1
|
Jawich D, Pfohl-Leszkowicz A, Lteif R, Strehaiano P. DNA adduct formation in Saccharomyces cerevisiae following exposure to environmental pollutants, as in vivo model for molecular toxicity studies. World J Microbiol Biotechnol 2024; 40:180. [PMID: 38668960 DOI: 10.1007/s11274-024-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.
Collapse
Affiliation(s)
- Dalal Jawich
- Fanar Laboratory, Lebanese Agricultural Research Institute (LARI), Beirut, Lebanon.
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France.
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon.
- Faculty of Agricultural Sciences, Department of Basic Sciences, Lebanese University, Dekwaneh, Beirut, Lebanon.
| | - Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| | - Roger Lteif
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon
| | - Pierre Strehaiano
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| |
Collapse
|
2
|
Calabrese EJ. Hormesis commonly observed in the assessment of aneuploidy in yeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:713-728. [PMID: 28318788 DOI: 10.1016/j.envpol.2017.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Extensive dose response studies have assessed the potential of toxic chemical agents to induce aneuploidy in the yeast model. An assessment of such findings revealed that hormetic-like biphasic dose responses were commonly observed. A preliminary estimate of the frequency of the hormetic responses using a priori entry and evaluative criteria was approximately 65-80%.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
3
|
Howlett NG, Schiestl RH. Simultaneous measurement of the frequencies of intrachromosomal recombination and chromosome gain using the yeast DEL assay. Mutat Res 2000; 454:53-62. [PMID: 11035159 DOI: 10.1016/s0027-5107(00)00097-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- N G Howlett
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
4
|
Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat Res 1995; 330:115-81. [PMID: 7623863 DOI: 10.1016/0027-5107(95)00039-l] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclophosphamide (CP) is used to treat a wide range of neoplastic diseases as well as some non-malignant ones such as rheumatoid arthritis. It is also used as an immunosuppressive agent prior to organ transplantation. CP is, however, a known carcinogen in humans and produces secondary tumors. There is little absorption either orally or intravenously and 10% of the drug is excreted unchanged. CP is activated by hepatic mixed function oxidases and metabolites are delivered to neoplastic cells via the bloodstream. Phosphoramide mustard is thought to be the major anti-neoplastic metabolite of CP while acrolein, which is highly toxic and is produced in equimolar amounts, is thought to be responsible for most of the toxic side effects. DNA adducts have been formed after CP treatment in a variety of in vitro systems as well as in rats and mice using 3H-labeled CP. 32P-postlabeling techniques have also been used in mice. However, monitoring of adducts in humans has not yet been carried out. CP has also been shown to induce unscheduled DNA synthesis in a human cell line. CP has produced mutations in base-pair substituting strains of Salmonella tryphimurium in the presence of metabolic activation, but it has been shown to be negative in the E. coli chromotest. It has also been shown to be positive in Saccharomyces cerevisiae in D7 strain for many endpoints but negative in D62.M for aneuploidy/malsegregation. It has produced positive responses in Drosophila melanogaster for various endpoints and in Anopheles stephensi. In somatic cells, CP has been shown to produce gene mutations, chromosome aberrations, micronuclei and sister chromatid exchanges in a variety of cultured cells in the presence of metabolic activation as well as sister chromatid exchanges without metabolic activation. It has also produced chromosome damage and