1
|
Ronan PJ, Korzan WJ, Johnson PL, Lowry CA, Renner KJ, Summers CH. Prior stress and vasopressin promote corticotropin-releasing factor inhibition of serotonin release in the central nucleus of the amygdala. Front Behav Neurosci 2023; 17:1148292. [PMID: 37064300 PMCID: PMC10098171 DOI: 10.3389/fnbeh.2023.1148292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is essential for coordinating endocrine and neural responses to stress, frequently facilitated by vasopressin (AVP). Previous work has linked CRF hypersecretion, binding site changes, and dysfunctional serotonergic transmission with anxiety and affective disorders, including clinical depression. Crucially, CRF can alter serotonergic activity. In the dorsal raphé nucleus and serotonin (5-HT) terminal regions, CRF effects can be stimulatory or inhibitory, depending on the dose, site, and receptor type activated. Prior stress alters CRF neurotransmission and CRF-mediated behaviors. Lateral, medial, and ventral subdivisions of the central nucleus of the amygdala (CeA) produce CRF and coordinate stress responsiveness. The purpose of these experiments was to determine the effect of intracerebroventricular (icv) administration of CRF and AVP on extracellular 5-HT as an index of 5-HT release in the CeA, using in vivo microdialysis in freely moving rats and high performance liquid chromatography (HPLC) analysis. We also examined the effect of prior stress (1 h restraint, 24 h prior) on CRF- and AVP-mediated release of 5-HT within the CeA. Our results show that icv CRF infusion in unstressed animals had no effect on 5-HT release in the CeA. Conversely, in rats with prior stress, CRF caused a profound dose-dependent decrease in 5-HT release within the CeA. This effect was long-lasting (240 min) and was mimicked by CRF plus AVP infusion without stress. Thus, prior stress and AVP functionally alter CRF-mediated neurotransmission and sensitize CRF-induced inhibition of 5-HT release, suggesting that this is a potential mechanism underlying stress-induced affective reactivity in humans.
Collapse
Affiliation(s)
- Patrick J. Ronan
- Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, United States
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
- Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO, United States
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Kenneth J. Renner,
| | - Wayne J. Korzan
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, United States
| | - Philip L. Johnson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
| | - Kenneth J. Renner
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Biology, University of South Dakota, Vermillion, SD, United States
- Patrick J. Ronan,
| | - Cliff H. Summers
- Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, United States
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Biology, University of South Dakota, Vermillion, SD, United States
- *Correspondence: Cliff H. Summers,
| |
Collapse
|
2
|
Maugars G, Mauvois X, Martin P, Aroua S, Rousseau K, Dufour S. New Insights Into the Evolution of Corticotropin-Releasing Hormone Family With a Special Focus on Teleosts. Front Endocrinol (Lausanne) 2022; 13:937218. [PMID: 35937826 PMCID: PMC9353778 DOI: 10.3389/fendo.2022.937218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) was discovered for its role as a brain neurohormone controlling the corticotropic axis in vertebrates. An additional crh gene, crh2, paralog of crh (crh1), and likely resulting from the second round (2R) of vertebrate whole genome duplication (WGD), was identified in a holocephalan chondrichthyan, in basal mammals, various sauropsids and a non-teleost actinopterygian holostean. It was suggested that crh2 has been recurrently lost in some vertebrate groups including teleosts. We further investigated the fate of crh1 and crh2 in vertebrates with a special focus on teleosts. Phylogenetic and synteny analyses showed the presence of duplicated crh1 paralogs, crh1a and crh1b, in most teleosts, resulting from the teleost-specific WGD (3R). Crh1b is conserved in all teleosts studied, while crh1a has been lost independently in some species. Additional crh1 paralogs are present in carps and salmonids, resulting from specific WGD in these lineages. We identified crh2 gene in additional vertebrate groups such as chondrichthyan elasmobranchs, sarcopterygians including dipnoans and amphibians, and basal actinoperygians, Polypteridae and Chondrostei. We also revealed the presence of crh2 in teleosts, including elopomorphs, osteoglossomorphs, clupeiforms, and ostariophysians, while it would have been lost in Euteleostei along with some other groups. To get some insights on the functional evolution of the crh paralogs, we compared their primary and 3D structure, and by qPCR their tissue distribution, in two representative species, the European eel, which possesses three crh paralogs (crh1a, crh1b, crh2), and the Atlantic salmon, which possesses four crh paralogs of the crh1-type. All peptides conserved the structural characteristics of human CRH. Eel crh1b and both salmon crh1b genes were mainly expressed in the brain, supporting the major role of crh1b paralogs in controlling the corticotropic axis in teleosts. In contrast, crh1a paralogs were mainly expressed in peripheral tissues such as muscle and heart, in eel and salmon, reflecting a striking subfunctionalization between crh1a and b paralogs. Eel crh2 was weakly expressed in the brain and peripheral tissues. These results revisit the repertoire of crh in teleosts and highlight functional divergences that may have contributed to the differential conservation of various crh paralogs in teleosts.