1
|
Al Fahad MA, Lee HY, Park M, Lee BT. A cardiac extracellular matrix-based bilayer vascular graft with controlled microstructures for the reconstruction of small-diameter blood vessels. Biomaterials 2025; 320:123264. [PMID: 40121829 DOI: 10.1016/j.biomaterials.2025.123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Despite recent progress, challenges with small-diameter vascular grafts, including mechanical strength, intimal hyperplasia, thrombosis, and poor endothelialization, remain unresolved. The present study reports a novel bilayer vascular graft designed to mimic the anatomical features of small-diameter blood vessels. The electrospun graft consists of a dense micro/nanofibrous inner layer of cardiac extracellular matrix (cECM), polycaprolactone (PCL) loaded with heparin (P-cECM-H), and a super porous and micro-fibrous PCL outer layer. Liquid chromatography-mass spectrometry (LC-MS/MS) proteome analysis of the cECM revealed that it is enriched with several bioactive proteins related to angiogenesis, wound regeneration, cell migration, etc. The porosities of the two layers are tailored according to endothelial and smooth muscle cell biology. The graft exhibited excellent mechanical properties, and the heparinized P-cECM inner layer improved hemocompatibility and anticoagulation efficacy. A significant increase in endothelial cell proliferation was noted in the P-cECM-H group after 7 days compared with the control group (p < 0.05). The bilayer graft maintained 100 % patency after 10 weeks of rat abdominal aorta implantation. Histological evaluation revealed smooth muscle cell infiltration inside the highly porous outer layer and neointima regeneration in the inner layer with a complete endothelial lining. RNA sequencing (RNA-Seq) analysis further confirmed smooth muscle formation and endothelial layer formation. The gene expression data also suggested that the hypoxia-inducible factor-1 (HIF-) and vascular endothelial growth factor (VEGF) signaling pathways are involved in endothelial layer remodeling. These promising results indicate that cECM could be a key material for vascular tissue regeneration.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
2
|
Yao H, Su G, Hou H, Wang J, Sun Z, Li Z, Zhai Z, Li Y. Complications of Polyacrylamide Hydrogel Facial Injection: Clinical Studies and Literature Review. Aesthetic Plast Surg 2025; 49:1833-1841. [PMID: 39939475 DOI: 10.1007/s00266-025-04715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Polyacrylamide hydrogel (PAHG) is a new biomaterial that emerged in the last century and has been widely used in human filler procedures, such as injectable breast augmentation and facial contour improvement. However, as the implantation time of the material increases, various complications have been reported, which reflects that the safety of this material has not been adequately studied. Therefore, a more in-depth experimental analysis becomes particularly important. METHODS We collected lesion tissues from six patients with PAHG facial injection. The lesion tissues were examined histologically and molecularly. RESULTS Complications caused by PAHG facial injection included pain, subcutaneous nodules, swelling and gel displacement. Western blot revealed decreased expression of neural tissue markers, and increased expression of macrophage markers and oxidative stress-related factors. The results of this study provide new insights into the mechanism and development of PAHG facial injection complications. CONCLUSION This report explores the possible mechanism of PAHG complications after facial injection from a new perspective of oxidative stress and inflammation for the first time, which provides a reference for researchers and clinicians to further understand the characteristics of materials and strictly control surgical indications to reduce complications. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Haifeng Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Gang Su
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Hua Hou
- School of Clinical Medicine, Binzhou Medical College, Binzhou, 256600, China
| | - Jing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China
| | - Zhenmin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Zhaoxin Li
- Affiliated Traditional Chinese Medicine Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Zhaohui Zhai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Plastic Surgery Institute, Shandong Second Medical University, Weifang, 261053, China.
| | - Yuli Li
- Qingdao Hospital, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Annuryanti F, Adhami M, Abdi U, Robles JD, Larrañeta E, Vora LK, Raghu Raj Singh T. Development of axitinib-loaded polymeric ocular implants for the treatment of posterior ocular diseases. Int J Pharm 2025; 669:125099. [PMID: 39706380 DOI: 10.1016/j.ijpharm.2024.125099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the primary causes of vision impairment and blindness worldwide. The current treatment for these diseases is an intravitreal injection of anti-VEGF agents, which are costly and require frequent injections. Implants can be used to sustain the release of drugs and minimize side effects. Axitinib (AX) is a potent VEGF receptor inhibitor and a promising candidate for treating posterior ocular diseases, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). A sustained release of AX was successfully achieved from 3D-printed AX-loaded implants fabricated using the well-known 3D printing technique, semi-solid extrusion (SSE). AX at concentrations of 10% w/w and 20% w/w was incorporated within the polycaprolactone (PCL) and Precirol®-based matrix. The fabricated implants were characterized via FTIR spectroscopy, SEM imaging, and thermal analysis. The implants were also evaluated for their drug release and biocompatibility. The AX-loaded implants exhibited thermal stability, and no chemical interactions were found between AX and the matrix components. The release mechanism study of AX revealed that the concentration of drug loading influenced AX release from the implant, with a 10% w/w and 20 %w/w of AX showing first-order and Korsmeyer-Peppas mechanism, respectively. A biocompatibility study using ARPE-19 cells confirmed that AX-loaded implants are nontoxic and safe for ocular use.
Collapse
Affiliation(s)
- Febri Annuryanti
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom; Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ubah Abdi
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Juan-Dominguez Robles
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.
