1
|
Farahani F, Pachenari N, Mohammad Ahmadi-Soleimani S, Azizi H, Semnanian S. Acute morphine injection persistently affects the electrophysiological characteristics of rat locus coeruleus neurons. Neurosci Lett 2023; 795:137048. [PMID: 36603738 DOI: 10.1016/j.neulet.2023.137048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Administration of morphine is associated with critical complications in clinic which primarily includes the development of dependence and tolerance even following a single dose (acute) exposure. Behavioral and electrophysiological studies support the significant role of locus coeruleus (LC) neurons in tolerance and dependence following chronic morphine exposure. The current study was designed to explore the electrophysiological properties of the LC neurons following acute morphine exposure. In-vitro whole-cell patch-clamp recordings were performed in LC neurons 24 h after intraperitoneal morphine injection. Acute morphine injection significantly decreased the spontaneous firing rate of LC neurons, the rising and decay slopes of action potentials, and consequently increased the action potential duration. In addition, morphine treatment did not alter the rheobase current and first spike latency while affected the inhibitory postsynaptic currents elicited in response to orexin-A. In fact, single morphine exposure could inhibit the disinhibitory effect of orexin-A on LC neurons.
Collapse
Affiliation(s)
- Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Pachenari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020; 13:100284. [PMID: 33344735 PMCID: PMC7739179 DOI: 10.1016/j.ynstr.2020.100284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
The locus coeruleus (LC) is a critical node in the stress response, and its activation has been shown to promote hypervigilance and anxiety-like behavior. This noradrenergic nucleus has historically been considered homogeneous with highly divergent neurons that operate en masse to collectively affect central nervous system function and behavioral state. However, in recent years, LC has been identified as a heterogeneous structure whose neurons innervate discrete terminal fields and contribute to distinct aspects of behavior. We have previously shown that in late adolescent male rats, an acute traumatic stressor, simultaneous physical restraint and exposure to predator odor, preferentially induces c-Fos expression in a subset of dorsal LC neurons and persistently increases anxiety-like behavior. To investigate how these neurons respond to and contribute to the behavioral response to stress, we used a combination of retrograde tracing, whole-cell patch clamp electrophysiology, and chemogenetics. Here we show that LC neurons innervating the central nucleus of the amygdala (CeA) and medial prefrontal cortex (mPFC) undergo distinct electrophysiological changes in response to stressor exposure and have opposing roles in mediating anxiety-like behavior. While neurons innervating CeA become more excitable in response to stress and promote anxiety-like behavior, those innervating mPFC become less excitable and appear to promote exploration. These findings show that LC neurons innervating distinct terminal fields have unique physiological responses to particular stimuli. Furthermore, these observations advance the understanding of the LC as a complex and heterogeneous structure whose neurons maintain unique roles in various forms of behavior. Locus coeruleus-central amygdala projections are hyperactive one week after stress. Locus coeruleus-prefrontal cortex projections are hypoactive one week after stress. Chemogenetic manipulation of each pathway distinctly affects anxiety-like behavior.
