo, no intervention, or to each other in differing regimens. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data from the included trials. We used fixed-effect and random-effects Peto odds ratios (OR) with 95% confidence intervals (CI) for analysis of the review outcomes. We used the Cochrane 'Risk of bias' tool to assess the risks of bias (i.e. systematic errors leading to overestimation of benefits and underestimation of harms). We used Trial Sequential Analysis to control risks of random errors (i.e. play of chance) and GRADE to assess the quality of the evidence and constructed 'Summary of findings' tables using GRADE software. MAIN RESULTS We identified 11 randomised clinical trials (of which one acetylcysteine trial was abandoned due to low numbers recruited), assessing several different interventions in 700 participants. The variety of interventions studied included decontamination, extracorporeal measures, and antidotes to detoxify paracetamol's toxic metabolite; which included methionine, cysteamine, dimercaprol, or acetylcysteine. There were no randomised clinical trials of agents that inhibit cytochrome P-450 to decrease the activation of the toxic metabolite N-acetyl-p-benzoquinone imine.Of the 11 trials, only two had two common outcomes, and hence, we could only meta-analyse two comparisons. Each of the remaining comparisons included outcome data from one trial only and hence their results are presented as described in the trials. All trial analyses lack power to access efficacy. Furthermore, all the trials were at high risk of bias. Accordingly, the quality of evidence was low or very low for all comparisons. Interventions that prevent absorption, such as gastric lavage, ipecacuanha, or activated charcoal were compared with placebo or no intervention and with each other in one four-armed randomised clinical trial involving 60 participants with an uncertain randomisation procedure and hence very low quality. The trial presented results on lowering plasma paracetamol levels. Activated charcoal seemed to reduce the absorption of paracetamol, but the clinical benefits were unclear. Activated charcoal seemed to have the best risk:benefit ratio among gastric lavage, ipecacuanha, or supportive treatment if given within four hours of ingestion. There seemed to be no difference between gastric lavage and ipecacuanha, but gastric lavage and ipecacuanha seemed more effective than no treatment (very low quality of evidence). Extracorporeal interventions included charcoal haemoperfusion compared with conventional treatment (supportive care including gastric lavage, intravenous fluids, and fresh frozen plasma) in one trial with 16 participants. The mean cumulative amount of paracetamol removed was 1.4 g. One participant from the haemoperfusion group who had ingested 135 g of paracetamol, died. There were no deaths in the conventional treatment group. Accordingly, we found no benefit of charcoal haemoperfusion (very low quality of evidence). Acetylcysteine appeared superior to placebo and had fewer adverse effects when compared with dimercaprol or cysteamine. Acetylcysteine superiority to methionine was unproven. One small trial (low quality evidence) found that acetylcysteine may reduce mortality in people with fulminant hepatic failure (Peto OR 0.29, 95% CI 0.09 to 0.94). The most recent randomised clinical trials studied different acetylcysteine regimens, with the primary outcome being adverse events. It was unclear which acetylcysteine treatment protocol offered the best efficacy, as most trials were underpowered to look at this outcome. One trial showed that a modified 12-hour acetylcysteine regimen with a two-hour acetylcysteine 100 mg/kg bodyweight loading dose was associated with significantly fewer adverse reactions compared with the traditional three-bag 20.25-hour regimen (low quality of evidence). All Trial Sequential Analyses showed lack of sufficient power. Children were not included in the majority of trials. Hence, the evidence pertains only to adults. AUTHORS' CONCLUSIONS These results highlight the paucity of randomised clinical trials comparing different interventions for paracetamol overdose and their routes of administration and the low or very low level quality of the evidence that is available. Evidence from a single trial found activated charcoal seemed the best choice to reduce absorption of paracetamol. Acetylcysteine should be given to people at risk of toxicity including people presenting with liver failure. Further randomised clinical trials with low risk of bias and adequate number of participants are required to determine which regimen results in the fewest adverse effects with the best efficacy. Current management of paracetamol poisoning worldwide involves the administration of intravenous or oral acetylcysteine which is based mainly on observational studies. Results from these observational studies indicate that treatment with acetylcysteine seems to result in a decrease in morbidity and mortality, However, further evidence from randomised clinical trials comparing different treatments are needed.