| | | |
Collapse
|
4
|
Hsu YH, Chou YC, Chen CL, Yu YH, Lu CJ, Liu SJ. Development of novel hybrid 3D-printed degradable artificial joints incorporating electrospun pharmaceutical- and growth factor-loaded nanofibers for small joint reconstruction. BIOMATERIALS ADVANCES 2024; 159:213821. [PMID: 38428121 DOI: 10.1016/j.bioadv.2024.213821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Small joint reconstruction remains challenging and can lead to prosthesis-related complications, mainly due to the suboptimal performance of the silicone materials used and adverse host reactions. In this study, we developed hybrid artificial joints using three-dimensional printing (3D printing) for polycaprolactone (PCL) and incorporated electrospun nanofibers loaded with drugs and biomolecules for small joint reconstruction. We evaluated the mechanical properties of the degradable joints and the drug discharge patterns of the nanofibers. Empirical data revealed that the 3D-printed PCL joints exhibited good mechanical and fatigue properties. The drug-eluting nanofibers sustainedly released teicoplanin, ceftazidime, and ketorolac in vitro for over 30, 19, and 30 days, respectively. Furthermore, the nanofibers released high levels of bone morphogenetic protein-2 and connective tissue growth factors for over 30 days. An in vivo animal test demonstrated that nanofiber-loaded joints released high concentrations of antibiotics and analgesics in a rabbit model for 28 days. The animals in the drug-loaded degradable joint group showed greater activity counts than those in the surgery-only group. The experimental data suggest that degradable joints with sustained release of drugs and biomolecules may be utilized in small joint arthroplasty.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chao-Lin Chen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| | - Chia-Jung Lu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
5
|
Bellen F, Carbone E, Baatsen P, Jones EAV, Kabirian F, Heying R. Improvement of Endothelial Cell-Polycaprolactone Interaction through Surface Modification via Aminolysis, Hydrolysis, and a Combined Approach. J Tissue Eng Regen Med 2023; 2023:5590725. [PMID: 40226414 PMCID: PMC11921838 DOI: 10.1155/2023/5590725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 04/15/2025]
Abstract
Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.
Collapse
Affiliation(s)
- Femke Bellen
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elisa Carbone
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
- EM-Platform of VIB Bio Imaging Core at KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Mahvi DA, Korunes-Miller J, Bordeianu C, Chu NQ, Geller AD, Sabatelle R, Berry S, Hung YP, Colson YL, Grinstaff MW, Raut CP. High dose, dual-release polymeric films for extended surgical bed paclitaxel delivery. J Control Release 2023; 363:682-691. [PMID: 37776906 PMCID: PMC10990290 DOI: 10.1016/j.jconrel.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
While surgery represents a major therapy for most solid organ cancers, local recurrence is clinically problematic for cancers such as sarcoma for which adjuvant radiotherapy and systemic chemotherapy provide minimal local control or survival benefit and are dose-limited due to off-target side effects. We describe an implantable, biodegradable poly(1,2-glycerol carbonate) and poly(caprolactone) film with entrapped and covalently-bound paclitaxel enabling safe, controlled, and extended local delivery of paclitaxel achieving concentrations 10,000× tissue levels compared to systemic administration. Films containing entrapped and covalently-bound paclitaxel implanted in the tumor bed, immediately after resection of human cell line-derived chondrosarcoma and patient-derived xenograft liposarcoma and leiomyosarcoma in mice, improve median 90- or 200-day recurrence-free and overall survival compared to control mice. Furthermore, mice in the experimental film arm show no film-related morbidity. Continuous, extended, high-dose paclitaxel delivery via this unique polymer platform safely improves outcomes in three different sarcoma models and provides a rationale for future incorporation into human trials.
Collapse
Affiliation(s)
- David A Mahvi
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Jenny Korunes-Miller
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - Catalina Bordeianu
- Department of Chemistry, Boston University, Boston, MA 02215, United States of America
| | - Ngoc-Quynh Chu
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Abraham D Geller
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Robbie Sabatelle
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - Samantha Berry
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Yolonda L Colson
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America; Department of Chemistry, Boston University, Boston, MA 02215, United States of America.
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America; Center for Sarcoma and Bone Oncology, Dana Farber Cancer Institute, Boston, MA 02115, United States of America.
| |
Collapse
|
7
|
Lei H, Ma Q, Wang Z, Zhang D, Huang X, Qin M, Ma H, Wang W, Cao Y. Ester Bond: Chemically Labile Yet Mechanically Stable. ACS NANO 2023; 17:16870-16878. [PMID: 37646337 DOI: 10.1021/acsnano.3c03807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Due to the dynamic nature of ester linkages, ester-bond-containing materials are well known for their outstanding degradability and stimuli responsiveness. However, whether ester hydrolysis is affected by mechanical forces remains unclear. Here, we develop a single-molecule assay to quantitatively study the force-dependent ester hydrolysis using an engineered circular permutant protein with a caged ester bond as a model. Our single-molecule force spectroscopy results show that the ester hydrolysis rate is surprisingly insensitive to forces, with a ∼7 s-1 dissociation rate that remains almost unchanged in the force range of 80 to 200 pN. Quantum calculations reveal that the ester hydrolysis involves an intermediate state formed by either H3O+- or OH--bonded tetrahedral intermediates. The measured ester-hydrolysis kinetics at the single-molecule level may primarily correspond to the rupture of these intermediate states. However, the rate-limiting step appears to be the formation of the tetrahedral intermediates, which cannot be quantitatively characterized in our experiments. Nonetheless, based on the quantum calculations, this step is also insensitive to applied forces. Altogether, our study suggests that the ester bond is chemically labile yet mechanically stable, serving as the basis for the design of responsive materials using ester bonds as mechanically inert units.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| | - Quan Ma
- Zhejiang Laboratory, Hangzhou, Zhejiang 311121, China
| | - Zhangxia Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Di Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
8
|
Yeingst TJ, Arrizabalaga JH, Rawnaque FS, Stone LP, Yeware A, Helton AM, Dhawan A, Simon JC, Hayes DJ. Controlled Degradation of Polycaprolactone Polymers through Ultrasound Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34607-34616. [PMID: 37432796 PMCID: PMC10496768 DOI: 10.1021/acsami.3c06873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study describes the development of an ultrasound-responsive polymer system that provides on-demand degradation when exposed to high-intensity focused ultrasound (HIFU). Diels-Alder cycloadducts were used to crosslink polycaprolactone (PCL) polymers and underwent a retro Diels-Alder reaction when stimulated with HIFU. Two Diels-Alder polymer compositions were explored to evaluate the link between reverse reaction energy barriers and polymer degradation rates. PCL crosslinked with isosorbide was also used as a non-Diels-Alder-based control polymer. An increase of HIFU exposure time and amplitude correlated with an increase of PCL degradation for Diels-Alder-based polymers. Ultrasound imaging during HIFU allowed for real-time visualization of the on-demand degradation through cavitation-based mechanisms. The temperature surrounding the sample was monitored with a thermocouple during HIFU stimulation; a minimal increase in temperature was observed. PCL polymers were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), optical profilometry, and mechanical testing. PCL degradation byproducts were identified by mass spectrometry, and their cytocompatibility was evaluated in vitro. Overall, this study demonstrated that HIFU is an effective image-guided, external stimulus to control the degradation of Diels-Alder-based PCL polymers on-demand.