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
- Université Le Havre Normandie - Stress Environnementaux et Biosurveillance des milieux aquatiques UMR-I 02SEBIO -FR CNRS 3730 SCALE, Le Havre, France
| | - Xavier Mauvois
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Salima Aroua
- Université Le Havre Normandie - Stress Environnementaux et Biosurveillance des milieux aquatiques UMR-I 02SEBIO -FR CNRS 3730 SCALE, Le Havre, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Unité Mixte de Recherche Biologie des Organismes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
4
|
Song X, Chen Q, Wang J, Mao Q, Xia W, Xu L, Jiang F, Dong G. Clinical and prognostic implications of an immune-related risk model based on TP53 status in lung adenocarcinoma. J Cell Mol Med 2021; 26:436-448. [PMID: 34877770 PMCID: PMC8743672 DOI: 10.1111/jcmm.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/08/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
TP53 mutation is the most widespread mutation in lung adenocarcinoma (LUAD). Meanwhile, p53 (encoded by TP53) has recently been implicated in immune responses. However, it is still unknown whether TP53 mutation remodels the tumour microenvironment to influence tumour progression and prognosis in LUAD. In this study, we developed a 6‐gene immune‐related risk model (IRM) to predict the survival of patients with LUAD in The Cancer Genome Atlas (TCGA) cohort based on TP53 status, and the predictive ability was confirmed in 2 independent cohorts. TP53 mutation led to a decreased immune response in LUAD. Further analysis revealed that patients in the high‐index group had observably lower relative infiltration of memory B cells and regulatory T cells and significantly higher relative infiltration of neutrophils and resting memory CD4+ T cells. Additionally, the IRM index positively correlated with the expression of critical immune checkpoint genes, including PDCD1 (encoding PD‐1) and CD274 (encoding PD‐L1), which was validated in the Nanjing cohort. Furthermore, as an independent prognostic factor, the IRM index was used to establish a nomogram for clinical application. In conclusion, this IRM may serve as a powerful prognostic tool to further optimize LUAD immunotherapy.
Collapse
Affiliation(s)
- Xuming Song
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | | | - Jifan Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Qixing Mao
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Wenjie Xia
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
5
|
Effect of Central Corticotropin-Releasing Factor on Hepatic Lipid Metabolism and Inflammation-Related Gene Expression in Rats. Int J Mol Sci 2021; 22:ijms22083940. [PMID: 33920431 PMCID: PMC8069855 DOI: 10.3390/ijms22083940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) in the brain acts on physiological and pathophysiological modulation of the hepatobiliary system. Central CRF administration aggravates experimental acute liver injury by decreasing hepatic blood flow. Conversely, minimal evidence is available regarding the effect of centrally acting CRF on hepatic lipid metabolism and inflammation. We examined whether central CRF affects hepatic lipid metabolism and inflammation-related gene expression in rats. Male Long Evans rats were intracisternally injected with CRF (10 μg) or saline. Rats were sacrificed 2 h, 6 h, and 24 h after the CRF injection, the liver was isolated, and mRNA was extracted. Next, hepatic lipid metabolism and inflammation-related gene expression were examined. Hepatic SREBF1 (sterol regulatory element-binding transcription factor 1) mRNA levels were significantly increased 6 h and 24 h after intracisternal CRF administration when compared with those in the control group. Hepatic TNFα and IL1β mRNA levels increased significantly 6 h after intracisternal CRF administration. Hepatic sympathectomy or guanethidine treatment, not hepatic branch vagotomy or atropine treatment, inhibited central CRF-induced increase in hepatic SREBF1, TNFα and IL1β mRNA levels. These results indicated that central CRF affects hepatic de novo lipogenesis and inflammation-related gene expression through the sympathetic-noradrenergic nervous system in rats.
