1
|
Asimakopoulou E, Goudoulas T, Andreadis II, Fatouros DG, Ahmad M, Vasiliadou C, Theocharidou A, Ritzoulis C. Analytical rheology as a tool for the structural investigation of citrus pectin. J Texture Stud 2024; 55:e12828. [PMID: 38486415 DOI: 10.1111/jtxs.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.
Collapse
Affiliation(s)
- Evdoxia Asimakopoulou
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Thomas Goudoulas
- TUM School of Life Sciences, Weihenstephan, Lehrstuhl für Brau- und Getränketechnologie, Gregor-Mendel-Str. 4, Freising, Germany
| | - Ioannis I Andreadis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, China
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, China
| | | | - Athina Theocharidou
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
2
|
Budil J, Štenclová P, Kromka A, Lišková P. Development of the Pseudomonas syringae pv. morsprunorum Biofilm Monitored in Real Time Using Attenuated Total Reflection Fourier Transform Infrared Measurements in a Flow Cell Chamber. APPLIED SPECTROSCOPY 2023; 77:500-512. [PMID: 36898963 DOI: 10.1177/00037028231165057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofilms of sessile Pseudomonas syringae cells formed on top of plant host's leaves or fruits allow surviving harsh environmental conditions (desiccation) and improve their resistance to antibacterial treatments of crops. A better understanding of these biofilms can help minimize their effect on harvests. In the present study, infrared attenuated total reflection spectroscopy coupled with optical and confocal laser scanning microscopy has been applied for the first time to analyze Pseudomonas syringae pathovar morsprunorum biofilm development in real time. The biofilm development was observed within a spectral window 4000-800 cm-1 under constant flow conditions for 72 h. The kinetics of representative integrated band areas (nucleic acids with polysaccharides at 1141-1006 cm-1, amino acid side chains with free fatty acids at 1420-1380 cm-1, proteins at 1580-1490 cm-1, and lipids with proteins at 2935-2915 cm-1) were analyzed with regard to the observed biofilm structure and the following P. syringae biofilm developmental stages were attributed: The inoculation phase, washing of weakly attached bacteria closely followed by recolonization of the vacated surface, the restructuration phase, and finally the maturation phase.
Collapse
Affiliation(s)
- Jakub Budil
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Štenclová
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexander Kromka
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Luti S, Campigli S, Ranaldi F, Paoli P, Pazzagli L, Marchi G. Lscβ and lscγ, two novel levansucrases of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, show different enzymatic properties. Int J Biol Macromol 2021; 179:279-291. [PMID: 33675829 DOI: 10.1016/j.ijbiomac.2021.02.189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) biovar 3 involved all global interest since 2008. We have found that in Psa3 genome, similarly to other P. syringae, there are three putative genes, lscα, lscβ and lscγ, coding for levansucrases. These enzymes, breaking the sucrose moiety and releasing glucose can synthetize the fructose polymer levan, a hexopolysaccharide that is well known to be part of the survival strategies of many different bacteria. Considering lscα non-coding because of a premature stop codon, in the present work we cloned and expressed the two putatively functional levansucrases of Psa3, lscβ and lscγ, in E. coli and characterized their biochemical properties such as optimum of pH, temperature and ionic strength. Interestingly, we found completely different behaviour for both sucrose splitting activity and levan synthesis between the two proteins; lscγ polymerizes levan quickly at pH 5.0 while lscβ has great sucrose hydrolysis activity at pH 7.0. Moreover, we demonstrated that at least in vitro conditions, they are differentially expressed suggesting two distinct roles in the physiology of the bacterium.