Collapse
Affiliation(s)
- Tyus J Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julien H Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ferdousi S Rawnaque
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lindsay P Stone
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amar Yeware
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Angelica M Helton
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Julianna C Simon
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institute of Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Chen B, Lin Z, Saiding Q, Huang Y, Sun Y, Zhai X, Ning Z, Liang H, Qiao W, Yu B, Yeung KW, Shen J. Enhancement of critical-sized bone defect regeneration by magnesium oxide-reinforced 3D scaffold with improved osteogenic and angiogenic properties. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2023; 135:186-198. [DOI: 10.1016/j.jmst.2022.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
10
|
Xu Z, Zhang Y, Dai H, Wang Y, Ma Y, Tan S, Han B. 3D printed MXene (Ti2AlN)/polycaprolactone composite scaffolds for in situ maxillofacial bone defect repair. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Kränzlein M, Pehl TM, Adams F, Rieger B. Uniting Group-Transfer and Ring-Opening Polymerization─Block Copolymers from Functional Michael-Type Monomers and Lactones. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Moritz Kränzlein
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Friederike Adams
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- Faculty of Science, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
12
|
Zhang Z, Tian R, Lin D, Wu D, Lu C, Duan X. Three-Dimensional Fluorescent Imaging to Identify Multi-Paths in Polymer Aging. Anal Chem 2021; 93:10301-10309. [PMID: 34269562 DOI: 10.1021/acs.analchem.1c01784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is of great significance to disclose the diverse aging pathways for polymers under multiple factors, so as to predict and control the potential aging evolution. However, the current methods fail to distinguish multiple pathways (multi-paths) of polymer aging due to the lack of spatiotemporal resolution. In this work, using polyimide as a model polymer, the hydroxyl, carboxyl, and amino groups from the polyimide aging process were labeled using specific fluorescent probes through boron-oxygen, imine, and thiourea linkages, respectively. When the excitation and emission wavelengths of each fluorescent probe were controlled, the multi-paths in polyimide aging can be visualized individually and simultaneously in three-dimensional fluorescent images. The overall aging process under hydrothermal treatment was destructured into the pyrolysis and hydrolysis pathways. Three-dimensional dynamic studies discovered that the increased humidity, along with the decreased oxygen content, could hamper the pyrolysis reaction and accelerate the hydrolysis reaction, leading to severe degradation of the overall polyimide aging. More importantly, the oxygen showed a higher regulation coefficient in accelerating the pyrolysis reaction, than the water vapor in motivating the hydrolysis reactions. Such a multidimensional identification methodology is able to guide the long-term use of polymers and control their aging process to a harmless direction in advance by tuning the contents of oxygen and water vapor.
Collapse
Affiliation(s)
- Zekun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Alexeev D, Tschopp M, Helgason B, Ferguson SJ. Electrospun biodegradable poly(ε-caprolactone) membranes for annulus fibrosus repair: Long-term material stability and mechanical competence. JOR Spine 2021; 4:e1130. [PMID: 33778404 PMCID: PMC7984019 DOI: 10.1002/jsp2.1130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Electrospun (ES) poly(ɛ-caprolactone) (PCL) is widely used to provide critical mechanical support in tissue engineering and regenerative medicine applications. Therefore, there is a clear need for understanding the change in the mechanical response of the membranes as the material degrades in physiological conditions. STUDY DESIGN ES membranes with fiber diameters from 1.6 to 6.7 μm were exposed to in vitro conditions at 37°C in Dulbecco's modified Eagle's medium (DMEM) or dry for up to 6 months. METHODS During this period, the mechanical properties were assessed using cyclic mechanical loading, and material properties such as crystallinity and ester bond degradation were measured. RESULTS No significant difference was found for any parameters between samples kept dry and in DMEM. The increase in crystallinity was linear with time, while the ester bond degradation showed an inverse logarithmic correlation with time. All samples showed an increase in modulus with exposure time for the first loading cycle. Modulus changes for the consecutive loading cycles showed a nonlinear relationship to the exposure time that depended on membrane type and maximum strain. In addition, the recovered elastic range showed an expected increase with the maximum strain reached. The mechanical response of ES membranes was compared to experimental tensile properties of the human annulus fibrosus tissue and an in silico model of the intervertebral disk. The modulus of the tested membranes was at the lower range of the values found in literature, while the elastically recoverable strain after preconditioning for all membrane types lies within the desired strain range for this application. CONCLUSION The long-term assessment under application-specific conditions allowed to establish the mechanical competence of the electrospun PCL membranes. It can be concluded that with the use of appropriate fixation, the membranes can be used to create a seal on the damaged AF.
Collapse
Affiliation(s)
| | | | - Benedikt Helgason
- Institut für BiomechanikETH ZürichZürichSwitzerland
- Collaborative Research Partners, AO FoundationDavosSwitzerland
| | - Stephen J. Ferguson
- Institut für BiomechanikETH ZürichZürichSwitzerland
- Collaborative Research Partners, AO FoundationDavosSwitzerland
| |
Collapse
|
15
|
Maghdouri-White Y, Sori N, Petrova S, Wriggers H, Kemper N, Dasgupta A, Coughenour K, Polk S, Thayer N, Mario RD, Simon Dpm B, Bulysheva A, Bonner K, Arnoczky Dvm S, Adams Md S, Francis MP. Biomanufacturing organized collagen-based microfibers as a Tissue ENgineered Device (TEND) for tendon regeneration. Biomed Mater 2021; 16:025025. [PMID: 32927444 DOI: 10.1088/1748-605x/abb875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 800, 000 surgical repairs are performed annually in the U.S. for debilitating injuries to ligaments and tendons of the foot, ankle, knee, wrist, elbow and shoulder, presenting a significant healthcare burden. To overcome current treatment shortcomings and advance the treatment of tendon and ligament injuries, we have developed a novel electrospun Tissue ENgineered Device (TEND), comprised of type I collagen and poly(D,L-lactide) (PDLLA) solubilized in a benign solvent, dimethyl sulfoxide (DMSO). TEND fiber alignment, diameter and porosity were engineered to enhance cell infiltration leading to promote tissue integration and functional remodeling while providing biomechanical stability. TEND rapidly adsorbs blood and platelet-rich-plasma (PRP), and gradually releases growth factors over two weeks. TEND further supported cellular alignment and upregulation of tenogenic genes from clinically relevant human stem cells within three days of culture. TEND implanted in a rabbit Achilles tendon injury model showed new in situ tissue generation, maturation, and remodeling of dense, regularly oriented connective tissue in vivo. In all, TEND's organized microfibers, biological fluid and cell compatibility, strength and biocompatiblility make significant progress towards clinically translating electrospun collagen-based medical devices for improving the clinical outcomes of tendon injuries.