Collapse
|
6
|
Yarur HE, Andrés ME, Gysling K. Type 2β Corticotrophin Releasing Factor Receptor Forms a Heteromeric Complex With Dopamine D1 Receptor in Living Cells. Front Pharmacol 2020; 10:1501. [PMID: 31969820 PMCID: PMC6960402 DOI: 10.3389/fphar.2019.01501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 11/23/2022] Open
Abstract
Corticotrophin releasing factor (CRF) and its related peptides differentially bind to CRF receptors to modulate stress-related behaviors. CRF receptors comprise two G-protein coupled receptors (GPCR), type-1 CRF receptors (CRF1), and type-2 CRF receptors (CRF2). CRF2 encompasses three spliced variants in humans, alpha (CRF2α), beta (CRF2β), and gamma (CRF2γ), which differ in their N-terminal extracellular domains and expression patterns. Previously, we showed that CRF2α form a heteromeric protein complex with dopamine D1 receptors (D1R), leading to changes in the signaling of D1R. Based on the high sequence identity between CRF2α and CRF2β, we hypothesized that CRF2β also heteromerize with D1R. To test the hypothesis, we compared the expression and localization of both CRF2 isoforms and whether CRF2β form stable protein complexes with D1R in HEK293 and ATR75 cell lines. We observed that the immunoreactivity for CRF2β was similar to that of CRF2α in the endoplasmic compartment but significantly higher in the Golgi compartment. Immunoprecipitation analysis showed that CRF2β forms a heteromeric protein complex with D1R. Furthermore, the protein complex formed by CRF2β and D1R was stable enough to change the sub-cellular localization of CRF2β when it was co-expressed with a construct of D1R bearing a nuclear localization signal. Immunofluorescence in A7R5 cells, which endogenously express CRF2β and D1R, shows significant colocalization of CRF2β with D1R. In conclusion, our results show that CRF2β forms a stable heteromeric protein complex with D1R, a potential new therapeutic target in tissues where both receptors are co-expressed, such as the septum in the brain, and heart, kidney, and skeletal muscle in the periphery.
Collapse
Affiliation(s)
- Hector E. Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
8
|
Squillacioti C, Pelagalli A, Liguori G, Mirabella N. Urocortins in the mammalian endocrine system. Acta Vet Scand 2019; 61:46. [PMID: 31585551 PMCID: PMC6778379 DOI: 10.1186/s13028-019-0480-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
Urocortins (Ucns), peptides belonging to the corticotropin-releasing hormone (CRH) family, are classified into Ucn1, Ucn2, and Ucn3. They are involved in regulating several body functions by binding to two G protein-coupled receptors: receptor type 1 (CRHR1) and type 2 (CRHR2). In this review, we provide a historical overview of research on Ucns and their receptors in the mammalian endocrine system. Although the literature on the topic is limited, we focused our attention particularly on the main role of Ucns and their receptors in regulating the hypothalamic-pituitary-adrenal and thyroid axes, reproductive organs, pancreas, gastrointestinal tract, and other tissues characterized by "diffuse" endocrine cells in mammals. The prominent function of these peptides in health conditions led us to also hypothesize an action of Ucn agonists/antagonists in stress and in various diseases with its critical consequences on behavior and physiology. The potential role of the urocortinergic system is an intriguing topic that deserves further in-depth investigations to develop novel strategies for preventing stress-related conditions and treating endocrine diseases.