Collapse
Affiliation(s)
- Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy.
| | - Sara Campigli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Francesco Ranaldi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Guido Marchi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| |
Collapse
|
4
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Exopolysaccharide of Anoxybacillus pushchinoensis G11 has antitumor and antibiofilm activities. Arch Microbiol 2021; 203:2101-2118. [PMID: 33604750 DOI: 10.1007/s00203-021-02185-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Exopolysaccharides (EPS/EPSs) possess several various applications in the food and pharmaceutical industries. This study was performed to investigate the biological (antibiofilm and antitumor), rheological (temperature, shear rate, and density) and chemical (solubility, carbohydrate and protein content, composition, molecular weight, functional group analysis, thermal analysis, X-ray diffraction pattern and scanning electron microscopy) properties of the EPS, which was purified from the locally isolated thermophilic bacterium Anoxybacillus pushchinoensis G11 (MN720646). EPS was found to have antibiofilm and antitumor [lung (A-549) and colon (Caco-2 and HT-29) cancer] activities. The viscosity of EPS showing Newtonian flow was temperature dependent. As chemical properties, the EPS was found to be a heteropolysaccharide containing arabinose (57%), fructose (26%), glucose (12%), and galactose (5%). EPS contained 93% carbohydrates and 1.08% protein. The molecular weight of EPS was determined as 75.5 kDa. The FTIR analysis confirmed the presence of sulfate ester (band at 1217 cm-1), an indication of the antitumor effect. The EPS was semi-crystalline. It could maintain 36% of its weight at 800 °C and crystallization and melting temperatures were 221 and 255.6 °C. This is the first report on the EPS production potential and the biological activity of A. pushchinoensis.
Collapse
|
6
|
Molecular weight dependent structure of the exopolysaccharide levan. Int J Biol Macromol 2020; 161:398-405. [DOI: 10.1016/j.ijbiomac.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
|
7
|
de Siqueira EC, Rebouças JDS, Pinheiro IO, Formiga FR. Levan-based nanostructured systems: An overview. Int J Pharm 2020; 580:119242. [PMID: 32199961 DOI: 10.1016/j.ijpharm.2020.119242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Bacterial levan is a fructose homopolymer that offers great potential in biotechnological applications due to biocompatibility, biodegradability and non-toxicity. This biopolymer possesses diverse multifunctional features, which translates into a wide range of applicability, including in industry, consumer products, pharmaceuticals and biomedicine. Extensive research has identified great potential for its exploitation in human health. In addition, nanostructured systems have provided significant advances in the area of health, mainly with respect to disease diagnosis and treatment. While the functional properties of these natural polysaccharide-based polymers are desirable in these systems, research in this area has been limited to few natural polymers, such as chitosan, alginate and dextran, which obscures the true potential of levan in the production of nanostructured systems for biotechnological and medical applications. The present review considers the latest research in the field to focus on the use of levan as a promising biopolymer for the development of nanomaterials.
Collapse
Affiliation(s)
- Edmilson Clarindo de Siqueira
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Juliana de Souza Rebouças
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Irapuan Oliveira Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | - Fabio Rocha Formiga
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), 50100-130 Recife, PE, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (FIOCRUZ), 50670-420 Recife, PE, Brazil.
| |
Collapse
|
8
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Hundschell C, Bäther S, Drusch S, Wagemans A. Osmometric and viscometric study of levan, β-lactoglobulin and their mixtures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Hundschell CS, Braun A, Wefers D, Vogel RF, Jakob F. Size-Dependent Variability in Flow and Viscoelastic Behavior of Levan Produced by Gluconobacter albidus TMW 2.1191. Foods 2020; 9:E192. [PMID: 32075024 PMCID: PMC7073539 DOI: 10.3390/foods9020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Levan is a fructan-type exopolysaccharide which is produced by many microbes from sucrose via extracellular levansucrases. The hydrocolloid properties of levan depend on its molecular weight, while it is unknown why and to what extent levan is functionally diverse depending on its size. The aim of our study was to gain deeper insight into the size-dependent functional variability of levan. For this purpose, levans of different sizes were produced using the water kefir isolate Gluconobacter albidus TMW 2.1191 and subsequently rheologically characterized. Three levan types could be identified, which are similarly branched, but differ significantly in their molecular size and rheological properties. The smallest levan (<107 Da), produced without adjustment of the pH, exhibited Newton-like flow behavior up to a specific concentration of 25% (w/v). By contrast, larger levans (>108 Da) produced at pH ≥ 4.5 were shear-thinning, and the levan produced at pH 5.0 showed a gel-like behavior at 5% (w/v). A third (intermediate) levan variant was obtained through production in buffers at pH 4.0 and exhibited the properties of a viscoelastic fluid up to concentrations of 15% (w/v). Our study reveals that the rheological properties of levan are determined by its size and polydispersity, rather than by the amount of levan used or the structural composition.
