1
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
2
|
Ma W. Chronic prostaglandin E2 treatment induces the synthesis of the pain-related peptide substance P and calcitonin gene-related peptide in cultured sensory ganglion explants. J Neurochem 2010; 115:363-72. [PMID: 20666934 DOI: 10.1111/j.1471-4159.2010.06927.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandin E2 (PGE2) is a well known pain and pro-inflammatory mediator abundantly produced in inflamed tissue. It causes pain by directly exciting nociceptive primary sensory neurons (nociceptors) and indirectly stimulating the release of pain-related peptide substance P (SP) and calcitonin gene-related peptide (CGRP). In an ex vivo culture of sensory ganglion explants, we tested the hypothesis that PGE2 could induce the synthesis of SP and CGRP in nociceptors. A stabilized PGE2 analog, 16,16-dimethyl PGE2, in a concentration- and time-dependent manner, significantly increased mRNA and peptide levels of SP and CGRP. The agonists of EP1 and EP4 receptors also significantly increased SP and CGRP levels. Moreover, 16,16-dimethyl PGE2-induced SP and CGRP were blocked by EP1 and EP4 antagonists as well as the inhibitors of both protein kinase A and protein kinase C. Nerve growth factor was partially involved in PGE2-induced SP and CGRP synthesis. Taken together, these results indicate that PGE2 contributes to the synthesis of SP and CGRP in nociceptors, an event mediated by EP1 and EP4 receptors, nerve growth factor and protein kinase A and protein kinase C signalling pathways. We thus conclude that facilitating the synthesis of pain-related peptides in nociceptors is a novel mechanism underlying the role of PGE2 in nociception and chronic pain states.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Ma W, Chabot JG, Vercauteren F, Quirion R. Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats. Neurobiol Aging 2008; 31:1227-37. [PMID: 18786748 DOI: 10.1016/j.neurobiolaging.2008.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 07/15/2008] [Accepted: 08/01/2008] [Indexed: 01/01/2023]
Abstract
Neuropathic pain (NeP) is a debilitating disease afflicting mostly the aged population. Inflammatory responses in injured nerves play a pivotal role in the pathogenesis of NeP. Injured nerve derived cyclooxygenase 2/prostaglandin E2 (COX2/PGE2) contributes to the genesis of NeP at the early stage in young rats. Here we show that COX2/PGE2 is involved in the maintenance of NeP at a chronic stage in aged rats. Eighteen months after partial sciatic nerve ligation (PSNL), NeP remained prominent in aged rats. COX2 expressing macrophages and PGE2 levels were increased in injured nerves. PGE2 receptors (EP1 and EP4) and pain-related ion channel transient receptor potential vanilloid-1 (TRPV1) were increased in the ipsilateral dorsal root ganglion (DRG) neurons of aged PSNL rats. Perineural injection of a selective COX2 inhibitor NS-398 relieved NeP, reversed PSNL increased expression of EP1, EP4 and TRPV1 and suppressed the levels of pain-related peptide substance P and calcitonin gene-related peptide in DRG neurons. These data suggest that injured nerve-derived PGE2 contributes to the maintenance of NeP at the chronic stage in aged rats. Chronically facilitating the synthesis of pain-related molecules in nociceptive DRG neurons is a novel mechanism underpinning the contribution of PGE2.