Collapse
Affiliation(s)
- Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, 80137 Naples, Italy
| |
Collapse
|
9
|
Wierenga CE, Lavender JM, Hays CC. The potential of calibrated fMRI in the understanding of stress in eating disorders. Neurobiol Stress 2018; 9:64-73. [PMID: 30450374 PMCID: PMC6234260 DOI: 10.1016/j.ynstr.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Eating disorders (ED), including Anorexia Nervosa (AN), Bulimia Nervosa (BN), and Binge Eating Disorder (BED), are medically dangerous psychiatric disorders of unknown etiology. Accumulating evidence supports a biopsychosocial model that includes genetic heritability, neurobiological vulnerability, and psychosocial factors, such as stress, in the development and maintenance of ED. Notably, stress hormones influence appetite and eating, and dysfunction of the physiological stress response has been implicated in ED pathophysiology. Stress signals also appear associated with food reward neurocircuitry response in ED, providing a possible mechanism for the role of stress in appetite dysregulation. This paper provides a review of some of the interacting psychological, behavioral, physiological, and neurobiological mechanisms involved in the stress response among individuals with ED, and discusses novel neuroimaging techniques to address potential physiological confounds of studying neural correlates of stress in ED, such as calibrated fMRI.
Collapse
Affiliation(s)
| | - Jason M. Lavender
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Chelsea C. Hays
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| |
Collapse
|
10
|
Davis EG, Keller J, Hallmayer J, Pankow HR, Murphy GM, Gotlib IH, Schatzberg AF. Corticotropin-releasing factor 1 receptor haplotype and cognitive features of major depression. Transl Psychiatry 2018; 8:5. [PMID: 29317606 PMCID: PMC5802461 DOI: 10.1038/s41398-017-0051-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Corticotropin-releasing factor signaling through CRF receptor type 1 (CRF1) has been shown to contribute to learning and memory function. A haplotype of alleles T-A-T in a set of common polymorphisms in the gene encoding for CRF1 (CRHR1) has been associated with both depression vulnerability and alterations in cognitive functioning. The present study investigated the relations between the TAT haplotype and specific symptoms of depression, self-reported ruminative behaviors, and neuropsychological performance on a learning and memory task. Participants were adults with major depression with and without psychotic features (N = 406). Associations were examined between TAT haplotype and endorsement of depression symptoms from diagnostic interviews, scores on the rumination response scale (RRS), and verbal memory performance on the California Verbal Learning Test-II (CVLT-II). All analyses included depression subtype, age, and sex as covariates; CVLT-II analyses also included evening cortisol levels. Across the entire sample, carriers of more copies of the TAT haplotype reported greater endorsement of the symptom describing difficulty concentrating and making decisions. In separate subsamples, TAT homozygotes had higher rumination scores on the RRS, both brooding and reflection subscales, and more TAT copies were associated with poorer CVLT-II performance in both total learning and free recall trials. These data demonstrate that the CRHR1 TAT haplotype is associated with cognitive features of depression including difficulty with decision-making, higher rumination, and poorer learning and memory. It will be important in future research to identify the specific molecular mechanisms for CRF1 signaling that contribute to depression-related cognitive dysfunction.
Collapse
Affiliation(s)
- Elena Goetz Davis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
| | - Jennifer Keller
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| | - Joachim Hallmayer
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| | - Heather Ryan Pankow
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| | - Greer M. Murphy
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| | - Ian H. Gotlib
- 0000000419368956grid.168010.eDepartment of Psychology, Stanford University, Stanford, USA
| | - Alan F. Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
11
|
Slater PG, Gutierrez-Maldonado SE, Gysling K, Lagos CF. Molecular Modeling of Structures and Interaction of Human Corticotropin-Releasing Factor (CRF) Binding Protein and CRF Type-2 Receptor. Front Endocrinol (Lausanne) 2018; 9:43. [PMID: 29515519 PMCID: PMC5826306 DOI: 10.3389/fendo.2018.00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) system is a key mediator of the stress response and addictive behavior. The CRF system includes four peptides: The CRF system includes four peptides: CRF, urocortins I-III, CRF binding protein (CRF-BP) that binds CRF with high affinity, and two class B G-protein coupled receptors CRF1R and CRF2R. CRF-BP is a secreted protein without significant sequence homology to CRF receptors or to any other known class of protein. Recently, it has been described a potentiation role of CRF-BP over CRF signaling through CRF2R in addictive-related neuronal plasticity and behavior. In addition, it has been described that CRF-BP is capable to physically interact specifically with the α isoform of CRF2R and acts like an escort protein increasing the amount of the receptor in the plasma membrane. At present, there are no available structures for CRF-BP or for full-length CRFR. Knowing and studying the structure of these proteins could be beneficial in order to characterize the CRF-BP/CRF2αR interaction. In this work, we report the modeling of CRF-BP and of full-length CRF2αR and CRF2βR based on the recently solved crystal structures of the transmembrane domains of the human glucagon receptor and human CRF1R, in addition with the resolved N-terminal extracellular domain of CRFRs. These models were further studied using molecular dynamics simulations and protein-protein docking. The results predicted a higher possibility of interaction of CRF-BP with CRF2αR than CRF2βR and yielded the possible residues conforming the interacting interface. Thus, the present study provides a framework for further investigation of the CRF-BP/CRF2αR interaction.