Collapse
Affiliation(s)
- Christoph S. Hundschell
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
- Department of Food Technology and Food Material Science, Technical University of Berlin, 14195 Berlin, Germany;
| | - Andre Braun
- Anton Paar Germany GmbH, Hellmuth-Hirth-Strasse 6, 73760 Ostfildern-Scharnhausen, Germany;
- Lehrstuhl für Systemverfahrenstechnik, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rudi F. Vogel
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Frank Jakob
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|
11
|
Bouallegue A, Casillo A, Chaari F, La Gatta A, Lanzetta R, Corsaro MM, Bachoual R, Ellouz-Chaabouni S. Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities. Int J Biol Macromol 2020; 144:316-324. [DOI: 10.1016/j.ijbiomac.2019.12.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
|
12
|
Chidambaram JSC, Veerapandian B, Sarwareddy KK, Mani KP, Shanmugam SR, Venkatachalam P. Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon 2019; 5:e02414. [PMID: 31687543 PMCID: PMC6819800 DOI: 10.1016/j.heliyon.2019.e02414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Levan is a water soluble biopolymer widely used in food, pharma, personal care and aquaculture industries. In this work, levan was synthesized by Bacillus subtilis MTCC 441 using sucrose as a sole carbon source. Effects of pH, sucrose concentration, nitrogen source, nitrogen concentration, inoculum size and agitation speed on levan production were studied. Yeast extract (YE) was found to be the best nitrogen source. Sucrose concentration - 100 g/L, pH - 7, YE concentration - 2 g/L, inoculum size 10% (v/v) and RPM - 150 were found to be optimal values for levan production. Effects of precipitation pH (3-12), choice of solvent (ethanol, isopropanol, acetone, and methanol) and supernatant to solvent ratio (1:1 to 1:6) on levan yield were also studied. Isopropanol resulted in maximum levan recovery among the four solvents considered. Optimal pH and supernatant to solvent ratio for levan precipitation were found to be 11 and 1:5, respectively. Corresponding levan yield was 0.395 g/g of sucrose supplied. The product obtained was characterized using FTIR, 1H-NMR, 13C-NMR, and GPC. The cytotoxicity of the precipitated levan was studied on EA.hy926 cell line using MTT assay and the compound was proven to be non-toxic to the cells.
Collapse
Affiliation(s)
- Jothi Sailaja C.A. Chidambaram
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Bhuvaneshwari Veerapandian
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Kartik Kumar Sarwareddy
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Krishna Priya Mani
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Saravanan Ramiah Shanmugam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Ponnusami Venkatachalam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| |
Collapse
|
13
|
Jakob F, Quintero Y, Musacchio A, Estrada‐de los Santos P, Hernández L, Vogel RF. Acetic acid bacteria encode two levansucrase types of different ecological relationship. Environ Microbiol 2019; 21:4151-4165. [DOI: 10.1111/1462-2920.14768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München Gregor‐Mendel‐Straße 4, 85354 Freising Germany
| | - Yamira Quintero
- Grupo Tecnología de Enzimas, Centro de Ingeniería Genética y Biotecnología (CIGB) Ave 31 entre 158 y 190, Apartado Postal 6162, Habana 10600 Cuba
| | - Alexis Musacchio
- Departamento de Biología de Sistemas Centro de Ingeniería Genética y Biotecnología (CIGB) Ave 31 entre 158 y 190, Apartado Postal 6162, Habana 10600 Cuba
| | - Paulina Estrada‐de los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. de Carpio y Plan de Ayala s/n Col. Santo Tomás C.P., 11340 Cd. de México Mexico
| | - Lázaro Hernández
- Grupo Tecnología de Enzimas, Centro de Ingeniería Genética y Biotecnología (CIGB) Ave 31 entre 158 y 190, Apartado Postal 6162, Habana 10600 Cuba
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München Gregor‐Mendel‐Straße 4, 85354 Freising Germany
| |
Collapse
|
14
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
15
|
Wang L, Liu HM, Zhu CY, Xie AJ, Ma BJ, Zhang PZ. Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity. Carbohydr Polym 2019; 209:230-238. [DOI: 10.1016/j.carbpol.2018.12.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
|
16
|