Collapse
Key Words
- AHP, afterhyperpolarization
- Anxiety-like behavior
- CRF, corticotropin releasing factor
- CeA, central nucleus of the amygdala
- Central nucleus of amygdala
- EPM, elevated plus maze
- LC, locus coeruleus
- Locus coeruleus
- Medial prefrontal cortex
- NE, norepinephrine
- OFT, open field test
- PBS, phosphate buffered saline
- Stress
- TMT, 2,4,5-trimethylthiazole
- aCSF, artificial cerebrospinal fluid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Olga Borodovitsyna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Brenna C Duffy
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS81TD, UK
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford, NJ, 08084, USA
| |
Collapse
|
3
|
|
4
|
Differential Desensitization Observed at Multiple Effectors of Somatic μ-Opioid Receptors Underlies Sustained Agonist-Mediated Inhibition of Proopiomelanocortin Neuron Activity. J Neurosci 2017; 37:8667-8677. [PMID: 28821664 DOI: 10.1523/jneurosci.1030-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023] Open
Abstract
Activation of somatic μ-opioid receptors (MORs) in hypothalamic proopiomelanocortin (POMC) neurons leads to the activation of G-protein-coupled inward rectifier potassium (GIRK) channels and hyperpolarization, but in response to continued signaling MORs undergo acute desensitization resulting in robust reduction in the peak GIRK current after minutes of agonist exposure. We hypothesized that the attenuation of the GIRK current would lead to a recovery of neuronal excitability whereby desensitization of the receptor would lead to a new steady state of POMC neuron activity reflecting the sustained GIRK current observed after the initial decline from peak with continued agonist exposure. However, electrophysiologic recordings and GCaMP6f Ca2+ imaging in POMC neurons in mouse brain slices indicate that maximal inhibition of cellular activity by these measures can be maintained after the GIRK current declines. Blockade of the GIRK current by Ba2+ or Tertiapin-Q did not disrupt the sustained inhibition of Ca2+ transients in the continued presence of agonist, indicating the activation of an effector other than GIRK channels. Use of an irreversible MOR antagonist and Furchgott analysis revealed a low receptor reserve for the activation of GIRK channels but a >90% receptor reserve for the inhibition of Ca2+ events. Altogether, the data show that somatodendritic MORs in POMC neurons inhibit neuronal activity through at least two effectors with distinct levels of receptor reserve and that differentially reflect receptor desensitization. Thus, in POMC cells, the decline in the GIRK current during prolonged MOR agonist exposure does not reflect an increase in cellular activity as expected.SIGNIFICANCE STATEMENT Desensitization of the μ-opioid receptor (MOR) is thought to underlie the development of cellular tolerance to opiate therapy. The present studies focused on MOR desensitization in hypothalamic proopiomelanocortin (POMC) neurons as these neurons produce the endogenous opioid β-endorphin and are heavily regulated by opioids. Prolonged activation of somatic MORs in POMC neurons robustly inhibited action potential firing and Ca2+ activity despite desensitization of the MOR and reduced activation of a potassium current over the same time course. The data show that somatic MORs in POMC neurons couple to multiple effectors that have differential sensitivity to desensitization of the receptor. Thus, in these cells, the cellular consequence of MOR desensitization cannot be defined by the activity of a single effector system.
Collapse
|
5
|
Chandler DJ. Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations. Brain Res 2016; 1641:197-206. [PMID: 26607255 PMCID: PMC4879003 DOI: 10.1016/j.brainres.2015.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022]
Abstract
The brainstem nucleus locus coeruleus (LC) innervates the entire central nervous system and is the primary source of norepinephrine (NE) to the neocortex. While classically considered a homogenous modulator of forebrain activity by virtue of highly widespread and divergent axons, recent behavioral and pharmacological evidence suggest this nucleus may execute distinct operations within functionally distinct terminal fields. Summarized in this review are the anatomical and physiological properties of the nucleus within a historical context that led to the interpretation of the nucleus as a homogeneous entity with uniform and simultaneous actions throughout its terminal fields. Also included are findings from several laboratories which point to a more nuanced model of LC/NE function that parallels that seen in other forebrain-projecting monoaminergic nuclei. Such compartmentalized models of the nucleus promote the idea that specific LC circuits are involved in discrete behavioral operations, and therefore, by identifying the networks that are engaged by LC, the substrates for these behaviors can be identified and manipulated. Perturbations in the functional anatomy and physiology of this system may be related to neuropsychiatric conditions associated with dysregulation of the LC-noradrenergic system such as attention deficit hyperactivity disorder. Recent findings regarding the organization and operation of the LC/NE system collectively challenge the classical view of the nucleus as a relatively homogenous modulator of forebrain activity and provide the basis for a renewed scientific interest in this region of the brain. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Daniel J Chandler
- Department of Neurobiology and Anatomy Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
6
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Torrecilla M, Quillinan N, Williams JT, Wickman K. Pre- and postsynaptic regulation of locus coeruleus neurons after chronic morphine treatment: a study of GIRK-knockout mice. Eur J Neurosci 2008; 28:618-24. [PMID: 18702733 DOI: 10.1111/j.1460-9568.2008.06348.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the acute inhibitory effect of opioids on locus coeruleus (LC) neurons is mediated primarily by the activation of G protein-gated inwardly-rectifying K(+) (GIRK) channels, the 3'-5'-cyclic adenosine monophosphate (cAMP) system has been implicated in the effects of chronic morphine exposure. Presently, the impact of chronic morphine treatment on GIRK-dependent and GIRK-independent mechanisms underlying the opioid-induced inhibition of LC neurons is unclear. Here, opioid-induced postsynaptic inhibition was studied in LC neurons from wild-type and GIRK2/GIRK3(-/-) mice at baseline and following chronic morphine treatment. The postsynaptic inhibition of LC neurons caused by the opioid agonist [Met](5) enkephalin (ME) was unaffected by chronic morphine treatment in mice of either genotype. Furthermore, chronic morphine treatment had no effect on the forskolin augmentation of the ME-induced current in wild-type LC neurons and only a minor effect on the ME-induced current in LC neurons from GIRK2/GIRK3(-/-) mice. Chronic morphine treatment did, however, lead to an increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in the LC. Interestingly, while forskolin augmented the EPSC frequency similarly in untreated and morphine-treated wild-type mice, as well as untreated GIRK2/GIRK3(-/-) mice, it failed to increase the frequency of EPSCs in morphine-treated GIRK2/GIRK3(-/-) mice. Altogether, the findings suggest that chronic morphine treatment exerts little impact on ion channels and signaling pathways that mediate the postsynaptic inhibitory effects of opioids but does enhance excitatory neurotransmission in the mouse LC.