Collapse
Affiliation(s)
- Weiya Ma
- The Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
4
|
Harris J, Joules C, Stanley C, Thomas P, Clarke RW. Glutamate and tachykinin receptors in central sensitization of withdrawal reflexes in the decerebrated rabbit. Exp Physiol 2004; 89:187-98. [PMID: 15123548 DOI: 10.1113/expphysiol.2003.002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study assessed the involvement of NMDA and group I metabotropic glutamate receptors, and tachykinin NK1 and NK3 receptors, in central sensitization of withdrawal reflexes in the decerebrated rabbit. Reflexes evoked in the ankle flexor tibialis anterior and the knee flexor semitendinosus by electrical stimulation at the base of the toes were enhanced for 29-63 min after application of 20% mustard oil to the tips of the toes. Selective antagonists of mGlu1, mGlu5, NMDA and NR2B-subunit-containing NMDA glutamate receptors, as well as NK1, and NK3 receptors, and a non-selective blocker of all tachykinin receptors, were assessed for their effects on the magnitude and duration of the increase in reflexes induced by mustard oil. Dizocilpine, an antagonist of all NMDA receptors (1 mg intrathecal) abolished facilitation of tibialis anterior reflexes and significantly reduced the magnitude and duration of increase of the semitendinosus response. The NR2B-subtype selective antagonist CP-101,606 decreased the magnitude of facilitation of both reflexes but had no effect on duration of enhancement. Selective antagonists for the mGlu1 (CPCCOEt, 1-3 mg intrathecal), mGlu5 (MPEP, 0.2-1 mg intrathecal), NK1 (L-733,060, 0.3 mg intrathecal) or NK3 (SR 142,801, 1 mg kg(-1) i.v.) receptors had no effect on the amplitude or duration of sensitization. However, the non-selective tachykinin receptor blocker ZD-6021 (0.3 mg intrathecal) reduced the amplitude but not the duration of sensitization in the flexor reflexes. Combination of ZD-6021 with CP-101,606 (doses as above) decreased both aspects of the sensitization response. Dizocilpine reduced reflexes evoked from the heel per se, and dizocilpine, CP-101,606 and ZD-6021 reduced arterial blood pressure. Otherwise the drugs used had no effects on baseline variables. The present data confirm the importance of NMDA receptors as a critical part of the process of central sensitization, provide no evidence for a role of metabotropic glutamate receptors, and show that simultaneous blockade of all tachykinin receptors is required to reveal their role in hyperalgesia. The data further indicate that a combined pharmacological approach offers a potential way forward for the development of new antihyperalgesic agents.
Collapse
Affiliation(s)
- J Harris
- Division of Animal Physiology, School of Biosciences and Institute of Neuroscience, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | | | | | | |
Collapse
|
5
|
Pitcher GM, Henry JL. Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain. Exp Neurol 2004; 186:173-97. [PMID: 15026255 DOI: 10.1016/j.expneurol.2003.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 10/08/2003] [Accepted: 10/16/2003] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury in humans can produce a persistent pain state characterized by spontaneous pain and painful responses to normally innocuous stimuli (allodynia). Here we attempt to identify some of the neurophysiological and neurochemical mechanisms underlying neuropathic pain using an animal model of peripheral neuropathy induced in male Sprague-Dawley rats by placing a 2-mm polyethylene cuff around the left sciatic nerve according to the method of Mosconi and Kruger. von Frey hair testing confirmed tactile allodynia in all cuff-implanted rats before electrophysiological testing. Rats were anesthetized and spinalized for extracellular recording from single spinal wide dynamic range neurons (L(3-4)). In neuropathic rats (days 11-14 and 42-52 after cuff implantation), ongoing discharge was greater and hind paw receptive field size was expanded compared to control rats. Activation of low-threshold sensory afferents by innocuous mechanical stimulation (0.2 N for 3 s) in the hind paw receptive field evoked the typical brief excitation in control rats. However, in neuropathic rats, innocuous stimulation also induced a nociceptive-like afterdischarge that persisted 2-3 min. This afterdischarge was never observed in control rats, and, in this model, is the distinguishing feature of the spinal neural correlate of tactile allodynia. Electrical stimulation of the sciatic nerve at 4 and at 20 Hz each produced an initial discharge that was identical in control and in neuropathic rats. This stimulation also produced an afterdischarge that was similar at the two frequencies in control rats. However, in neuropathic rats, the afterdischarge produced by 20-Hz stimulation was greater than that produced by 4-Hz stimulation. Given that acutely spinalized rats were studied, only peripheral and/or spinal mechanisms can account for the data obtained; as synaptic responses from C fibers begin to fail above approximately 5-Hz stimulation [Pain 46 (1991) 327], the afterdischarge in response to 20-Hz stimulation suggests a change mainly in myelinated afferents and a predominant role of these fibers in eliciting this afterdischarge. These data are consistent with the suggestion that peripheral neuropathy induces phenotypic changes predominantly in myelinated afferents, the sensory neurons that normally respond to mechanical stimulation. The NK-1 receptor antagonist, CP-99,994 (0.5 mg/kg, i.v.), depressed the innocuous pressure-evoked afterdischarge but not the brief initial discharge of wide dynamic range neurons, and decreased the elevated ongoing rate of discharge in neuropathic rats. These results support the concept that following peripheral neuropathy, myelinated afferents may now synthesize and release substance P. A result of this is that tonic release of substance P from the central terminals of these phenotypically altered neurons would lead to ongoing excitation of NK-1-expressing nociceptive spinal neurons. In addition, these spinal neurons would also exhibit exaggerated responses to innocuous pressure stimulation. The data in this study put forth a possible neurophysiological and neurochemical basis of neuropathic pain and identify substance P and the NK-1 receptor as potential neurochemical targets for its management.