Chen E, Kliger DS. Time-Resolved Linear Dichroism Measurements of Carbonmonoxy Myoglobin as a Probe of the Microviscosity in Crowded Environments. J Phys Chem B 2017; 121:7064-7074. [PMID: 28703591 DOI: 10.1021/acs.jpcb.7b04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of viscosities in living cells is heterogeneous because of the different sizes and natures of macromolecular components. When thinking about protein folding/function processes in such an environment, the relevant (micro)viscosity at the micrometer length scale is necessarily distinguished from the bulk (macro)viscosity. The concentration dependencies of microviscosities are determined by a number of factors, such as electrostatic interactions, van der Waals forces, and excluded volume effects. To explore such factors, the rotational diffusion time of myoglobin in the presence of varying concentrations of macromolecules that differ in molecular weight (dextran 6000, 10 000, and 70 000), shape (dextran versus Ficoll), size, and surface charge is measured with time-resolved linear dichroism spectroscopy. The results of these studies offer simple empirically determined linear and exponential functions useful for predicting microviscosities as a function of concentration for these macromolecular crowders that are typically used to study crowding effects on protein folding. To understand how relevant these microviscosity measurements are to intracellular environments, the TRLD results are discussed in the context of studies that measure viscosity in cells.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
17
|
Abdallah K, Hartman K, Pletzer D, Zhurina D, Ullrich MS. The bacteriophage-derived transcriptional regulator, LscR, activates the expression of levansucrase genes in Pseudomonas syringae. Mol Microbiol 2016; 102:1062-1074. [PMID: 27664099 DOI: 10.1111/mmi.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Synthesis of the exopolysaccharide levan occurs in the bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, when this bacterium encounters moderate to high concentrations of sucrose inside its host plant. The process is mediated by the temperature-dependent expression and secretion of two levansucrases, LscB and LscC. Previous studies showed the importance of a prophage-associated promoter element in driving the expression of levansucrase genes. Herein, heterologous screening for transcriptional activators revealed that the prophage-borne transcriptional regulator, LscR, from P. syringae mediates expression of levansucrase. A lscR-deficient mutant was generated and exhibited a levan-negative phenotype when grown on a sucrose-rich medium. This phenotype was confirmed by zymographic analysis and Western blots which demonstrated absence of levansucrase in the supernatant and total cell lysates. Transcriptional analysis showed a down-regulation of expression levels of levansucrase and glycosyl hydrolase genes in the lscR-deficient mutant. Ultimately, a direct binding of LscR to the promoter region of levansucrase was demonstrated using electrophoretic mobility shift assays allowing to conclude that a bacteriophage-derived regulator dictates expression of bacterial genes involved in in planta fitness.
Collapse
Affiliation(s)
- Khaled Abdallah
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Katharina Hartman
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Daniel Pletzer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Daria Zhurina
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Matthias S Ullrich
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| |
Collapse
|
18
|
|
19
|
Alves VD, Torres CAV, Freitas F. Bacterial polymers as materials for the development of micro/nanoparticles. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1103239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Zannini E, Waters DM, Coffey A, Arendt EK. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 2015; 100:1121-1135. [PMID: 26621802 DOI: 10.1007/s00253-015-7172-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022]
Abstract
Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Western Road, Cork, Ireland
| | - Deborah M Waters
- School of Food and Nutritional Sciences, University College Cork, Western Road, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
21
|
Rheological and microstructural properties of the chia seed polysaccharide. Int J Biol Macromol 2015; 81:991-9. [DOI: 10.1016/j.ijbiomac.2015.09.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023]
|
22
|
Stojković B, Sretenovic S, Dogsa I, Poberaj I, Stopar D. Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology. Biophys J 2015; 108:758-65. [PMID: 25650942 DOI: 10.1016/j.bpj.2014.10.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/14/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples.