Collapse
Affiliation(s)
- Angela L Chiew
- Prince of Wales HospitalEmergency Department and Clinical Toxicology UnitBarker StreetRandwickNSWAustralia2031
- University of SydneyDepartment of PharmacologyCamperdownNSWAustralia
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Jesper Brok
- RigshospitaletPaediatric Department 4072Blemdagsvej 9CopenhagenDenmark2100 Ø
| | - Nick A Buckley
- University of SydneyDepartment of PharmacologyCamperdownNSWAustralia
| | | |
Collapse
|
36
|
Abstract
Acute liver failure (ALF) is a life-threatening condition of heterogeneous etiology. Outcomes are better with early recognition and prompt initiation of etiology-specific therapy, intensive care protocols, and liver transplantation (LT). Prognostic scoring systems include the King's College Criteria and Model for End-stage Liver Disease score. Cerebral edema and intracranial hypertension are reasons for high morbidity and mortality; hypertonic saline is suggested for patients with a high risk for developing intracranial hypertension, and when it does, mannitol is recommended as first-line therapy. Extracorporeal liver support system may serve as a bridge to LT and may increase LT-free survival in select cases.
Collapse
Affiliation(s)
- Chalermrat Bunchorntavakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Rajavithi Road, Ratchathewi, Bangkok 10400, Thailand; Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, 2 Dulles, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, 2 Dulles, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Nam EJ, Hayashida K, Aquino RS, Couchman JR, Kozar RA, Liu J, Park PW. Syndecan-1 limits the progression of liver injury and promotes liver repair in acetaminophen-induced liver injury in mice. Hepatology 2017; 66:1601-1615. [PMID: 28543100 PMCID: PMC6516470 DOI: 10.1002/hep.29265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
Abstract
UNLABELLED Accidental or intentional misuse of acetaminophen (APAP) is the leading cause of acute liver failure in the Western world. Although mechanisms that trigger APAP-induced liver injury (AILI) are well known, those that halt the progression of APAP liver disease and facilitate liver recovery are less understood. Heparan sulfate proteoglycans (HSPGs) bind to and regulate various tissue injury factors through their heparan sulfate (HS) chains, but the importance of HSPGs in liver injury in vivo remains unknown. Here, we examined the role of syndecan-1, the major cell-surface HSPG of hepatocytes, in AILI. Ablation of syndecan-1 in mice led to unopposed progression of liver injury upon APAP overdose. However, direct APAP hepatoxicity and liver injury at early times post-APAP overdose were unaffected by syndecan-1, suggesting that syndecan-1 influences later mechanisms that lead to liver repair. The exuberant liver injury phenotypes in syndecan-1 null (Sdc1-/- ) mice were traced to a deficiency in protein kinase B (Akt) activation in hepatocytes, which led to a delayed increase in glycogen synthase kinase-3β (GSK-3β)-mediated hepatocyte apoptosis. Inhibition of Akt worsened, whereas inhibition of GSK-3β and caspases protected mice from AILI. Moreover, administration of purified syndecan-1, HS, or engineered heparan compounds containing 2-O-sulfate groups rescued Sdc1-/- mice from AILI by potentiating Akt signaling and inhibiting GSK-3β-mediated apoptosis in hepatocytes. In addition, HS showed a significantly prolonged therapeutic efficacy as compared to N-acetylcysteine. CONCLUSION These results demonstrate that 2-O-sulfated domains in syndecan-1 HS halt disease progression and promote liver repair by enhancing hepatocyte survival in AILI. We propose that syndecan-1 is a critical endogenous factor that controls the balance between prosurvival signaling and apoptosis in hepatocytes in APAP liver disease. (Hepatology 2017;66:1601-1615).