Collapse
Affiliation(s)
- Graham M Pitcher
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
6
|
Cahill CM, Coderre TJ. Attenuation of hyperalgesia in a rat model of neuropathic pain after intrathecal pre- or post-treatment with a neurokinin-1 antagonist. Pain 2002; 95:277-285. [PMID: 11839427 DOI: 10.1016/s0304-3959(01)00410-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although many studies have demonstrated a role for substance P in pain, there have been conflicting reports implicating the involvement of substance P in neuropathic pain models. In this study, the non-peptide neurokinin-1 (NK-1) receptor antagonist, L-732,138 was chronically administered by intrathecal (i.t.) injection to rats with mono-neuropathy produced by sciatic nerve constriction. Rats exhibited tactile allodynia and cold hyperalgesia over a 16-day testing period. L-732,138 (5-200 nmol) administered i.t. prior to and for 3 consecutive days post-surgery attenuated the mechanical allodynia and cold hyperalgesia on days 4 and 8 post-surgery. The effects of i.t. L-732,138 were also determined in rats with established nerve injury-induced neuropathy. The NK-1 receptor antagonist was injected for 4 consecutive days starting on day 8 post-sciatic nerve injury. Administration of L-732,138 (5-200 nmol) i.t. produced both anti-allodynic and anti-hyperalgesic effects on day 12, but the effect was not permanent, as nociceptive thresholds were similar to controls by day 16. These results demonstrate that substance P is involved both in the induction and the maintenance of neuropathic pain and provides justification for the development and administration of substance P antagonists for the management of clinical neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, Montreal, Quebec, Canada Anesthesia Research Unit, Department of Anesthesia, McGill University, McIntyre Medical Sciences Building, Room 1203, 3655 Dummond Street, Montreal, Quebec, Canada H3G 1Y6 Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
7
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
8
|
Ma W, Bisby MA. Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur J Neurosci 1998; 10:2388-99. [PMID: 9749767 DOI: 10.1046/j.1460-9568.1998.00249.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Complete sciatic nerve injury reduces substance P (SP) expression in primary sensory neurons of the L4 and L5 dorsal root ganglia (DRG), due to loss of target-derived nerve growth factor (NGF). Partial nerve injury spares a proportion of DRG neurons, whose axons lie in the partially degenerating nerve, and are exposed to elevated NGF levels from Schwann and other endoneurial cells involved in Wallerian degeneration. To test the hypothesis that SP is elevated in spared DRG neurons following partial nerve injury, we compared the effects of complete sciatic nerve transection (CSNT) with those of two types of partial injury, partial sciatic nerve transection (PSNT) and chronic constriction injury (CCI). As expected, a CSNT profoundly decreased SP expression at 4 and 14 days postinjury, but after PSNT and CCI the levels of preprotachykinin (PPT) mRNA, assessed by in situ hybridization, and the SP immunoreactivity (SP-IR) of the L4 and L5 DRGs did not decrease, nor did dorsal horn SP-IR decrease. Using retrograde labelling with fluorogold to identify spared DRG neurons, we found that the proportion of these neurons expressing SP-IR 14 days after injury was much higher than in neurons of normal DRGs. Further, the highest levels of SP-IR in individual neurons were detected in ipsilateral L4 and L5 DRG neurons after PSNT and CCI. We conclude that partial sciatic nerve injury elevates SP levels in spared DRG neurons. This phenomenon might be involved in the development of neuropathic pain, which commonly follows partial nerve injury.