Collapse
Affiliation(s)
- Biljana Stojković
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Sretenovic
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Dogsa
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Poberaj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
23
|
|
24
|
Runyon JR, Nilsson L, Ulmius M, Castro A, Ionescu R, Andersson C, Schmidt C. Characterizing changes in levan physicochemical properties in different pH environments using asymmetric flow field-flow fractionation. Anal Bioanal Chem 2014; 406:1597-605. [PMID: 24121433 DOI: 10.1007/s00216-013-7388-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to assess the stability of the polyfructan levan under different pH solution conditions by monitoring changes in the levan physicochemical properties, such as molar mass (M), root mean square radius (r(rms)), hydrodynamic radius (r(h)), structure factor (r(rms)/r(h)), and aggregation state with respect to solution pH and hydrolysis time. A commercial levan produced from Z. Mobilis was characterized using asymmetric flow field-flow fractionation (AF4) in combination with online multiangle light scattering (MALS) and differential refractive index (dRI) detection. Under neutral pH solution conditions the levan was found to have a M ranging from 10(5) to 5 × 10(7) g/mol, a r(rms) ranging from ~25 to 100 nm and a r(h) from ~3 to 151 nm. Two populations were observed in the sample. One population with a M less than 106 g/mol which represented ~60 % of the sample and a second population with an ultrahigh M up to 5 × 10(7) g/mol, which comprised ~40 % of the sample. The measured r(rms)/r(h) structure factor decreased from 1.8 to 0.65 across the AF4 fractogram indicating that early eluting low M levan species had a random coil configuration and late eluting high M species had more homogeneous spherical structures. The measured apparent density values decreased from 80 to 10 kg/m(3) across the elution profile and suggest that the observed second population also contains aggregates. The stability of levan in different pH conditions ranging from 1.3 to 8.5 was assessed by tracking changes in the average M and r(h), and monitoring the formation of fructose over 1 week. The onset of levan acid hydrolysis was observed to occur sooner at lower pH conditions and no hydrolysis was observed for pH 5.5 and higher.
Collapse
|
25
|
van Arkel J, Sévenier R, Hakkert J, Bouwmeester H, Koops A, van der Meer I. Fructan Biosynthesis Regulation and the Production of Tailor-Made Fructan in Plants. POLYSACCHARIDES 2014. [DOI: 10.1201/b17121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
Benigar E, Dogsa I, Stopar D, Jamnik A, Kralj Cigić I, Tomšič M. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4172-4182. [PMID: 24654746 DOI: 10.1021/la500830j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The polysaccharide levan is a homopolymer of fructose and appears in nature as an important structural component of some bacterial biofilms. This paper reports the structural and dynamic properties of aqueous solutions of levan of various origin obtained from dynamic rheological, small-angle X-ray scattering, static and dynamic light scattering, as well as density and sound velocity measurements, determination of polymer branching after per-O-methylation, and microscopy. Besides samples of commercially available levan from Zymomonas mobilis and Erwinia herbicola, we also isolated, purified, and studied a levan sample from the biofilm of Bacillus subtilis. The results of dynamic rheological and light scattering measurements revealed very interesting viscoelastic properties of levan solutions even at very low polymer concentrations. The findings were complemented by small-angle X-ray scattering data that revealed some important differences in the structure of the aqueous levan solutions at the molecular level. Besides presenting detailed dynamic and structural results on the polysaccharide systems of various levans, one of the essential goals of this work was to point out the level of structural information that may be obtained for such polymer systems by combining basic physicochemical, rheological, and various light scattering techniques.