Collapse
Affiliation(s)
- Eon Jeong Nam
- Division of Respiratory Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kazutaka Hayashida
- Division of Respiratory Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Rafael S. Aquino
- Division of Respiratory Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - John R. Couchman
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC
| | - Pyong Woo Park
- Division of Respiratory Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Adikwu E, Bokolo B. Prospects of N-Acetylcysteine and Melatonin as Treatments for Tramadol-Induced Renal Toxicity in Albino Rats. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
39
|
Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease-Implications for Therapy. J Clin Med 2017; 6:jcm6050050. [PMID: 28467362 PMCID: PMC5447941 DOI: 10.3390/jcm6050050] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023] Open
Abstract
Technical advances in the ability to measure mitochondrial dysfunction are providing new insights into mitochondrial disease pathogenesis, along with new tools to objectively evaluate the clinical status of mitochondrial disease patients. Glutathione (l-ϒ-glutamyl-l-cysteinylglycine) is the most abundant intracellular thiol, and the intracellular redox state, as reflected by levels of oxidized (GSSG) and reduced (GSH) glutathione, as well as the GSH/GSSG ratio, is considered to be an important indication of cellular health. The ability to quantify mitochondrial dysfunction in an affected patient will not only help with routine care, but also improve rational clinical trial design aimed at developing new therapies. Indeed, because multiple disorders have been associated with either primary or secondary deficiency of the mitochondrial electron transport chain and redox imbalance, developing mitochondrial therapies that have the potential to improve the intracellular glutathione status has been a focus of several clinical trials over the past few years. This review will also discuss potential therapies to increase intracellular glutathione with a focus on EPI-743 (α-tocotrienol quinone), a compound that appears to have the ability to modulate the activity of oxidoreductases, in particular NAD(P)H:quinone oxidoreductase 1.
Collapse
Affiliation(s)
- Gregory M Enns
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| | - Tina M Cowan
- Departments of Pediatrics and Pathology, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94005-5208, USA.
| |
Collapse
|
40
|
Wendon, J, Cordoba J, Dhawan A, Larsen FS, Manns M, Samuel D, Simpson KJ, Yaron I, Bernardi M. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol 2017; 66:1047-1081. [PMID: 28417882 DOI: 10.1016/j.jhep.2016.12.003] [Citation(s) in RCA: 595] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The term acute liver failure (ALF) is frequently applied as a generic expression to describe patients presenting with or developing an acute episode of liver dysfunction. In the context of hepatological practice, however, ALF refers to a highly specific and rare syndrome, characterised by an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The disease process is associated with development of a coagulopathy of liver aetiology, and clinically apparent altered level of consciousness due to hepatic encephalopathy. Several important measures are immediately necessary when the patient presents for medical attention. These, as well as additional clinical procedures will be the subject of these clinical practice guidelines.