Collapse
Affiliation(s)
- Maria Torrecilla
- Vollum Institute, Oregon Health Sciences University, Portland, OR, USA
| | | | | | | |
Collapse
|
8
|
Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiol Learn Mem 2007; 89:285-92. [PMID: 17962049 DOI: 10.1016/j.nlm.2007.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/31/2007] [Accepted: 08/31/2007] [Indexed: 11/21/2022]
Abstract
Determining how neuronal networks encode memories is a key goal of neuroscience. Although neuronal circuit processes involved in encoding, storing and retrieving memory have attracted a great deal of attention, the processes that allocate individual memories to specific neurons within a network have remained elusive. Recent findings unraveled the first insights into the processes that modulate memory allocation in neuronetworks. They showed that neurons in the lateral amygdala compete to take part in auditory fear conditioned memory traces and that the levels of the transcription factor CREB (cAMP-response element binding protein) can affect the probability of a neuron to be recruited into a given memory representation. CREB-mediated transcriptional regulation involves several signaling pathways, known to mediate nuclear responses to diverse behavioral stimuli, along with coordinated interactions with multiple other transcription activators, coactivators and repressors. Moreover, activation of CREB triggers an autoinhibitory feedback loop, a metaplastic process that could be used to allocate memories away from cells that have been recently involved in memory. Beyond CREB, there may be a host of other processes that dynamically modulate memory allocation in neuronetworks by shaping cooperation and competition among neurons.
Collapse
|
9
|
Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007; 31:775-824. [PMID: 17445891 PMCID: PMC1955686 DOI: 10.1016/j.neubiorev.2007.02.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/17/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the cellular-molecular-network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research.
Collapse
Affiliation(s)
- Subimal Datta
- Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry and Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
10
|
Han MH, Bolaños CA, Green TA, Olson VG, Neve RL, Liu RJ, Aghajanian GK, Nestler EJ. Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J Neurosci 2006; 26:4624-9. [PMID: 16641242 PMCID: PMC6674058 DOI: 10.1523/jneurosci.4701-05.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) is implicated in mediating the actions of chronic morphine in the locus ceruleus (LC), but direct evidence to support such a role is limited. Here, we investigated the influence of CREB on LC neuronal activity and opiate withdrawal behaviors by selectively manipulating CREB activity in the LC using viral vectors encoding genes for CREBGFP (wild-type CREB tagged with green fluorescent protein), caCREBGFP (a constitutively active CREB mutant), dnCREBGFP (a dominant-negative CREB mutant), or GFP alone as a control. Our results show that in vivo overexpression of CREBGFP in the LC significantly aggravated particular morphine withdrawal behaviors, whereas dnCREBGFP expression attenuated these behaviors. At the cellular level, CREBGFP expression in the LC in vivo and in vitro had no significant effect on neuronal firing at baseline but enhanced the excitatory effect of forskolin (an activator of adenylyl cyclase) on these neurons, which suggests that the cAMP signaling pathway in these neurons was sensitized after CREB expression. Moreover, in vitro studies showed that caCREBGFP-expressing LC neurons fired significantly faster and had a more depolarized resting membrane potential compared with GFP-expressing control cells. Conversely, LC neuronal activity was decreased by dnCREBGFP, and the neurons were hyperpolarized by this treatment. Together, these data provide direct evidence that CREB plays an important role in controlling the electrical excitability of LC neurons and that morphine-induced increases in CREB activity contribute to the behavioral and neural adaptations associated with opiate dependence and withdrawal.