Collapse
Affiliation(s)
- Elizabeta Benigar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana , Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
27
|
Mende S, Dong T, Rathemacher A, Rohm H, Jaros D. Physicochemical characterisation of the exopolysaccharides ofStreptococcus thermophilusST-143. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susann Mende
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Bergstrasse 120 01062 Dresden Germany
| | - Tingting Dong
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Bergstrasse 120 01062 Dresden Germany
| | - Anne Rathemacher
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Bergstrasse 120 01062 Dresden Germany
| | - Harald Rohm
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Bergstrasse 120 01062 Dresden Germany
| | - Doris Jaros
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Bergstrasse 120 01062 Dresden Germany
| |
Collapse
|
28
|
Freitas F, Alves VD, Reis MAM. Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_63-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Chen X, Gao H, Ploehn HJ. Montmorillonite–levan nanocomposites with improved thermal and mechanical properties. Carbohydr Polym 2014; 101:565-73. [DOI: 10.1016/j.carbpol.2013.09.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 11/28/2022]
|
30
|
Dahech I, Fakhfakh J, Damak M, Belghith H, Mejdoub H, Belghith KS. Structural determination and NMR characterization of a bacterial exopolysaccharide. Int J Biol Macromol 2013; 59:417-22. [DOI: 10.1016/j.ijbiomac.2013.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/30/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|
31
|
van Arkel J, Sévenier R, Hakkert JC, Bouwmeester HJ, Koops AJ, van der Meer IM. Tailor-made fructan synthesis in plants: a review. Carbohydr Polym 2013; 93:48-56. [PMID: 23465900 DOI: 10.1016/j.carbpol.2012.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/21/2022]
Abstract
Fructan, a fructose polymer, is produced by many bacteria and plants. Fructan is used as carbohydrate reserve, and in bacteria also as protective outside layer. Chicory is a commercial fructan producing crop. The disadvantage of this crop is its fructan breakdown before harvest. Studies using genetically modification showed that fructan biosynthesis is difficult to steer in chicory. Alternatives for production of tailor-made fructan, fructan with a desired polymer length and linkage type, are originally non-fructan-accumulating plants expressing introduced fructosyltransferase genes. The usage of bacterial fructosyltransferases hindered plant performance, whereas plant-derived fructan genes can successfully be used for this purpose. The polymer length distribution and the yield are dependent on the origin of the fructan genes and the availability of sucrose in the host. Limitations seen in chicory for the production of tailor-made fructan are lacking in putative new platform crops like sugar beet and sugarcane and rice.
Collapse
Affiliation(s)
- Jeroen van Arkel
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Jakob F, Pfaff A, Novoa-Carballal R, Rübsam H, Becker T, Vogel RF. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr Polym 2012; 92:1234-42. [PMID: 23399151 DOI: 10.1016/j.carbpol.2012.10.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022]
Abstract
Some strains of acetic acid bacteria (Gluconobacter frateurii TMW 2.767, Gluconobacter cerinus DSM 9533T, Neoasaia chiangmaiensis NBRC 101099, Kozakia baliensis DSM 14400) produce high amounts of fructans, which can be exploited in food applications as previously demonstrated empirically for dough systems. In order to get insight into the structure and functionality of these polymers, we investigated the fructans isolated from these strains with respect to their linkage types and molecular weights/shapes using NMR spectroscopy and AF4-MALS-RI. Each fructan was identified as levan. The isolated levan fractions were highly similar according to their basic linearity and linkage types, but differed significantly in terms of their individual molecular weight distributions. In aqueous solutions the size of levan molecules present in all isolated levans continuously increased with their molecular weight and they tended to adopt a more compact molecular shape. Our data suggest that the increasing molecular weight of a levan particle enforces intramolecular interactions to reach the structural compactness of a microgel with hydrocolloid properties.