Collapse
|
41
|
Nabi T, Nabi S, Rafiq N, Shah A. Role of N-acetylcysteine treatment in non-acetaminophen-induced acute liver failure: A prospective study. Saudi J Gastroenterol 2017; 23:169-175. [PMID: 28611340 PMCID: PMC5470376 DOI: 10.4103/1319-3767.207711] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Acute liver failure (ALF) is a rare but severe medical emergency. To date, there is no established treatment for non-acetaminophen-induced acute liver failure (NAI-ALF) other than liver transplantation, and little is known about the use of N-acetylcysteine (NAC) in NAI-ALF. A randomized case control study was conducted with the aim to determine the effect of NAC on the mortality of NAI-ALF patients, as well as to evaluate the safety and efficacy of NAC use. PATIENTS AND METHODS A total of 80 patients diagnosed with NAI-ALF were included in the study. Forty patients received NAC infusion for 72 h whereas the control group received placebo. The variables evaluated were demographic characteristics, signs and symptoms, biochemical parameters, and clinical course during hospitalization. RESULTS The two groups (NAC and control) were comparable for various baseline characteristics (such as etiology of ALF, INR, alanine aminotransferase, creatinine, albumin, and grade of encephalopathy), except for age. Although majority of patients had undetermined etiology (32.5% in NAC group and 42.5% in control group), the second main cause was acute hepatitis E and drug or toxin-induced ALF. The mortality decreased to 28% with the use of NAC versus 53% in the control group (P = 0.023). The use of NAC was associated with shorter length of hospital stay in survived patients (P = 0.002). Moreover, the survival of patients was improved by NAC (P = 0.025). Also, drug-induced ALF showed improved outcome compared to other etiologies. CONCLUSION The findings of the study recommend the use of NAC along with conventional treatments in patients with NAI-ALF in non-transplant centers while awaiting referrals and conclude the use of NAC as safe.
Collapse
Affiliation(s)
- Tauseef Nabi
- Department of Endocrinology, SKIMS, Soura, Srinagar, Jammu and Kashmir, India
| | - Sumaiya Nabi
- Department of Bio-chemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nadeema Rafiq
- Department of Physiology, GMC, Srinagar, Jammu and Kashmir, India
| | - Altaf Shah
- Department of Gastroenterology, SKIMS, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
42
|
Villeneuve E, Gosselin S. N-Acetylcysteine. CRITICAL CARE TOXICOLOGY 2017:2879-2888. [DOI: 10.1007/978-3-319-17900-1_151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Cao L, Quan XB, Zeng WJ, Yang XO, Wang MJ. Mechanism of Hepatocyte Apoptosis. J Cell Death 2016; 9:19-29. [PMID: 28058033 PMCID: PMC5201115 DOI: 10.4137/jcd.s39824] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte apoptosis plays important roles in both the removal of external microorganisms and the occurrence and development of liver diseases. Different conditions, such as virus infection, fatty liver disease, hepatic ischemia reperfusion, and drug-induced liver injury, are accompanied by hepatocyte apoptosis. This review summarizes recent research on the mechanism of hepatocyte apoptosis involving the classical extrinsic and intrinsic apoptotic pathways, endoplasmic reticulum stress, and oxidative stress-induced apoptosis. We emphasized the major causes of apoptosis according to the characteristics of different liver diseases. Several concerns regarding future research and clinical application are also raised.
Collapse
Affiliation(s)
- Lei Cao
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xi-Bing Quan
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Jiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao-Ou Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Jie Wang
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Milewski K, Oria M. What we know: the inflammatory basis of hepatic encephalopathy. Metab Brain Dis 2016; 31:1239-1247. [PMID: 26497651 DOI: 10.1007/s11011-015-9740-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
Abstract
Central Nervous System (CNS) degeneration appearing in patients with cirrhosis is responsible for cognitive and persistent motor impairments that lead to an important impact on life quality. Brain injury affects certain areas of the CNS that might affect two types of cells: neurons and astrocytes. The process leading to brain injury could be induced by portosystemic shunting accompanied by hyperammonemia and by the activation of peripheral inflammation, manifested as episodic encephalopathy. Hyperammonemia combined with a decrease on the BCA/AAA ratio induces alterations of energetic metabolism and the formation of free radicals in the CNS. This process would be stimulated by the activation of peripheral inflammatory mediators that could act on receptors of the blood brain barrier such as TLR4, activating inflammatory responses in the CNS. As a result, a persistent activation of microglia and an irreversible neuronal and astrocytic injury would be induced. A new knowledge of the mechanisms leading to brain injury in cirrhosis would develop protective strategies to correct changes of nitrogen metabolism and inflammation.
Collapse
Affiliation(s)
- K Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - M Oria
- Translational Research in Fetal Surgery for Congenital Malformations, Center for Fetal, Cellular and Molecular Therapy, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11020, S 8.400 AT, Cincinnati, OH, 45229-3039, USA.