Collapse
|
16
|
Field J, Haycock JW, Boissonade FM, Claeyssens F. A Tuneable, Photocurable, Poly(Caprolactone)-Based Resin for Tissue Engineering-Synthesis, Characterisation and Use in Stereolithography. Molecules 2021; 26:1199. [PMID: 33668087 PMCID: PMC7956195 DOI: 10.3390/molecules26051199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Stereolithography is a useful additive manufacturing technique for the production of scaffolds for tissue engineering. Here we present a tuneable, easy-to-manufacture, photocurable resin for use in stereolithography, based on the widely used biomaterial, poly(caprolactone) (PCL). PCL triol was methacrylated to varying degrees and mixed with photoinitiator to produce a photocurable prepolymer resin, which cured under UV light to produce a cytocompatible material. This study demonstrates that poly(caprolactone) methacrylate (PCLMA) can be produced with a range of mechanical properties and degradation rates. By increasing the degree of methacrylation (DM) of the prepolymer, the Young's modulus of the crosslinked PCLMA could be varied from 0.12-3.51 MPa. The accelerated degradation rate was also reduced from complete degradation in 17 days to non-significant degradation in 21 days. The additive manufacturing capabilities of the resin were demonstrated by the production of a variety of different 3D structures using micro-stereolithography. Here, β-carotene was used as a novel, cytocompatible photoabsorber and enabled the production of complex geometries by giving control over cure depth. The PCLMA presented here offers an attractive, tuneable biomaterial for the production of tissue engineering scaffolds for a wide range of applications.
Collapse
Affiliation(s)
- Jonathan Field
- The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (J.F.); (F.M.B.)
| | - John W. Haycock
- The Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK;
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Fiona M. Boissonade
- The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (J.F.); (F.M.B.)
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Frederik Claeyssens
- The Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK;
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
17
|
Dang HP, Shafiee A, Lahr CA, Dargaville TR, Tran PA. Local Doxorubicin Delivery via 3D‐Printed Porous Scaffolds Reduces Systemic Cytotoxicity and Breast Cancer Recurrence in Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hoang Phuc Dang
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
| | - Abbas Shafiee
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- UQ Diamantina Institute Translational Research Institute The University of Queensland Brisbane Queensland 4102 Australia
- Royal Brisbane and Women's Hospital Metro North Hospital and Health Service Brisbane 4029 Australia
- Herston Biofabrication Institute Metro North Hospital and Health Service Brisbane 4029 Australia
| | - Christoph A. Lahr
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
| | - Tim R. Dargaville
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
| | - Phong A. Tran
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Brisbane Queensland 4059 Australia
- ARC Centre in Additive Biomanufacturing Queensland University of Technology 60 Musk Avenue, Kelvin Grove Brisbane Queensland 4059 Australia
- Interface Science and Materials Engineering Group School of Chemistry Physics and Mechanical Engineering Queensland University of Technology Brisbane 4059 Australia
| |
Collapse
|
18
|
Fuoco T, Ahlinder A, Jain S, Mustafa K, Finne-Wistrand A. Poly(ε-caprolactone- co- p-dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration. Biomacromolecules 2019; 21:188-198. [PMID: 31549825 DOI: 10.1021/acs.biomac.9b01126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The advancement of 3D printing technologies in the fabrication of degradable scaffolds for tissue engineering includes, from the standpoint of the polymer chemists, an urgent need to develop new materials that can be used as ink and are suitable for medical applications. Here, we demonstrate that a copolymer of ε-caprolactone (CL) with low amounts of p-dioxanone (DX) (15 mol %) is a degradable and printable material that suits the requirements of melt extrusion 3D printing technologies, including negligible degradation during thermal processing. It is therefore a potential candidate for soft tissue regeneration. The semicrystalline CL/DX copolymer is processed at a lower temperature than a commercial polycaprolactone (PCL), shaped as a filament for melt extrusion 3D printing and as porous and pliable scaffolds with a gradient design. Scaffolds have Young's modulus in the range of 60-80 MPa, values suitable for provision of structural support for damaged soft tissue such as breast tissue. SEM and confocal microscope indicate that the CL/DX copolymer scaffolds support adipose stem cell attachment, spreading, and proliferation.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Astrid Ahlinder
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Shubham Jain
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine , University of Bergen , 5020 Bergen , Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| |
Collapse
|
19
|
Qu B, Yuan L, Yang L, Li J, Lv H, Yang X. Polyurethane End-Capped by Tetramethylpyrazine-Nitrone for Promoting Endothelialization Under Oxidative Stress. Adv Healthc Mater 2019; 8:e1900582. [PMID: 31529779 DOI: 10.1002/adhm.201900582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Thrombus and restenosis are two main factors that cause the failure of vascular implants. Constructing a functional and confluent layer of endothelial cells (ECs) is considered an ideal method to prevent these problems. However, oxidative stress induced by the disease and implantation can damage ECs and hinder the endothelialization of implants. Thus, developing biomaterials that can protect ECs adhesion and proliferation from oxidative stress is urgently needed for the rapid endothelialization of vascular implants. In this work, a novel polyurethane (PU-TBN) is synthesized by employing tetramethylpyrazine-nitrone (TBN) as end-group to endow polymers with dual functions of antioxidant activity and promoting endothelialization. Common PU without TBN is also prepared to be control. Compared to PU, PU-TBN significantly promotes human umbilical vein endothelial cells (HUVECs) adhesion and proliferation, where cells spread well and a confluent endothelial layer is formed. PU-TBN also shows obvious free radical scavenging activity, and thus effectively attenuates oxidative stress to protect HUVECs from oxidative apoptosis. Moreover, PU-TBN exhibits enhanced antiplatelets effect, excellent biocompatibility, and similar mechanical properties to PU. These characteristics can endow PU-TBN with great potential to be used as vascular implants or coatings of other materials for rapid endothelialization under complex oxidative stress environment.
