1
|
Zhang H, Lu S, Ren H, Zhao K, Li Y, Guan Y, Li H, Hu P, Liu Z. Cytotoxicity and degradation product identification of thermally treated ceftiofur. RSC Adv 2020; 10:18407-18417. [PMID: 35517214 PMCID: PMC9053768 DOI: 10.1039/c9ra10289b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Ceftiofur (CEF) is a cephalosporin antibiotic and is a commonly used drug in animal food production. As a heat-labile compound, the residual CEF toxicity after thermal treatment has rarely been reported. This study was to investigate the potential toxicity of thermally treated CEF and determine the toxic components. By cytotoxicity tests and liquid chromatography-mass spectrometry (LC-MS) assays, the cytotoxicity of the thermally treated CEF (TTC) and the components of TTC was identified, respectively. Our results showed that TTC exhibited significantly increased toxicity compared with CEF towards LO2 cells by inducing apoptosis. Through LC-MS assays, we identified that the toxic compound of TTC was CEF-aldehyde (CEF-1). The IC50 value of CEF-1 on LO2 cells treated for 24 h was 573.1 μg mL−1, approximately 5.3 times lower than CEF (3052.0 μg mL−1) and 3.4 times lower than TTC (1967.0 μg mL−1). Moreover, we found that CEF-1 was also present in thermally treated desfuroylceftiofur (DFC), the primary metabolite of CEF, indicating that residual CEF or DFC could produce CEF-1 during the heating process. These findings suggest that CEF-1 is a newly identified toxic compound, and CEF-1 may pose a potential threat to food safety or public health. Ceftiofur (CEF) is a cephalosporin antibiotic and is a commonly used drug in animal food production. This study investigated the cytotoxicity of thermally treated CEF.![]()
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Ke Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Yansong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Yuting Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Hanxiao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University 5333 Xi'an Road, Changchun Jilin 130062 PR China +86-431-8783-6716 +86-431-8783-6703
| |
Collapse
|
2
|
Li L, Wei D, Wei G, Du Y. Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:48-54. [PMID: 24007998 DOI: 10.1016/j.jhazmat.2013.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/27/2013] [Accepted: 08/12/2013] [Indexed: 05/27/2023]
Abstract
Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | | | | | | |
Collapse
|
3
|
Aaron CS, Yu RL, Jaglan PS, Roof RD, Hamilton C, Sorg R, Gudi R, Thilagar A. Comparative mutagenicity testing of ceftiofur sodium: III. Ceftiofur sodium is not an in vivo clastogen. Mutat Res 1995; 345:49-56. [PMID: 8524355 DOI: 10.1016/0165-1218(95)90069-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C S Aaron
- Upjohn Company, Upjohn Laboratories, Kalamazoo, MI 49007, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Aaron CS, Yu RL, Bacon JA, Kirkland D, McEnaney S, Marshall R. Comparative mutagenicity testing of ceftiofur sodium. II. Cytogenetic damage induced in vitro by ceftiofur is reversible and is due to cell cycle delay. Mutat Res 1995; 345:37-47. [PMID: 8524354 DOI: 10.1016/0165-1218(95)90068-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C S Aaron
- Upjohn Company, Upjohn Laboratories, Kalamazoo, MI 49007, USA
| | | | | | | | | | | |
Collapse
|