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK.
| |
Collapse
|
45
|
Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Awang R. The 100 most influential publications in paracetamol poisoning treatment: a bibliometric analysis of human studies. SPRINGERPLUS 2016; 5:1534. [PMID: 27652107 PMCID: PMC5019997 DOI: 10.1186/s40064-016-3240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Analysis of the most influential publications within paracetamol poisoning treatment can be helpful in recognizing main and novel treatment issues within the field of toxicology. The current study was performed to recognize and describe the most highly cited articles related to paracetamol poisoning treatment. METHODS The 100 most highly cited articles in paracetamol poisoning treatment were identified from the Scopus database in November 2015. All eligible articles were read for basic information, including total number of citations, average citations per year, authors' names, journal name, impact factors, document types and countries of authors of publications. RESULTS The median number of citations was 75 (interquartile range 56-137). These publications were published between 1974 and 2013. The average number of years since publication was 17.6 years, and 45 of the publications were from the 2000s. A significant, modest positive correlation was found between years since publication and the number of citations among the top 100 cited articles (r = 0.316; p = 0.001). A total of 55 journals published these 100 most cited articles. Nine documents were published in Clinical Toxicology, whereas eight documents were published in Annals of Emergency Medicine. Citations per year since publication for the top 100 most-cited articles ranged from 1.5 to 42.6 and had a mean of 8.5 citations per year and a median of 5.9 with an interquartile range of 3.75-10.35. In relation to the origin of the research publications, they were from 8 countries. The USA had the largest number of articles, 47, followed by the UK and Australia with 38 and nine articles respectively. CONCLUSIONS This study is the first bibliometric assessment of the top 100 cited articles in toxicology literature. Interest in paracetamol poisoning as a serious clinical problem continues to grow. Research published in high-impact journals and from high income countries is most likely to be cited in published paracetamol research.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- WHO Collaborating Centre for Drug Information, National Poison Centre, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Penang Malaysia
| | - W. Stephen Waring
- Acute Medical Unit, York Teaching Hospitals NHS Foundation Trust, Wigginton Road, York, YO31 8HE UK
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Waleed M. Sweileh
- Department of Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Rahmat Awang
- WHO Collaborating Centre for Drug Information, National Poison Centre, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Penang Malaysia
| |
Collapse
|
46
|
Bray GP, Harrison PM, O'Grady JG, Tredger JM, Williams R. Long-Term Anticonvulsant Therapy Worsens Outcome in Paracetamol-Induced Fulminant Hepatic Failure. Hum Exp Toxicol 2016; 11:265-70. [PMID: 1354974 DOI: 10.1177/096032719201100405] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1 Paracetamol hepatotoxicity has been found to be potentiated by anticonvulsant drugs in animal experiments; isolated case reports in humans sugest that long-term anticonvulsant therapy may also adversely influence outcome following overdose. 2 We compared the clinical course, after paracetamol overdose, of 18 patients on long-term anticonvulsant therapy with corresponding features in two published series of paracetamol-induced fulminant hepatic failure from this unit: 297 patients seen between 1973 and 1985 and a further 99 between October 1986 and April 1988. 3 Mortality in those patients who were taking anticonvulsants, but who did not receive N-acetylcysteine, was higher than in either of these series (93.3% vs 64.6% and vs 57.9%, P< 0.025). Although not statistically significant, there were also trends towards more severe coma (grade 3 or 4: 93.3% vs 75.4%, 1986-88), acidosis (pH less than 7.30: 40% vs 22.6%, 1973-85) and coagulopathy (prothrombin time greater than 100 s: 53.3% vs 33.7%, 1973-85). In the small number of patients given N-acetylcysteine, mortality was similar to that in the 1986-88 series (1/3 vs 15/42). 4 We conclude that chronic use of anticonvulsants enhances clinical features of paracetamol toxicity and discuss possible mechanisms by which this could be mediated.