Collapse
Affiliation(s)
- Baoliu Qu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liguang Yuan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- College of Applied Chemistry and EngineeringUniversity of Science and Technology of China 96 Jinzhai Road Hefei 230026 P. R. China
| | - Jinge Li
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
20
|
|
21
|
Fuoco T, Finne-Wistrand A. Enhancing the Properties of Poly(ε-caprolactone) by Simple and Effective Random Copolymerization of ε-Caprolactone with p-Dioxanone. Biomacromolecules 2019; 20:3171-3180. [PMID: 31268691 DOI: 10.1021/acs.biomac.9b00745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a straightforward strategy to obtain semicrystalline and random copolymers of ε-caprolactone (CL) and p-dioxanone (DX) with thermal stabilities similar to poly(ε-caprolactone), PCL, but with a faster hydrolytic degradation rate. CL/DX copolymers are promising inks when printing scaffolds aimed for tissue engineering. Such copolymers behave similar to PCL and resorb faster. The copolymers were synthesized by bulk ring-opening copolymerization, achieving a high yield; a molecular weight, Mn, of 57-176 kg mol-1; and an inherent viscosity of 1.7-1.9 dL g-1. The copolymer microstructure consisted of long CL blocks that are separated by isolated DX units. The block length and the melting point were a linear function of the DX content. The copolymers crystallize as an orthorhombic lattice that is typical for PCL, and they formed more elastic, softer, and less hydrophobic films with faster degradation rates than PCL. Relatively high thermal degradation temperatures (above 250 °C), similar to PCL, were estimated by thermogravimetric analysis, and copolymer filaments for three-dimensional printing and scaffolds were produced without thermal degradation.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen, 56-58 , SE 100-44 Stockholm , Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , Teknikringen, 56-58 , SE 100-44 Stockholm , Sweden
| |
Collapse
|
22
|
Xu X, Wu J, Liu S, Saw PE, Tao W, Li Y, Krygsman L, Yegnasubramanian S, De Marzo AM, Shi J, Bieberich CJ, Farokhzad OC. Redox-Responsive Nanoparticle-Mediated Systemic RNAi for Effective Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802565. [PMID: 30230235 PMCID: PMC6286670 DOI: 10.1002/smll.201802565] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/21/2018] [Indexed: 05/16/2023]
Abstract
Biodegradable polymeric nanoparticles (NPs) have demonstrated significant potential to improve the systemic delivery of RNA interference (RNAi) therapeutics, such as small interfering RNA (siRNA), for cancer therapy. However, the slow and inefficient siRNA release inside tumor cells generally observed for most biodegradable polymeric NPs may result in compromised gene silencing efficacy. Herein, a biodegradable and redox-responsive NP platform, composed of a solid poly(disulfide amide) (PDSA)/cationic lipid core and a lipid-poly(ethylene glycol) (lipid-PEG) shell for systemic siRNA delivery to tumor cells, is developed. This newly generated NP platform can efficiently encapsulate siRNA under extracellular environments and can respond to the highly concentrated glutathione (GSH) in the cytoplasm to induce fast intracellular siRNA release. By screening a library of PDSA polymers with different structures and chain lengths, the optimized NP platform shows the unique features of i) long blood circulation, ii) high tumor accumulation, iii) fast GSH-triggered intracellular siRNA release, and iv) exceptionally effective gene silencing. Together with the facile polymer synthesis technique and robust NP formulation enabling scale-up, this new redox-responsive NP platform may become an effective tool for RNAi-based cancer therapy.
Collapse
Affiliation(s)
- Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; Guangdong Provincial Key Laboratory of Malignant, Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Wu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuaishuai Liu
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA,
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; Guangdong Provincial Key Laboratory of Malignant, Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Krygsman
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,
| | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA,
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; King Abdulaziz University, Jeddah 21589, Saudi Arabia,
| |
Collapse
|
23
|
Smith LM, Aitken HM, Coote ML. The Fate of the Peroxyl Radical in Autoxidation: How Does Polymer Degradation Really Occur? Acc Chem Res 2018; 51:2006-2013. [PMID: 30016062 DOI: 10.1021/acs.accounts.8b00250] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bolland and Gee's basic autoxidation scheme (BAS) for lipids and rubbers has long been accepted as a general scheme for the autoxidation of all polymers. This scheme describes a chain process of initiation, propagation, and termination to describe the degradation of polymers in the presence of O2. Central to this scheme is the conjecture that propagation of damage to the next polymer chain occurs via hydrogen atom transfer with a peroxyl radical. However, this reaction is strongly thermodynamically disfavored for all but unsaturated polymers, where the product allylic radical is resonance-stabilized. Paradoxically, there is no denying that the autocatalytic degradation and oxidation of saturated polymers still occurs. Critical analysis of the literature, described herein, has begun to unravel this mystery. One possibility is that the BAS still holds for saturated polymers but only at unsaturated defect sites, where H transfer is thermodynamically favorable. Another is that peroxyl termination rather than H transfer is dominant. If this were the case, tertiary peroxyl radicals (formed at quaternary centers or quaternary branching defects) may terminate to form alkoxy radicals, which can much more readily undergo chain transfer. This process would lead to the creation of hydroxy groups on the degraded polymer. On the other hand, primary and secondary peroxyl radicals would terminate to form nonradical products and halt further degradation. As a result, under this scenario the degree of branching and substitution would have a major effect on polymer stability. Herein we survey studies of polymer degradation products and of the effect of polymer structure on stability and show that indeed peroxyl termination is competitive with peroxyl transfer and possibly dominant under some conditions. It is also feasible that oxygen may not be the only reactive atmospheric species involved in catalyzing polymer degradation. Herein we outline plausible mechanisms involving ozone, hydroperoxyl radical, and hydroxyl radical that have all been suggested in the literature and can account for the experimentally observed formation of hydroperoxides without invoking peroxyl transfer. We also show that oxygen itself has even been reported to slow the degradation of poly(methyl methacrylate)s, which might be expected if peroxyl radicals are unreactive toward hydrogen transfer. Discrepancies between the rate of oxidation and the rate of degradation have been observed for polyolefins and also support the counterintuitive notion that oxygen stabilizes these polymers against degradation. We show that together these studies support alternative mechanisms for polymer degradation. A thorough assessment of kinetic studies reported in the literature indicates that they are limited by their propensity to use models based on the BAS, disregarding the chemical differences intrinsic to each class of polymer. Thus, we propose that further work must be done to fully grasp the complex mechanism of polymer degradation under ambient conditions. Nonetheless, our analysis of the literature points to measures that can be used to enhance or prevent polymer degradation and indicates that we should focus beyond just the role of oxygen toward the specific chemical nature and environment of the polymer at hand.