Collapse
|
11
|
Jedema HP, Grace AA. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci 2005; 24:9703-13. [PMID: 15509759 PMCID: PMC6730164 DOI: 10.1523/jneurosci.2830-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide corticotropin-releasing hormone (CRH) activates locus ceruleus (LC) neurons, thereby increasing norepinephrine levels throughout the CNS. Despite anatomical and physiological evidence for CRH innervation of the LC, the mechanism of CRH-evoked activation of LC neurons is unknown. Moreover, given the apparent absence of mRNA for CRH receptors in LC neurons, the exact location of action of CRH within the cerulear region is debated. Using in vitro intracellular recordings from rat brainstem, we examined whether CRH exerts a direct effect on LC neurons and which ionic currents are likely affected by CRH. We demonstrate that CRH dose-dependently increases the firing rate of LC neurons through a direct (TTX- and cadmium-insensitive) mechanism by decreasing a potassium conductance. The CRH-evoked activation of LC neurons is, at least in part, mediated by CRH1 receptors and a cAMP-dependent second messenger system. These data provide additional support that CRH functions as an excitatory neurotransmitter in the LC and the hypothesis that dysfunction of the CRH peptidergic and noradrenergic systems observed in patients with mood and anxiety disorders are functionally related.
Collapse
Affiliation(s)
- Hank P Jedema
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
12
|
Hayar A, Karnup S, Shipley MT, Ennis M. Olfactory bulb glomeruli: external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input. J Neurosci 2004; 24:1190-9. [PMID: 14762137 PMCID: PMC6793566 DOI: 10.1523/jneurosci.4714-03.2004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glomeruli, the initial sites of synaptic processing in the olfactory system, contain at least three types of neurons collectively referred to as juxtaglomerular (JG) neurons. The role of JG neurons in odor processing is poorly understood. We investigated the morphology, spontaneous, and sensory-evoked activity of one class of JG neurons, external tufted (ET) cells, using whole-cell patch-clamp and extracellular recordings in rat olfactory bulb slices. ET cells have extensive dendrites that ramify within a single glomerulus or, rarely, in two adjacent glomeruli. All ET neurons exhibit spontaneous rhythmic bursts of action potentials (approximately 1-8 bursts/sec). Bursting is intrinsically generated; bursting persisted and became more regular in the presence of ionotropic glutamate and GABA receptor antagonists. Burst frequency is voltage dependent; frequency increased at membrane potentials depolarized relative to rest and decreased during membrane potential hyperpolarization. Spontaneous bursting persisted in blockers of calcium channels that eliminated low-threshold calcium spikes (LTS) in ET cells. ET cells have a persistent sodium current available at membrane potentials that generate spontaneous bursting. Internal perfusion with a fast sodium channel blocker eliminated spontaneous bursting but did not block the LTS. These results suggest that persistent sodium channels are essential for spontaneous burst generation in ET cells. ET cell bursts were entrained to ON stimuli delivered over the range of theta frequencies. Thus, ET cells appear to be tuned to the frequency of sniffing.