Collapse
Affiliation(s)
- G P Bray
- Institute of Liver Studies, King's College Hospital School of Medicine and Dentistry, Denmark Hill, London, UK
| | | | | | | | | |
Collapse
|
47
|
Betten DP, Vohra RB, Cook MD, Matteucci MJ, Clark RF. Antidote Use in the Critically Ill Poisoned Patient. J Intensive Care Med 2016; 21:255-77. [PMID: 16946442 DOI: 10.1177/0885066606290386] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proper use of antidotes in the intensive care setting when combined with appropriate general supportive care may reduce the morbidity and mortality associated with severe poisonings. The more commonly used antidotes that may be encountered in the intensive care unit ( N-acetylcysteine, ethanol, fomepizole, physostigmine, naloxone, flumazenil, sodium bicarbonate, octreotide, pyridoxine, cyanide antidote kit, pralidoxime, atropine, digoxin immune Fab, glucagon, calcium gluconate and chloride, deferoxamine, phytonadione, botulism antitoxin, methylene blue, and Crotaline snake antivenom) are reviewed. Proper indications for their use and knowledge of the possible adverse effects accompanying antidotal therapy will allow the physician to appropriately manage the severely poisoned patient.
Collapse
Affiliation(s)
- David P Betten
- Department of Emergency Medicine, Sparrow Health System, Michigan State University College of Human Medicine, Lansing, Michigan 48912-1811, USA.
| | | | | | | | | |
Collapse
|
48
|
Kuffner EK, Heard K, O'Malley GF. Analytic Reviews : Management of Acetaminophen Toxicity in the Intensive Care Unit. J Intensive Care Med 2016. [DOI: 10.1177/088506669901400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Szkolnicka D, Lucendo-Villarin B, Moore JK, Simpson KJ, Forbes SJ, Hay DC. Reducing Hepatocyte Injury and Necrosis in Response to Paracetamol Using Noncoding RNAs. Stem Cells Transl Med 2016; 5:764-72. [PMID: 27057006 PMCID: PMC4878326 DOI: 10.5966/sctm.2015-0117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/08/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The liver performs multiple functions within the human body. It is composed of numerous cell types, which play important roles in organ physiology. Our study centers on the major metabolic cell type of the liver, the hepatocyte, and its susceptibility to damage during drug overdose. In these studies, hepatocytes were generated from a renewable and genetically defined resource. In vitro-derived hepatocytes were extensively profiled and exposed to varying levels of paracetamol and plasma isolated from liver-failure patients, with a view to identifying noncoding microRNAs that could reduce drug- or serum-induced hepatotoxicity. We identified a novel anti-microRNA, which reduced paracetamol-induced hepatotoxicity and glutathione depletion. Additionally, we identified a prosurvival role for anti-microRNA-324 following exposure to plasma collected from liver failure patients. We believe that these studies represent an important advance for the field, demonstrating the power of stem cell-derived systems to model human biology "in a dish" and identify novel noncoding microRNAs, which could be translated to the clinic in the future. SIGNIFICANCE The liver performs vital functions within the human body and is composed of numerous cell types. The major metabolic cell type of the liver, the hepatocyte, is susceptible to damage during drug overdose. In these studies, hepatocytes were generated from a renewable resource and exposed to varying levels of paracetamol, with a view to identifying interventions that could reduce or attenuate drug-induced liver toxicity. A novel noncoding RNA that reduced paracetamol-induced hepatocyte toxicity was identified. These findings may represent an important advance for the field.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Baltasar Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna K Moore
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth J Simpson
- Division of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
ACMT Position Statement: Duration of Intravenous Acetylcysteine Therapy Following Acetaminophen Overdose. J Med Toxicol 2016; 13:126-127. [PMID: 26957510 DOI: 10.1007/s13181-016-0542-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
|