micronuclei in rats, mice and Chinese hamsters, and gene mutations in the mouse spot test and in the transgenic lacZ construct of Muta Mouse. Increases in chromosome damage and gene mutations have been found in the peripheral blood lymphocytes of nurses, pharmacists and female workers occupationally exposured to CP during its production or distribution. Chromosome aberrations, sister chromatid exchanges and gene mutations have been observed in somatic cells of patients treated therapeutically with CP. In general, there is a maximum dose and an optimum time for the detection of genetic effects because the toxicity associated with high doses of CP will affect cell division. In germ cells, CP has been shown to induce genetic damage in mice, rats and hamsters although the vast majority of such studies have used male mice.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Anderson
- British Industrial Biological Research Association (BIBRA), Carshalton, Surrey, UK
| | | | | | | | | |
Collapse
|
5
|
Mayer VW, Goin CJ. Induction of chromosome loss in yeast by combined treatment with neurotoxic hexacarbons and monoketones. Mutat Res 1994; 341:83-91. [PMID: 7527491 DOI: 10.1016/0165-1218(94)90090-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurotoxic hexacarbon compounds n-hexane, 2-hexanone and 2,5-hexanedione were tested in combination with acetone and methyl ethyl ketone for the potential to induce chromosome loss in strain D61.M of Saccharomyces cerevisiae. n-Hexane and 2-hexanone, alone or in combination, induced only marginally positive chromosome loss, whereas the metabolite and presumed proximal genetically active agent 2,5-hexanedione was strongly positive when tested alone and in combination. These observations are discussed in relation to the reported potentiation of the neurotoxic effects of these hexacarbons when exposure results from combinations with other solvents, e.g., acetone and methyl ethyl ketone. Treatments that result in neurotoxicity in experimental animals and humans and those that result in chromosome loss in a yeast genetic test system may be correlated by their activity on a common intracellular target.
Collapse
Affiliation(s)
- V W Mayer
- Genetic Toxicology Branch, Food and Drug Administration, Washington, DC 20204
| | | |
Collapse
|
6
|
Sarrif AM, Bentley KS, Fu LJ, O'Neil RM, Reynolds VL, Stahl RG. Evaluation of benomyl and carbendazim in the in vivo aneuploidy/micronucleus assay in BDF1 mouse bone marrow. Mutat Res 1994; 310:143-9. [PMID: 7523878 DOI: 10.1016/0027-5107(94)90018-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Benomyl and its active metabolite carbendazim were investigated in BDF1 mouse bone marrow to establish whether micronuclei induced by these fungicides are caused by clastogenic or aneugenic events. Micronuclei were evaluated for kinetochores using immunofluorescent antikinetochore antibodies. Kinetochore positive (K+) micronuclei are likely to arise from chromosome loss since they presumably contain intact kinetochores and are indicative of aneuploidy. Conversely, kinetochore negative (K-) micronuclei are mostly likely to contain acentric chromosome fragments arising primarily from clastogenic damage. Benomyl and carbendazim were administered as single oral doses of 0.3, 8.6 or 17.2 mmol/kg (for benomyl, equivalent to 100, 2500 or 5000 mg/kg; for carbendazim, equivalent to 66, 1646 or 3293 mg/kg). Both compounds were positive in the micronucleus test at doses of 8.6 and 17.2 mmol/kg, and an average of 82% (benomyl) and 87% (carbendazim) of the total micronucleated polychromatic erythrocytes were K+. No effects were seen with either fungicide at 0.3 mmol/kg. These results are analogous to findings with known aneugens such as vincristine but are in contrast to results with classical clastogens such as cyclophosphamide. Thus, benomyl and carbendazim induce micronuclei in mouse bone marrow cells primarily through an aneugenic mechanism.