Collapse
Affiliation(s)
- Leesa M. Smith
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Heather M. Aitken
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Bhanuprakash Reddy G, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. NANOSCALE 2018; 10:16485-16498. [PMID: 29897081 DOI: 10.1039/c8nr00058a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial manifestation associated with microvascular complications and is the fourth leading cause of visual impairment and blindness world-wide. Current day treatment of DR relies heavily on invasive techniques such as intravitreal injections of therapeutic agents. Unfortunately, intravitreal injections are associated with various complications such as intraocular bleeding, endophthalmitis, pain and discomfort resulting in poor patient compliance. To date, there has been no non-invasive drug delivery system reported for DR treatment. To address this, we developed a core-shell nanoparticle-based delivery system consisting of a hydrophobic polycaprolactone core and a hydrophilic Pluronic® F68 shell, loaded with triamcinolone acetonide and evaluated its efficacy in a DR rat model. After being administered as eye drops, the drug loaded nanoparticles significantly improved structural (retinal thickness and vascular health) and functional activity (rod and cone function) of retina as compared to DR controls that were treated with the drug alone or placebo nanoparticles. Furthermore, drug loaded nanoparticles reduced retinal inflammation as evidenced by a decrease in NF-κB, ICAM-1 and TNFα expression after 20 days of treatment. Similarly, a reduction in glial cell hyperplasia as evidenced by reduced GFAP expression, and a decrease in microvascular complications as evidenced by a decrease in VEGF secretion and microvascular tuft formation were observed in rat retinas after 40 days of treatment. The combined reduction in retinal inflammation and vascular abnormalities, both hallmarks of DR, demonstrates the potential of the nanoparticulate delivery system for use as a topical formulation for treating DR.
Collapse
Affiliation(s)
- Binapani Mahaling
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | |
Collapse
|
25
|
Xue J, Li H, Xia Y. Nanofiber-Based Multi-Tubular Conduits with a Honeycomb Structure for Potential Application in Peripheral Nerve Repair. Macromol Biosci 2018; 18:e1800090. [PMID: 29956466 PMCID: PMC6280973 DOI: 10.1002/mabi.201800090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury is a large-scale problem and it is a great challenge to repair the long lesion in a thick nerve. The design of a multi-tubular conduit with a honeycomb structure by mimicking the anatomy of a peripheral nerve for the potential repair of large defects in thick nerves has been reported. A bilayer mat of electrospun nanofibers is rolled up to form a single tube, with the inner and outer layers comprised aligned and random nanofibers, respectively. Seven such tubes are then assembled into a hexagonal array and encased within the lumen of a larger tube to form the multi-tubular conduit. By introducing an adhesive to the regions between the tubes, the conduit is robust enough for handling during surgery. The seeded bone marrow stem cells (BMSCs) are able to proliferate in all the tubes with even circumferential and longitudinal distributions. Under chemical induction, the BMSCs are transdifferentiated into Schwann-like cells in all the tubes. While the cellular version holds great promise for peripheral nerve repair, the multi-tubular conduit can also be used to investigate the fundamental aspects involved in the development of peripheral nervous system and migration of cells.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Haoxuan Li
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
26
|
Najlaoui F, Pigeon P, Aroui S, Pezet M, Sancey L, Marrakchi N, Rhouma A, Jaouen G, De Waard M, Busser B, Gibaud S. Anticancer properties of lipid and poly(ε-caprolactone) nanocapsules loaded with ferrocenyl-tamoxifen derivatives. J Pharm Pharmacol 2018; 70:1474-1484. [PMID: 30141195 DOI: 10.1111/jphp.12998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We synthesized new tamoxifen derivatives as anticancer drug candidates and elaborated on convection-enhanced delivery (CED) as a strategy for delivery. METHODS To overcome the issue of their poor solubility, these ferrocenyl-tamoxifen derivatives were esterified and encapsulated into different nanocarriers, that is lipid (LNC) and polymeric nanocapsules (PNL-NC). We describe the chemistry, the encapsulation and the physicochemical characterization of these formulations. KEY FINDINGS Starting compounds [phthalimido-ferrocidiphenol and succinimido-ferrocidiphenol], esterified prodrugs and their nanocapsules formulations were characterized. These drug candidates displayed a strong in vitro activity against breast and glioblastoma cancer cells. The ester prodrugs were toxic for glioblastoma cells (IC50 = 9.2 × 10-2 μm and 6.7 × 10-2 μm, respectively). The IC50 values for breast cancer cells were higher for these compounds. The encapsulation of the esterified compounds in LNCs (≈50 nm) or PCL-NCs (≈300 nm) did not prevent their efficacy on glioblastoma cells. These anticancer effects were due to both blockade in the S-phase of the cell cycle and apoptosis. Moreover, the tamoxifen derivatives-loaded nanocapsules induced no toxicity for healthy astrocytes and showed no haemolytic properties. Loaded Lipid Nanocapsules (LNCs) presented interesting profiles for the optimal delivery of active compounds. CONCLUSIONS Phthalimido- and Succinimido-esters represent an innovative approach to treat cancers with cerebral localizations such as glioblastoma or brain metastases from breast cancers.