Collapse
Affiliation(s)
- Paula G. Slater
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Katia Gysling, ; Carlos F. Lagos,
| | - Carlos F. Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Katia Gysling, ; Carlos F. Lagos,
| |
Collapse
|
12
|
Valentino RJ, Bangasser DA. Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179810 PMCID: PMC5286724 DOI: 10.31887/dcns.2016.18.4/rvalentino] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recognition that there are fundamental biological sex differences that extend beyond those that define sexual behavior and reproductive function has inspired the drive toward inclusion of both sexes in research design. This is supported by an underlying clinical rationale that studying both sexes is necessary to elucidate pathophysiology and develop treatments for the entire population. However, at a more basic level, sex differences, like genetic differences, can be exploited to better understand biology. Here, we discuss how sex differences at the molecular level of cell signaling and protein trafficking are amplified to create a state of vulnerability that under the right conditions can result in symptoms of neuropsychiatry disease. Although this dialogue focuses on the specific example of corticotropin-releasing factor, the potential for analogous sex differences in signaling and/or trafficking of receptors for other neuromodulators has broad biological and therapeutic implications.
Collapse
Affiliation(s)
- Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, USA
| |
Collapse
|
13
|
Varodayan FP, Correia D, Kirson D, Khom S, Oleata CS, Luu G, Schweitzer P, Roberto M. CRF modulates glutamate transmission in the central amygdala of naïve and ethanol-dependent rats. Neuropharmacology 2017; 125:418-428. [PMID: 28807676 DOI: 10.1016/j.neuropharm.2017.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 11/15/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) is hypothesized to drive the development of alcohol dependence, as it regulates ethanol intake and several anxiogenic behaviors linked to withdrawal. Excitatory glutamatergic neurotransmission contributes to alcohol reinforcement, tolerance and dependence. Therefore, in this study we used in vitro slice electrophysiology to investigate the effects of CRF and its receptor subtype (CRF1 and CRF2) antagonists on both evoked and spontaneous action potential-independent glutamatergic transmission in the CeA of naive and ethanol-dependent Sprague-Dawley rats. We found that CRF (25-200 nM) concentration-dependently diminished evoked compound excitatory postsynaptic potentials (EPSPs), but increased miniature excitatory postsynaptic current (mEPSC) frequencies similarly in CeA neurons of both naïve and ethanol-dependent rats, indicating reduced evoked glutamatergic responses and enhanced vesicular glutamate release, respectively. This CRF-induced vesicular glutamate release was prevented by the CRF1/2 antagonist (Astressin B) and the CRF1 antagonist (R121919), but not by the CRF2 antagonist (Astressin 2B). Similarly, CRF's effects on evoked glutamatergic responses were completely blocked by CRF1 antagonism, but only slightly decreased in the presence of the CRF2 antagonist. Moreover, CRF1 antagonism reveals a tonic facilitation of vesicular glutamate, whereas the CRF2 antagonism revealed a tonic inhibition of vesicular glutamate release. Collectively our data show that CRF primarily acts at presynaptic CRF1 to produce opposite effects on CeA evoked and spontaneous glutamate release and that the CRF system modulates CeA glutamatergic synapses throughout the development of alcohol dependence.