Collapse
Affiliation(s)
- A M Sarrif
- E.I. du Pont de Nemours & Co., Haskell Laboratory for Toxicology and Industrial Medicine, Newark, DE 19714
| | | | | | | | | | | |
Collapse
|
7
|
Dolara P, Torricelli F, Antonelli N. Cytogenetic effects on human lymphocytes of a mixture of fifteen pesticides commonly used in Italy. Mutat Res 1994; 325:47-51. [PMID: 7521012 DOI: 10.1016/0165-7992(94)90026-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lymphocytes obtained from 5 healthy donors were incubated with a mixture of 15 pesticides commonly found in foods of central Italy (dithiocarbamates (20.7%), benomyl (19.6%), thiabendazole (14.9%), diphenylamine (14.4%), chlorthalonil (13.1%), procymidone (8.0%), methidathion (2.3%), chlorpyrifos-ethyl (2%), fenarimol (1.9%), parathion-methyl (1%), chlorpropham, parathion, vinchlozolin, chlorfenvinphos and pirimiphos-ethyl (< 1%)). The percent of each pesticide in the mixture was proportional to its average concentration in foods. Incubated with the lymphocytes at a concentration of 1-20 micrograms/ml the pesticide mixture did not induce significant variations in the number of hypodiploid, hyperdiploid and polyploid cells or in the number of chromosome and chromatid aberrations. On the contrary, we observed a dose-dependent increase in the number of nonsynchronous centromeric separations which reached the level of 37.9% at 20 micrograms/ml of pesticide mixture in the incubation medium. This effect was not observed when benomyl was excluded from the mixture. These data show that the removal of benomyl could decrease the toxicity of pesticide residues present in human food.
Collapse
Affiliation(s)
- P Dolara
- Department of Pharmacology and Toxicology, University of Florence, Italy
| | | | | |
Collapse
|
8
|
Bianchi L, Zannoli A, Pizzala R, Stivala LA, Chiesara E. Genotoxicity assay of five pesticides and their mixtures in Saccharomyces cerevisiae D7. Mutat Res 1994; 321:203-11. [PMID: 7515158 DOI: 10.1016/0165-1218(94)90071-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four organophosphorus pesticides (azinphos-methyl, diazinone, dimethoate, and pirimiphos-methyl), and one carbamate (benomyl) were tested for cytotoxicity, reverse mutation and gene conversion in Saccharomyces cerevisiae D7, with and without the S9 metabolic system. Furthermore, two mixtures of the above compounds, namely benomyl + pirimiphos-methyl (6/1 ratio) and dimethoate + diazinone + azinphos-methyl (10/4/6 ratio) were tested in the same experimental model. Azinphos-methyl, benomyl, and pirimiphos-methyl alone did not induce any genotoxic effect, whereas azinphos-methyl and diazinone were active in inducing reversion and gene conversion. The benomyl + pirimiphos-methyl mixture did not show any genotoxic activity. The dimethoate + diazinone + azimphos-methyl mixture was genotoxic, although an antagonistic effect between the components was observed. The addition of S9 post-mitochondrial liver fraction decreased the activity of both single and mixed genotoxic agents.
Collapse
Affiliation(s)
- L Bianchi
- Istituto di Patologia Generale, Università di Pavia, Italy
| | | | | | | | | |
Collapse
|
9
|
Sarrif AM, Arce GT, Krahn DF, O'Neil RM, Reynolds VL. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay: the role of aminophenazine impurities. Mutat Res 1994; 321:43-56. [PMID: 7510844 DOI: 10.1016/0165-1218(94)90119-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Benomyl (methyl [1-[(butylamino)carbonyl]-1H-benzimidazol-2- yl]carbamate) and its major metabolite carbendazim (methyl 2-benzimidazolecarbamate) are major agricultural systemic fungicides. These compounds inhibit fungal microtubular function and thereby cause nondisjunction of chromosomes at cell division. Several investigators have proposed that these compounds can also cause gene mutations (base-pair substitutions). In this laboratory, no mutagenic activity was observed with either benomyl (analytical grade) or Benlate (samples tested up to 500 and 1200 micrograms/plate, respectively, the limit of cytotoxicity) in the Salmonella/Ames plate-incorporation test in either base-pair substitution (TA100 and TA1535) or frameshift-sensitive (TA98 and TA1537) strains with or without S9 metabolic activation. However, some carbendazim preparations caused mutations in frameshift-sensitive strains at very high concentrations (> or = 5000 micrograms/plate) with metabolic activation. The mutagenic activity was not due to the major carbendazim metabolite, methyl (5-hydroxy-1H-benzimidazol-2-yl)carbamate (5-OH MBC), since 5-OH MBC was not mutagenic with (up to 20,000 micrograms/plate) or without (up to 16,000 micrograms/plate) activation. Subsequently, two highly mutagenic contaminants, 2,3-diaminophenazine (DAP) and 2-amino-3-hydroxyphenazine (AHP) were detected in mutagenic carbendazim samples. In those samples, DAP and AHP contaminant levels ranged as high as 46.5 and 11.6 ppm, respectively. No evidence of mutagenicity could be detected in preparations in which the DAP content was < 1.8 ppm. The mutagenic activity of these two contaminants was further investigated in strain TA98. Without activation, DAP and AHP were positive at test concentrations as low as 5 and 10 micrograms/plate, respectively. In the presence of S9, mutations were detected at much lower concentrations (beginning at 0.025 and 0.05 microgram/plate, respectively). These results indicate that carbendazim samples containing DAP or AHP at levels as low as 5 or 10 ppm, respectively, would be positive in the Salmonella/Ames test with activation when tested at 5000 micrograms/plate. Purified carbendazim is not mutagenic.