Collapse
Affiliation(s)
- Feten Najlaoui
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, Tunis, Tunisia.,EA 3452/CITHEFOR, Université de Lorraine, Nancy, France
| | - Pascal Pigeon
- PSL, Chimie ParisTech, Paris Cedex 05, France.,Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM, UMR 8232), Paris Cedex 05, France
| | - Sonia Aroui
- Laboratory of Biochemistry, Molecular Mechanisms and Diseases Research Unit, UR12ES08, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mylène Pezet
- IAB Inserm U1209/CNRS UMR 5309, University Grenoble Alpes, Grenoble University Hospital, Grenoble, France
| | - Lucie Sancey
- IAB Inserm U1209/CNRS UMR 5309, University Grenoble Alpes, Grenoble University Hospital, Grenoble, France
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ali Rhouma
- Research Unit of Plant Protection and Environment, Olive Tree Institute, Tunis, Tunisia
| | - Gérard Jaouen
- PSL, Chimie ParisTech, Paris Cedex 05, France.,Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM, UMR 8232), Paris Cedex 05, France
| | - Michel De Waard
- Institut du Thorax, INSERM UMR 1087/CNRS UMR 6291, Nantes University, Labex Ion Channels, Science and Therapeutics, Nantes Cedex 1, France
| | - Benoit Busser
- IAB Inserm U1209/CNRS UMR 5309, University Grenoble Alpes, Grenoble University Hospital, Grenoble, France
| | | |
Collapse
|
27
|
Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater 2018; 9:E50. [PMID: 30134538 PMCID: PMC6165026 DOI: 10.3390/jfb9030050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Giulia Ghiacci
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
28
|
Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior. Biomed Microdevices 2018; 20:71. [PMID: 30097808 DOI: 10.1007/s10544-018-0313-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This work focuses on an evaluation of novel composites of porous silicon (pSi) with the biocompatible polymer ε-polycaprolactone (PCL) for drug delivery and tissue engineering applications. The degradation behavior of the composites in terms of their morphology along with the effect of pSi on polymer degradation was monitored. PSi particles loaded with the drug camptothecin (CPT) were physically embedded into PCL films formed from electrospun PCL fiber sheets. PSi/PCL composites revealed a release profile of CPT (monitored via fluorescence spectroscopy) in accordance with the Higuchi release model, with significantly lower burst release percentage compared to pSi microparticles alone. Degradation studies of the composites, using gravimetric analysis, differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM), carried out in phosphate-buffered saline (PBS) under simulated physiological conditions, indicated a modest mass loss (15%) over 5 weeks due to pSi dissolution and minor polymer hydrolysis. DSC results showed that, relative to PCL-only controls, pSi suppressed crystallization of the polymer film during PBS exposure. This suppression affects the evolution of surface morphology during this exposure that, in turn, influences the degradation behavior of the polymer. The implications of the above properties of these composites as a possible therapeutic device are discussed.
Collapse
|
29
|
|
30
|
Abstract
Oral pre-exposure prophylaxis for the prevention of HIV-1 transmission (HIV PrEP) has been widely successful as demonstrated by a number of clinical trials. However, studies have also demonstrated the need for patients to tightly adhere to oral dosing regimens in order to maintain protective plasma and tissue concentrations. This is especially true for women, who experience less forgiveness from dose skipping than men in clinical trials of HIV PrEP. There is increasing interest in long-acting (LA), user-independent forms of HIV PrEP that could overcome this adherence challenge. These technologies have taken multiple forms including LA injectables and implantables. Phase III efficacy trials are ongoing for a LA injectable candidate for HIV PrEP. This review will focus on the design considerations for both LA injectable and implantable platforms for HIV PrEP. Additionally, we have summarized the existing LA technologies currently in clinical and pre-clinical studies for HIV PrEP as well as other technologies that have been applied to HIV PrEP and contraceptives. Our discussion will focus on the potential application of these technologies in low resource areas, and their use in global women's health.
Collapse
|
31
|
Chang SH, Lee HJ, Park S, Kim Y, Jeong B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules 2018; 19:2302-2307. [PMID: 29742350 DOI: 10.1021/acs.biomac.8b00266] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polycaprolactone (PCL) was reported a long time ago; however, its biomedical applications has not been extensively investigated in comparison with poly(lactide- co-glycolide) (PLGA) due to its too slow degradation profile. Here, we are reporting an oxalate-connected oligocaprolactone multiblock copolymer (PCL-OX) as a fast degradable PCL while maintaining its crystalline properties and low melting point of PCL. The in vivo application of the paclitaxel-loaded PCL-OX microspheres provided a steady plasma drug concentration of 6-9 μg/mL over 28 days, similar to that of the PLGA microspheres. Both PCL and PLGA microspheres were completely cleared two months after in vivo implantation. The PCL-OX microspheres showed a similar tissue compatibility to that of PLGA microspheres in the subcutaneous layer of rats. These findings suggest that PCL-OX is a useful biomaterial that solves the slow degradation problems of PCL and, thus, may find uses in other biomedical applications as an alternative to PLGA.
Collapse
Affiliation(s)
- Seo Hee Chang
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Yelin Kim
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience , Ewha Womans University , 52 Ewhayeodae-gil , Seodaemun-gu, Seoul , 03760 , Korea
| |
Collapse
|
32
|
Duchiron SW, Pollet E, Givry S, Avérous L. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters. Molecules 2018; 23:E290. [PMID: 29385763 PMCID: PMC6017777 DOI: 10.3390/molecules23020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 01/27/2023] Open
Abstract
ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.
Collapse
Affiliation(s)
- Stéphane W Duchiron
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Sébastien Givry
- J. SOUFFLET S. A., Centre de Recherche et d'Innovation Soufflet-Division Biotechnologies, Quai du Général Sarail, 10402 Nogent sur Seine CEDEX 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| |
Collapse
|
33
|
Kim M, Yun HS, Kim GH. Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities. Sci Rep 2017; 7:3166. [PMID: 28600540 PMCID: PMC5466689 DOI: 10.1038/s41598-017-03461-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
Nano/microfibrous structure can induce high cellular activities because of the topological similarity of the extracellular matrix, and thus, are widely used in various tissue regenerative materials. However, the fabrication of a bioceramic (high weight percent)-based 3D microfibrous structure is extremely difficult because of the low process-ability of bioceramics. In addition, three-dimensional (3D) microfibrous structure can induce more realistic cellular behavior when compared to that of 2D fibrous structure. Hence, the requirement of a 3D fibrous ceramic-based structure is an important issue in bioceramic scaffolds. In this study, a bioceramic (α-TCP)-based scaffold in which the weight fraction of the ceramic exceeded 70% was fabricated using an electrohydrodynamic printing (EHDP) process. The fabricated ceramic structure consisted of layer-by-layered struts entangled with polycaprolactone microfibers and the bioceramic phase. Various processing conditions (such as applied electric field, flow rate, nozzle size, and weight fraction of the bioceramic) were manipulated to obtain an optimal processing window. A 3D printed porous structure was used as a control, which had pore geometry similar to that of a structure fabricated using the EHDP process. Various physical and cellular activities using preosteoblasts (MC3T3-E1) helped confirm that the newly designed bioceramic scaffold demonstrated significantly high metabolic activity and mineralization.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, South Korea
| | - Hui-Suk Yun
- Powder and Ceramics Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, South Korea.