Collapse
Affiliation(s)
- W Ma
- Department of Physiology, Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
9
|
Bakke M, Hu JW, Sessle BJ. Involvement of NK-1 and NK-2 tachykinin receptor mechanisms in jaw muscle activity reflexly evoked by inflammatory irritant application to the rat temporomandibular joint. Pain 1998; 75:219-27. [PMID: 9583757 DOI: 10.1016/s0304-3959(97)00223-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An electromyographic (EMG) study was carried out in 51 anesthetized rats to assess if neurokinin, NK-1 and NK-2, receptor mechanisms and tachykinins were involved in the increased jaw muscle activity which can be reflexly evoked by injection of the small-fiber excitant and inflammatory irritant mustard oil (MO) into the temporomandibular joint (TMJ) region. A baseline level of EMG activity was recorded bilaterally for 20 min from digastric (DIG) and masseter (MASS) muscles and then each animal was treated with NK-1 or NK-2 antagonist or vehicle. In one series of experiments either the NK-1 antagonist CP-99,994 (20 microg approximately 54 nmol), the NK-2 antagonist MEN-10,376 (10 microg approximately 9 nmol or 20 microg approximately 18 nmol) or vehicle (control) was administrated into the lateral ventricle (i.c.v.); in another series the NK-1 antagonist (4 mg/kg approximately 3-4 micromol/rat) or vehicle (control) was given intravenously (i.v.). After 10 min, MO (20 microl, 20%) was applied to one TMJ (first injection) and 45 min later, MO was applied to the opposite TMJ (second injection). Pretreatment with neurokinin antagonists had little effect on the incidence of the MO-evoked EMG responses but did significantly reduce the EMG magnitude and duration. In the animals pretreated with NK-1 antagonist only the responses to the second MO injection was significantly affected whereas NK-2 pretreatment reduced the EMG responses to both MO injections to the TMJ. The systematic depression of the MO-evoked EMG responses by the NK-2 antagonist suggests that neurokinin A may be involved in the EMG responses. Since the NK-1 antagonist produced no systematic changes in responses elicited by the first MO injection, substance P does not seem to be associated directly with the initiation or maintenance of the EMG responses but may be involved if a 'central sensitization' has been induced by the first MO injection to the TMJ.
Collapse
Affiliation(s)
- M Bakke
- Department of Oral Function and Physiology, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
10
|
Ma W, Bisby MA. Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience 1997; 79:1183-95. [PMID: 9219977 DOI: 10.1016/s0306-4522(97)00088-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptide expression in primary sensory neurons is highly plastic in response to peripheral nerve axotomy. While neuropeptide changes following complete sciatic nerve injury have been extensively studied, much less is known about the effects of partial sciatic nerve injuries on neuropeptide plasticity. Galanin. a possible endogenous analgesic peptide, was up-regulated in primary sensory neurons following complete sciatic nerve injury. We investigated the effects of partial sciatic nerve injuries on galanin expression in primary sensory neurons, and compared this effect with that after complete sciatic nerve injury. Complete transection, partial transection and chronic constriction injury were made, respectively, on the sciatic nerves of three groups of rats at high thigh level. Animals were allowed to survive for four and 14 days before being killed. L4 and L5 dorsal root ganglia, L4 5 spinal cord and lower brainstem were processed for galanin immunocytochemical staining. After all three types of sciatic nerve injuries, galanin-immunoreactive neurons were significantly increased in the ipsilateral dorsal root ganglia, and galanin-immunoreactive axonal fibres were dramatically increased in the superficial laminae of the dorsal horn and the gracile nuclei, compared to the contralateral side. However, in partial injury models, the percentages of galanin-immunoreactive dorsal root ganglion neurons were significantly higher than in complete nerve transection. Size frequency distribution analysis detected that more medium- and large-size galanin-immunoreactive dorsal root ganglion neurons were present after partial nerve transection and constriction injury than after complete nerve transection. Using a combined approach of retrograde tracing of flurorescent dyes and galanin immunostaining, we found that a partial transection increased the proportions of galanin-immunoreactive neurons among both axotomized and non-axotomized neurons. Galanin-immunoreactive axonal fibres were not only detected in the superficial laminae, but also in the deeper laminae of the dorsal horn of partial injury animals. Furthermore, more galanin-immunoreactive axonal fibres were observed in the ipsilateral gracile nuclei of partially injured rats than in completely injured rats. We conclude that partial sciatic nerve injuries induced greater galanin up-regulation in medium- and large-size dorsal root ganglion neurons than complete sciatic nerve injury. Galanin expression in primary sensory neurons seems to be differentially regulated following partial and complete sciatic nerve injuries.
Collapse
Affiliation(s)
- W Ma
- Department of Physiology, Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|