Collapse
Affiliation(s)
- A M Sarrif
- E.I. du Pont de Nemours and Co., Haskell Laboratory for Toxicology and Industrial Medicine, Newark, Delaware 19714
| | | | | | | | | |
Collapse
|
10
|
Albertini S, Brunner M, Würgler FE. Analysis of the six additional chemicals for in vitro assays of the European Economic Communities' EEC aneuploidy programme using Saccharomyces cerevisiae D61.M and the in vitro porcine brain tubulin assembly assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:180-192. [PMID: 8444145 DOI: 10.1002/em.2850210211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We tested six additional chemicals (acetaldehyde, benomyl, diethylstilboestrol, diethylstilboestrol dipropionate, griseofulvin, and mercaptoethanol) for in vitro systems of the coordinated programme to study aneuploidy induction sponsored by the Commission of the European Communities in two in vitro test systems. Using Saccharomyces cerevisiae D61.M (mitotic chromosomal malsegregation assay), benomyl showed a dose-dependent increase in the frequency of chromosomal malsegregation with a lowest effective dose tested (LEDT) of 30 micrograms/ml (0.1 mM). Diethylstilboestrol (DES) showed solvent-dependent effects. DES dissolved in ethanol induced an increase in chromosomal malsegregation as well as in the frequency of total resistant colonies (mutations and recombinations) with a LEDT around 13 micrograms/ml (0.048 mM). Using dimethylsulfoxide as the solvent, no increases were observed with DES up to 333 micrograms/ml (1.24 mM). Acetaldehyde induced an increase in chromosomal malsegregation with the cold treatment protocol (LEDT: 1.25 microliters/ml (21 mM) and 0.75 microliters/ml (13 mM), respectively) but no increase with the overnight protocol (highest dose tested (HDT): 1.75 microliters/ml; 30 mM). Concerning the frequency of total cycloheximide-resistant colonies (mutations and recombinations) increases were obtained with both protocols. The other three compounds were negative when tested up to toxic doses (survival below 10%), up to the maximum solubility in the solvent used or up to heavy precipitation in the incubation mix. The HDT were 333 micrograms/ml (0.88 mM) for diethylstilboestrol dipropionate, 1,600 micrograms/ml (4.5 mM) for griseofulvin and 0.5 microliters/ml (7 mM) for mercaptoethanol. Concerning effects on porcine brain tubulin assembly in vitro, diethylstilboestrol and griseofulvin inhibited the assembly process. The IC30% (30% inhibition concentration) values were 12.5 microM and 100 microM for DES and griseofulvin, respectively. Mercaptoethanol showed no effects up to 50 mM.