Collapse
Affiliation(s)
- Frank Jakob
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Weihenstephaner Steig 16, D-85350 Freising, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Dilute solution and rheological properties of hyperbranched polysaccharide from Pleurotus tuber-regium sclerotia. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym 2012; 89:314-22. [DOI: 10.1016/j.carbpol.2012.02.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/04/2012] [Accepted: 02/19/2012] [Indexed: 11/29/2022]
|
35
|
Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. Int J Biol Macromol 2012; 50:451-8. [DOI: 10.1016/j.ijbiomac.2011.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/17/2011] [Accepted: 12/24/2011] [Indexed: 11/22/2022]
|
36
|
Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight. Int J Biol Macromol 2011; 49:369-77. [PMID: 21640753 DOI: 10.1016/j.ijbiomac.2011.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 05/05/2011] [Accepted: 05/18/2011] [Indexed: 11/22/2022]
Abstract
The rheological properties and microstructure of aqueous oat β-glucan solutions varying in molecular weight were investigated. The structural features and molecular weights (MW) were characterized by (13)C NMR spectroscopy and high performance size-exclusion chromatography (HPSEC), respectively. The microstructure of the β-glucans dispersions was also examined by atomic force microscopy (AFM). The samples with β-glucan content between 78 and 86% on a dry weight basis had MW, intrinsic viscosity ([η]) and critical concentration (c*) in the range of 142-2800×10(3)g/mol, 1.7-7.2dl/g and 0.25-1.10g/dl, respectively. The flow and viscoelastic behaviour was highly dependent on MW and on the concentration of the β-glucans dispersions. Pseudoplastic behaviour was exhibited at high concentrations and Newtonian behaviour was evident at low concentrations. At the same concentration, the viscosity was higher for higher MW samples. The Cox-Merz rule was applicable for the lower molecular weight samples at higher concentrations whereas the high molecular weight sample deviated at concentrations greater than 1.0%, w/v. The mechanical spectra with variation of both MW and concentration were typical of entangled biopolymer solutions. AFM images revealed the formation of clusters or aggregates linked via individual polymer chains scattered heterogeneously throughout the system. The aggregate size increased with the molecular weight of the samples investigated and has been linked to the rheological behaviour of the samples.
Collapse
|
37
|
Velázquez-Hernández ML, Baizabal-Aguirre VM, Cruz-Vázquez F, Trejo-Contreras MJ, Fuentes-Ramírez LE, Bravo-Patiño A, Cajero-Juárez M, Chávez-Moctezuma MP, Valdez-Alarcón JJ. Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation. Arch Microbiol 2010; 193:137-49. [PMID: 21103984 DOI: 10.1007/s00203-010-0651-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/07/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
Abstract
Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane, which expresses levansucrase, a fructosyltransferase exoenzyme with sucrose hydrolytic and levan biosynthetic activities. As a result of their physical properties, the levan can provide protection against stress caused by abiotic or biotic factors and participate in the formation of biofilms. In this study, we investigated the construction and function of a levansucrase-defective mutant of G. diazotrophicus. The lsdA mutant showed a decreased tolerance (65.5%) to 50-150 mM NaCl and a decrease of 89% in 876 mM (30%) sucrose, a reduction (99%) in tolerance to desiccation after 18 h, and a decrease (36.9-58.5%) in the ability to form cell aggregates on abiotic surfaces. Complementation of the mutant with the complete lsdA gene leads to a recovery of the ability to grow on sucrose-containing medium and to form slimy colonies, the ability to form the cell aggregates on abiotic surfaces and the tolerance to NaCl. This report demonstrates the importance of levansucrase in environmental adaptation of G. diazotrophicus under high osmotic stress and in biofilm formation.
Collapse
Affiliation(s)
- M Lourdes Velázquez-Hernández
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Karaś M, Russa R. Characterization of oligoglucan-containing products derived fromMesorhizobium lotiHAMBI 1148 murein after lysozyme digestion and β-elimination. ACTA CHROMATOGR 2010. [DOI: 10.1556/achrom.22.2010.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Enzymic synthesis of levan and fructo-oligosaccharides by Bacillus circulans and improvement of levansucrase stability by carbohydrate coupling. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9957-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Kasapis S. Recent advances and future challenges in the explanation and exploitation of the network glass transition of high sugar/biopolymer mixtures. Crit Rev Food Sci Nutr 2008; 48:185-203. [PMID: 18274972 DOI: 10.1080/10408390701286025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Through the years, the concept of glassy phenomena evolved from non-science to a highly specialized subject following the appreciation that structural properties or product defects could be rationalized on the basis of this amorphous vitreous transition. Special reference will be made in this review to sugar glasses in the presence of biopolymers which, increasingly, are used to innovate (e.g., replace gelatin) in confections, ice cream, boiled down sweets, etc. Keeping in mind that the subject cuts across several conventional fields, this manuscript is written with several objectives in view. I deemed it necessary to provide a historic itinerary of the nature of the rubber-to-glass transition in association with the concepts of plasticizing and unfreezable water. That should facilitate comprehension and hopefully encourage young scientists to take an interest in the field that continues to offer considerable challenges, as well as opportunities. Second, the food scientist is exposed to the "sophisticated" synthetic polymer approach pioneered by J.D. Ferry and his colleagues via the WLF equation/free volume theoretical framework. Extension of this school of thought to biomaterials introduces the concept of mechanical or network glass transition temperature, which is contrasted to data obtained using differential scanning calorimetry. Applications of the network T(g) as a relevant indicator for evaluating the stability criteria and the quality-control aspects of foodstuffs are also discussed. All along, information available in the literature is critically presented ranging from the misuse of the WLF equation to a recent challenge to the theory mounted by the coupling model, which addresses in some detail the physics of interactions and the cooperativity of molecular mobility at the vicinity of T(g).