Collapse
Affiliation(s)
- Abdallah Hayar
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
13
|
Filosa JA, Putnam RW. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. Am J Physiol Cell Physiol 2003; 284:C145-55. [PMID: 12388081 DOI: 10.1152/ajpcell.00346.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied chemosensitive signaling in locus coeruleus (LC) neurons using both perforated and whole cell patch techniques. Upon inhibition of fast Na(+) spikes by tetrodotoxin (TTX), hypercapnic acidosis [HA; 15% CO(2), extracellular pH (pH(o)) 6.8] induced small, slow spikes. These spikes were inhibited by Co(2+) or nifedipine and were attributed to activation of L-type Ca(2+) channels by HA. Upon inhibition of both Na(+) and Ca(2+) spikes, HA resulted in a membrane depolarization of 3.52 +/- 0.61 mV (n = 17) that was reduced by tetraethylammonium (TEA) (1.49 +/- 0.70 mV, n = 7; P < 0.05) and absent (-0.97 +/- 0.73 mV, n = 7; P < 0.001) upon exposure to isohydric hypercapnia (IH; 15% CO(2), 77 mM HCO(3)(-), pH(o) 7.45). Either HA or IH, but not 50 mM Na-propionate, activated Ca(2+) channels. Inhibition of L-type Ca(2+) channels by nifedipine reduced HA-induced increased firing rate and eliminated IH-induced increased firing rate. We conclude that chemosensitive signals (e.g., HA or IH) have multiple targets in LC neurons, including TEA-sensitive K(+) channels and TWIK-related acid-sensitive K(+) (TASK) channels. Furthermore, HA and IH activate L-type Ca(2+) channels, and this activation is part of chemosensitive signaling in LC neurons.
Collapse
Affiliation(s)
- Jessica A Filosa
- Department of Physiology and Biophysics, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | |
Collapse
|
14
|
G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci 2002. [PMID: 12040038 DOI: 10.1523/jneurosci.22-11-04328.2002] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute opioid administration causes hyperpolarization of locus ceruleus (LC) neurons. A G-protein-gated, inwardly rectifying potassium (GIRK/K(G)) conductance and a cAMP-dependent cation conductance have both been implicated in this effect; the relative contribution of each conductance remains controversial. Here, the contribution of K(G) channels to the inhibitory effects of opioids on LC neurons was examined using mice that lack the K(G) channel subunits Kir3.2 and Kir3.3. Resting membrane potentials of LC neurons in brain slices from Kir3.2 knock-out, Kir3.3 knock-out, and Kir3.2/3.3 double knock-out mice were depolarized by 15-20 mV relative to LC neurons from wild-type mice. [Met](5)enkephalin-induced hyperpolarization and whole-cell current were reduced by 40% in LC neurons from Kir3.2 knock-out mice and by 80% in neurons from Kir3.2/3.3 double knock-out mice. The small opioid-sensitive current observed in LC neurons from Kir3.2/3.3 double knock-out mice was virtually eliminated with the nonselective potassium channel blockers barium and cesium. We conclude that the acute opioid inhibition of LC neurons is mediated primarily by the activation of G-protein-gated potassium channels and that the cAMP-dependent cation conductance does not contribute significantly to this effect.
Collapse
|
15
|
Filosa JA, Dean JB, Putnam RW. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 2002; 541:493-509. [PMID: 12042354 PMCID: PMC2290328 DOI: 10.1113/jphysiol.2001.014142] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The chemosensitive response of locus coeruleus (LC) neurones to changes in intracellular pH (pH(i)), extracellular pH (pH(o)) and molecular CO(2) were investigated using neonatal rat brainstem slices. A new technique was developed that involves the use of perforated patch recordings in combination with fluorescence imaging microscopy to simultaneously measure pH(i) and membrane potential (V(m)). Hypercapnic acidosis (15 % CO(2), pH(o) 6.8) resulted in a maintained fall in pH(i) of 0.31 pH units and a 93 % increase in the firing rate of LC neurones. On the other hand, isohydric hypercapnia (15 % CO(2), 77 mM HCO(3)(-), pH(o) 7.45) resulted in a smaller and transient fall in pH(i) of about 0.17 pH units and an increase in firing rate of 76 %. Acidified Hepes (N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid)-buffered medium (pH(o) 6.8) resulted in a progressive fall in pH(i) of over 0.43 pH units and an increase in firing rate of 126 %. Isosmotic addition of 50 mM propionate to the standard HCO(3)(-)-buffered medium (5 % CO(2), 26 mM HCO(3)(-), pH(o) 7.45) resulted in a transient fall in pH(i) of 0.18 pH units but little increase in firing rate. Isocapnic acidosis (5 % CO(2), 7 mM HCO(3)(-), pH(o) 6.8) resulted in a slow intracellular acidification to a maximum fall of about 0.26 pH units and a 72 % increase in firing rate. For all treatments, the changes in pH(i) preceded or occurred simultaneously with the changes in firing rate and were considerably slower than the changes in pH(o). In conclusion, an increased firing rate of LC neurones in response to acid challenges was best correlated with the magnitude and the rate of fall in pH(i), indicating that a decrease in pH(i) is a major part of the intracellular signalling pathway that transduces an acid challenge into an increased firing rate in LC neurones.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology and Biophysics, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | |
Collapse
|
16
|
Abstract
Pathological processes affecting presynaptic terminals may contribute to morbidity following traumatic brain injury (TBI). Posttraumatic widespread neuronal depolarization and elevated extracellular potassium and glutamate are predicted to alter the transduction of action potentials in terminals into reliable synaptic transmission and postsynaptic excitation. Evoked responses to orthodromic single- and paired-pulse stimulation were examined in the CA1 dendritic region of hippocampal slices removed from adult rats following fluid percussion TBI. The mean duration of the extracellularly recorded presynaptic volley (PV) increased from 1.08 msec in controls to 1.54 msec in slices prepared at 1 hr postinjury. There was a time-dependent recovery of this injury effect, and PV durations at 2 and 7 days postinjury were not different from controls. In slices removed at 1 hr postinjury, the initial slopes of field excitatory postsynaptic potentials (fEPSPs) were reduced to 36% of control values, and input/output plots revealed posttraumatic deficits in the transfer of excitation from pre- to postsynaptic elements. Manipulating potassium currents with 1.0 mM tetraethylammonium or elevating potassium ion concentration to 7.5 mM altered evoked responses but did not replicate the injury effects to PV duration. Paired-pulse facilitation of fEPSP slopes was significantly elevated at all postinjury survivals: 1 hr, 2 days, and 7 days. These results suggest two pathological processes with differing time courses: 1) a transient impairment of presynaptic terminal functioning affecting PV durations and the transduction of afferent activity in the terminals to reliable synaptic excitation and 2) a more protracted deficit to the plasticity mechanisms underlying paired-pulse facilitation.
Collapse
Affiliation(s)
- T M Reeves
- Department of Anatomy, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
17
|
Huangfu D, Guyenet PG. Alpha 2-adrenergic autoreceptors in A5 and A6 neurons of neonate rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2290-5. [PMID: 9374765 DOI: 10.1152/ajpheart.1997.273.5.h2290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A5 noradrenergic neurons control sympathetic outflow, nociception, and respiration. The presence of alpha 2-adrenergic receptors (alpha 2-ARs) in A5 cells has been suggested by immunohistochemistry. In the present experiments, we analyze the response of spinally projecting A5 cells to alpha 2-AR agonists, and we compare it with that of locus ceruleus (A6) neurons. Whole cell recordings were obtained from 52 spinally projecting neurons in the ventrolateral pons of neonate rats. Immunohistochemistry showed that 60% of the recorded cells were A5 cells. In A5 cells clamped at -55 mV, norepinephrine (NE) in the presence of the alpha 1-AR antagonist prazosin produced a Ba(2+)-sensitive outward current (20.4 +/- 2.6 pA; n = 28). The alpha 2-AR-induced current reversed at the K+ equilibrium potential (EK) at three different extracellular K+ concentrations. Replacement of 82% of the extracellular Na concentration with N-methyl-D-glucamine did not change the reversal potential. The 19 presumably noncatecholaminergic neurons responded weakly or not at all to NE (2.5 +/- 0.6 pA outward current). Pontospinal A6 neurons (n = 11) were also recorded. Six A6 cells displayed large tetrodotoxin (TTX)-resistant membrane oscillations. In these cells, the current induced by alpha 2-AR stimulation did not reverse over the voltages tested (-50 to -130 mV) or reversed at potentials more negative than EK (less than -114 mV). In A6 neurons that did not display large oscillations (n = 5), the alpha 2-AR-induced current reversed at or close to the EK (-90 +/- 1.6 mV). In conclusion, A5 cells, like locus ceruleus neurons, have alpha 2-ARs that may function as autoreceptors. In both cases, alpha 2-AR activation increases an inwardly rectifying K+ conductance. In A5 cells, we found no evidence that alpha 2-AR activation decreases a resting Na+ conductance. The inhibition of A5 cells by clonidine and other agents with alpha 2-AR agonist activity is likely to contribute to the ability of these drugs to decrease sympathetic tone and arterial pressure.
Collapse
Affiliation(s)
- D Huangfu
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|