| |
Collapse
|
34
|
Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. J Mech Behav Biomed Mater 2017; 67:127-134. [DOI: 10.1016/j.jmbbm.2016.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
|
35
|
Gulfam M, Matini T, Monteiro PF, Riva R, Collins H, Spriggs K, Howdle SM, Jérôme C, Alexander C. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomater Sci 2017; 5:532-550. [DOI: 10.1039/c6bm00888g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PEG-poly(caprolactone) co-polymers with disulfide-linked cores are highly efficient for delivery of the anti-cancer drug methotrexate in vitro.
Collapse
Affiliation(s)
- Muhammad Gulfam
- School of Pharmacy
- University of Nottingham
- UK
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
| | | | | | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- 4000 Liège
- Belgium
| | | | | | | | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- 4000 Liège
- Belgium
| | | |
Collapse
|
36
|
Kucharczyk P, Zednik J, Sedlarik V. Synthesis and characterization of star-shaped carboxyl group functionalized poly(lactic acid) through polycondensation reaction. Macromol Res 2016. [DOI: 10.1007/s13233-017-5014-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Mouthuy PA, Snelling SJ, Dakin SG, Milković L, Gašparović AČ, Carr AJ, Žarković N. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials 2016; 109:55-68. [PMID: 27669498 DOI: 10.1016/j.biomaterials.2016.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
|
38
|
|
39
|
Hiob MA, She S, Muiznieks LD, Weiss AS. Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomater Sci Eng 2016; 3:712-723. [DOI: 10.1021/acsbiomaterials.6b00220] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matti A. Hiob
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Shelley She
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Lisa D. Muiznieks
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Anthony S. Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects. Stem Cells Int 2016; 2016:8414715. [PMID: 27610141 PMCID: PMC5004032 DOI: 10.1155/2016/8414715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering.
Collapse
|
41
|
Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
The effects of tensile stress on degradation of biodegradable PLGA membranes: A quantitative study. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2015.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, Brandalise RN. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J Appl Polym Sci 2015. [DOI: 10.1002/app.43290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kauê Pelegrini
- University of Caxias Do Sul-UCS - Caxias do Sul - RS 95.070-560; Brazil
| | | | - Vanessa Brambilla
- University of Caxias Do Sul-UCS - Caxias do Sul - RS 95.070-560; Brazil
| | - Ana Maria Coulon Grisa
- Post Graduate Program in Processes and Technology Engineering-UCS; Caxias do Sul RS Brazil
| | - Diego Piazza
- University of Caxias Do Sul-UCS - Caxias do Sul - RS 95.070-560; Brazil
| | - Ademir José Zattera
- Post Graduate Program in Processes and Technology Engineering-UCS; Caxias do Sul RS Brazil
| | | |
Collapse
|
44
|
Fernández J, Etxeberria A, Sarasua JR. In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-δ-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Augustine R, Kalarikkal N, Thomas S. Effect of zinc oxide nanoparticles on thein vitrodegradation of electrospun polycaprolactone membranes in simulated body fluid. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1055628] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
|
47
|
Tolerance and long-term MRI imaging of gadolinium-modified meshes used in soft organ repair. PLoS One 2015; 10:e0120218. [PMID: 25811855 PMCID: PMC4374942 DOI: 10.1371/journal.pone.0120218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Background Synthetic meshes are frequently used to reinforce soft tissues. The aim of this translational study is to evaluate tolerance and long-term MRI visibility of two recently developed Gadolinium-modified meshes in a rat animal model. Materials and Methods Gadolinium-poly-ε-caprolactone (Gd-PCL) and Gadolinium-polymethylacrylate (Gd-PMA) modified meshes were implanted in Wistar rats and their tolerance was assessed daily. Inflammation and biocompatibility of the implants were assessed by histology and immunohistochemistry after 30 days post implantation. Implants were visualised by 7T and 3T MRI at day 30 and at day 90. Diffusion of Gadolinium in the tissues of the implanted animals was assessed by Inductively Coupled Plasma Mass Spectrometry. Results Overall Gd-PMA coated implants were better tolerated as compared to those coated with Gd-PCL. In fact, Gd-PMA implants were characterised by a high ratio collagen I/III and good vascularisation of the integration tissues. High resolution images of the coated mesh were obtained in vivo with experimental 7T as well as 3T clinical MRI. Mass spectrometry analyses showed that levels of Gadolinium in animals implanted with coated mesh were similar to those of the control group. Conclusions Meshes coated with Gd-PMA are better tolerated as compared to those coated with Gd-PCL as no signs of erosion or significant inflammation were detected at 30 days post implantation. Also, Gd-PMA coated meshes were clearly visualised with both 7T and 3T MRI devices. This new technique of mesh optimisation may represent a valuable tool in soft tissue repair and management.
Collapse
|
48
|
|
49
|
Takmakov P, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng 2015; 12:026003. [PMID: 25627426 DOI: 10.1088/1741-2560/12/2/026003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. APPROACH Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. MAIN RESULTS RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. SIGNIFICANCE ROS, which are known to be present in vivo, can create structural damage and change electrical properties of MEAs. Broad-spectrum electrical impedance spectroscopy demonstrates increased sensitivity to electrode damage compared with single-frequency measurements. RAA can be a useful tool to simulate worst-case in vivo damage resulting from chronic electrode implantation, simplifying the device development lifecycle.
Collapse
Affiliation(s)
- Pavel Takmakov
- Division of Biology, Chemistry and Material Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lin JH, Yu CJ, Yang YC, Tseng WL. Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Phys Chem Chem Phys 2015; 17:15124-30. [DOI: 10.1039/c5cp00932d] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent polydopamine dots were prepared through hydroxyl radical-mediated degradation of polydopamine nanoparticles.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Taiwan
| | - Cheng-Ju Yu
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Taiwan
| | - Ya-Chun Yang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|