Collapse
Affiliation(s)
| | - Diego Correia
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Pharmacology, Universidade Federal do Paraná, Jardim das Américas, Curitiba, Paraná, CEP 81531-990, Brazil
| | - Dean Kirson
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Sophia Khom
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | | | - George Luu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul Schweitzer
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
14
|
Kumar N, Mishra SS, Sharma CS, Singh HP, Kalra S. In silico binding mechanism prediction of benzimidazole based corticotropin releasing factor-1 receptor antagonists by quantitative structure activity relationship, molecular docking and pharmacokinetic parameters calculation. J Biomol Struct Dyn 2017; 36:1691-1712. [PMID: 28521603 DOI: 10.1080/07391102.2017.1332688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite the various research efforts toward the treatment of stress-related disorders, the drug has not yet launched last 20 years. Corticotropin releasing factor-1 receptor antagonists have been point of great interest in stress-related disorders. In the present study, we have selected benzazole scaffold-based compounds as corticotropin releasing factor-1 antagonists and performed 2D and 3D QSAR studies to identify the structural features to elucidating the binding mechanism prediction. The best 2D QSAR model was obtained through multiple linear regression method with r2 value of .7390, q2 value of .5136 and pred_r2 (predicted square correlation coefficient) value of .88. The contribution of 2D descriptor, T_2_C_1 was 60% (negative contribution) and 4pathClusterCount was 40.24% (positive contribution) in enhancing the activity. Also 3D QSAR model was statistically significant with q2 value of .9419 and q2_se (standard error of internal validation) value of .19. Statistical parameters results prove the robustness and significance of both models. Further, molecular docking and pharmacokinetic analysis was performed to explore the scope of investigation. Docking results revealed that the all benzazole compounds show hydrogen bonding with residue Asn283 and having same hydrophobic pocket (Phe286, Leu213, Ile290, Leu287, Phe207, Arg165, Leu323, Tyr327, Phe284, and Met206). Compound B14 has higher activity compare to reference molecules. Most of the compounds were found within acceptable range for pharmacokinetic parameters. This work provides the extremely useful leads for structural substituents essential for benzimidazole moiety to exhibit antagonistic activity against corticotropin releasing factor-1 receptors.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Department of Pharmaceutical Chemistry , Geetanjali College of Pharmacy , Udaipur 313001 , India
| | - Shashank Shekhar Mishra
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Chandra Shekhar Sharma
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Hamendra Pratap Singh
- b Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy , Bhupal Nobles' University , Udaipur 313001 , India
| | - Sourav Kalra
- c Centre for Human Genetics & Molecular Medicine , Central University of Punjab , Bhatinda 151001 , India
| |
Collapse
|
15
|
Pinelli CJ, Leri F, Turner PV. Long Term Physiologic and Behavioural Effects of Housing Density and Environmental Resource Provision for Adult Male and Female Sprague Dawley Rats. Animals (Basel) 2017; 7:ani7060044. [PMID: 28587152 PMCID: PMC5483607 DOI: 10.3390/ani7060044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
There is considerable interest in refining laboratory rodent environments to promote animal well-being, as well as research reproducibility. Few studies have evaluated the long term impact of enhancing rodent environments with resources and additional cagemates. To that end, male and female Sprague Dawley (SD) rats were housed singly (n = 8/sex), in pairs (n = 16/sex), or in groups of four (n = 16/sex) for five months. Single and paired rats were housed in standard cages with a nylon chew toy, while group-housed rats were kept in double-wide cages with two PVC shelters and a nylon chew toy and were provided with food enrichment three times weekly. Animal behaviour, tests of anxiety (open field, elevated plus maze, and thermal nociception), and aspects of animal physiology (fecal corticoid levels, body weight, weekly food consumption, organ weights, and cerebral stress signaling peptide and receptor mRNA levels) were measured. Significant differences were noted, primarily in behavioural data, with sustained positive social interactions and engagement with environmental resources noted throughout the study. These results suggest that modest enhancements in the environment of both male and female SD rats may be beneficial to their well-being, while introducing minimal variation in other aspects of behavioural or physiologic responses.