Collapse
Affiliation(s)
- S Albertini
- Department of Toxicology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | |
Collapse
|
11
|
Abstract
Three types of mitotic recombination can be studied in Aspergillus nidulans and Saccharomyces cerevisiae: (1) The classical type of reciprocal mitotic crossing-over which can be detected when it occurs between non-sister chromatids at the four-strand stage followed by co-segregation of a crossing-over and a non-crossing-over chromatid in the subsequent mitotic division. Consequently, mitotic crossing-over reflects cellular responses to primary genetic damage in the G2 phase of the cell cycle. (2) Mitotic gene conversion is a unidirectional event of a localized transfer of genetic information between non-sister chromatids which in yeast can extend to segments of up to 18 cM and even beyond 22 cM in Aspergillus nidulans. Mitotic gene conversion can also occur between unreplicated chromatids and lead to the expression of the newly created genotype without any need for a subsequent mitotic cell division. It reflects a cellular response in G1. (3) Mitotic sister-strand gene conversion can be studied in a recently constructed strain with the same technical ease as classical non-sister chromatid gene conversion. It can be induced by chemicals which do not induce mutation in the Salmonella system and non-sister chromatid gene conversion. Mitotic segregation in Saccharomyces cerevisiae results almost exclusively from crossing-over and gene conversion whereas mitotic chromosomal malsegregation contributes only very little. In contrast to this, in Aspergillus nidulans, both processes contribute considerably so that mitotic segregants always have to be tested for their mechanistic origin.
Collapse
Affiliation(s)
- F K Zimmermann
- Institut für Mikrobiologie, Technische Hochschule, Darmstadt, Germany
| |
Collapse
|
12
|
Albertini S, Zimmermann FK. The detection of chemically induced chromosomal malsegregation in Saccharomyces cerevisiae D61.M: a literature survey (1984-1990). Mutat Res 1991; 258:237-58. [PMID: 1719403 DOI: 10.1016/0165-1110(91)90011-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our objective is to summarize the published data obtained with a recently developed tester strain suitable for the detection of chromosomal malsegregation in yeast. Results from 25 papers were reviewed in which numerical data for 111 chemicals tested in Saccharomyces cerevisiae D61.M are reported (a total of 316 independent tests; 279 acceptable, 37 not meeting our criteria). Of the 111 compounds analyzed 43 compounds are positive for chromosomal malsegregation, 56 compounds are negative and 12 compounds do not meet our criteria for acceptance (inconclusive). Of the 43 compounds judged positive 5 (acetone, acetonitrile, benzonitrile, ethylacetate and propionitrile) were only positive using a cold interruption protocol. Recommendations are made for standardization of methods and protocols for screening purposes. Finally, a comparison with in vitro tubulin assembly data using mammalian tubulin is presented.
Collapse
Affiliation(s)
- S Albertini
- Department of Toxicology, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
13
|
Zimmermann FK, Rohlfs A. The influence of solvent stress on MMS-induced genetic change in Saccharomyces cerevisiae. Mutat Res 1991; 250:239-49. [PMID: 1944341 DOI: 10.1016/0027-5107(91)90181-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MMS induced mitotic recombination but not mitotic chromosome loss when tested in pure form in strain D61.M of Saccharomyces cerevisiae, confirming previous results of Albertini (1991), whereas in Aspergillus nidulans it also induced chromosomal malsegregation in addition to mitotic recombination (Käfer, 1988). However, induction of mitotic chromosome loss was observed in combination with strong inducers of chromosome loss such as the aprotic polar solvents ethyl acetate and to a lesser extent methyl ethyl ketone but not with gamma-valerolactone and propionitrile. In addition to this, 4 solvents, dimethyl formamide, dimethyl sulfoxide, dioxane and pyridine, enhanced the MMS-induced mitotic recombination in strain D61.M. An enhancement of MMS-induced mitotic recombination and reverse mutation could be demonstrated for ethyl acetate and gamma-valerolactone in yeast strain D7.
Collapse
Affiliation(s)
- F K Zimmermann
- Institut für Mikrobiologie, Technische Hochschule, Darmstadt, F.R.G
| | | |
Collapse
|