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Chemistry, National University of Singapore, Singapore.
| |
Collapse
|
41
|
Rheological characterization of levan polysaccharides from Microbacterium laevaniformans. Int J Biol Macromol 2008; 42:10-3. [DOI: 10.1016/j.ijbiomac.2007.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/14/2007] [Accepted: 08/23/2007] [Indexed: 11/17/2022]
|
42
|
KASAPIS STEFAN. Rhizobium trifolii capsular polysaccharide: a novel biopolymer with striking physical properties. Int J Food Sci Technol 2007. [DOI: 10.1111/j.1365-2621.1994.tb02044.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
|
44
|
|
45
|
Abdel-Fattah AF, Mahmoud DAR, Esawy MAT. Production of Levansucrase from Bacillus subtilis NRC 33a and Enzymic Synthesis of Levan and Fructo-Oligosaccharides. Curr Microbiol 2005; 51:402-7. [PMID: 16328628 DOI: 10.1007/s00284-005-0111-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 07/02/2005] [Indexed: 10/25/2022]
Abstract
Bacillus subtilis NRC 33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30 degrees C. The effect of different nitrogen sources showed that baker's yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO(4) was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1,000 microg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30 degrees C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.
Collapse
Affiliation(s)
- Ahmed F Abdel-Fattah
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
| | | | | |
Collapse
|
46
|
A comparative study on structure–function relations of mixed-linkage (1→3), (1→4) linear β-d-glucans. Food Hydrocoll 2004. [DOI: 10.1016/j.foodhyd.2004.01.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Bekers M, Marauska M, Grube M, Karklina D, Duma M. New Prebiotics For Functional Food. ACTA ALIMENTARIA 2004. [DOI: 10.1556/aalim.33.2004.1.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Vaikousi H, Biliaderis C, Izydorczyk M. Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. J Cereal Sci 2004. [DOI: 10.1016/j.jcs.2003.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Cescutti P, Impallomeni G, Garozzo D, Sturiale L, Herasimenka Y, Lagatolla C, Rizzo R. Exopolysaccharides produced by a clinical strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res 2003; 338:2687-95. [PMID: 14670727 DOI: 10.1016/s0008-6215(03)00384-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Burkholderia cepacia is an opportunistic pathogen involved in pulmonary infections related to cystic fibrosis. A clinical strain, BTS13, was isolated and the production of exopolysaccharides was tested growing the bacteria on two different media, one of which was rich in mannitol as carbon source. The primary structure of the polysaccharides was determined using mostly mass spectrometry and NMR spectroscopy. On both media an exopolysaccharide having the following repeating unit was produced: -->5)-beta-Kdop-(2-->3)-beta-D-Galp2Ac-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-Galp-(1--> This polysaccharide has already been described as the biosynthetic product of another Burkholderia species, B. pseudomallei, the microbial agent causing melioidosis. In addition to this, when grown on the mannitol-rich medium, B. cepacia strain BTS13 produced another polysaccharide that was established to be levan: -->6)-beta-D-Fruf-(2-->. The content of levan was about 20% (w/w) of the total amount of polymers. The ability of B. cepacia to produce these two exopolysaccharides opens new perspectives in the investigation of the role of polysaccharides in lung infections.
Collapse
Affiliation(s)
- Paola Cescutti
- Dipartimento di Biochimica Biofisica e Chimica delle Macromolecole, Università di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lazaridou A, Biliaderis C, Izydorczyk M. Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocoll 2003. [DOI: 10.1016/s0268-005x(03)00036-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|