Collapse
Affiliation(s)
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
16
|
Syed SA, Nemeroff CB. Early Life Stress, Mood, and Anxiety Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017694461. [PMID: 28649671 PMCID: PMC5482282 DOI: 10.1177/2470547017694461] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
Early life stress has been shown to exert profound short- and long-term effects on human physiology both in the central nervous system and peripherally. Early life stress has demonstrated clear association with many psychiatric disorders including major depression, posttraumatic stress disorder, and bipolar disorder. The Diagnostic and Statistics Manuel of Mental Disorders (DSM) diagnostic categorical system has served as a necessary framework for clinical service, delivery, and research, however has not been completely matching the neurobiological research perspective. Early life stress presents a complex dynamic featuring a wide spectrum of physiologic alterations: from epigenetic alterations, inflammatory changes, to dysregulation of the hypothalamic pituitary axis and has further added to the challenge of identifying biomarkers associated with psychiatric disorders. The National Institute of Mental Health's proposed Research Domain Criteria initiative incorporates a dimensional approach to assess discrete domains and constructs of behavioral function that are subserved by identifiable neural circuits. The current neurobiology of early life stress is reviewed in accordance with dimensional organization of Research Domain Criteria matrix and how the findings as a whole fit within the Research Domain Criteria frameworks.
Collapse
Affiliation(s)
- Shariful A. Syed
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
MAGI Proteins Regulate the Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1 via a Compensatory Mechanism. J Mol Signal 2016; 11:5. [PMID: 31051013 PMCID: PMC5345131 DOI: 10.5334/1750-2187-11-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Corticotropin-releasing factor (CRF) receptor1 (CRFR1) is associated with psychiatric illness and is a proposed target for the treatment of anxiety and depression. Similar to many G protein-coupled receptors (GPCRs), CRFR1 harbors a PDZ (PSD-95/Disc Large/Zona Occludens)-binding motif at the end of its carboxyl-terminal tail. The interactions of PDZ proteins with GPCRs are crucial for the regulation of receptor function. In the present study, we characterize the interaction of all members of the membrane-associated guanylate kinase with inverted orientation PDZ (MAGI) proteins with CRFR1. We show using co-immunoprecipitation that CRFR1 interacts with MAGI-1 and MAGI-3 in human embryonic kidney (HEK293) cells in a PDZ motif-dependent manner. We find that overexpression as well as knockdown of MAGI proteins result in a significant reduction in CRFR1 endocytosis. This effect is dependent on an intact PDZ binding motif for MAGI-2 and MAGI-3 but not MAGI-1. We show that the alteration in expression levels of MAGI-1, MAGI-2 or MAGI-3 can interfere with β-arrestin recruitment to CRFR1. This could explain the effects observed with receptor internalization. We also find that knockdown of endogenous MAGI-1, MAGI-2 or MAGI-3 in HEK293 cells can lead to an enhancement in ERK1/2 signaling but has no effect on cAMP formation. Interestingly, we observe a compensation effect between MAGI-1 and MAGI-3. Taken together, our data suggest that the MAGI proteins, MAGI-1, MAGI-2 and MAGI-3 can regulate β-arrestin-mediated internalization of CRFR1 as well as its signaling and that there is a compensatory mechanism involved in regulating the function of the MAGI subfamily.
Collapse
|
18
|
Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct 2016; 222:1705-1732. [PMID: 27638512 DOI: 10.1007/s00429-016-1303-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.
Collapse
|
19
|
Heit S, Owens MJ, Plotsky P, Nemeroff CB. ■ REVIEW : Corticotropin-releasing Factor, Stress, and Depression. Neuroscientist 2016. [DOI: 10.1177/107385849700300312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF), a 41 amino acid-containing neuropeptide, acts both as a hypothalamic releasing factor, controlling ACTH and corticosteroid secretion, and at extrahypothalamic CNS sites to mod ulate mammalian organisms' responses to stress. In this article, the evidence that CRF-containing neurons within the CNS are hyperactive in patients with depression is reviewed. The evidence, taken together, suggests that during depressive episodes, CRF is hypersecreted, resulting in both pituitary-adrenal axis hyperactivity and certain of the signs and symptoms of depression, including decreased appetite, decreased libido and disturbed sleep. There is also evidence that treatments for depression, including antidepressant medications and electroconvulsive therapy, reduce CRF hypersecretion within the CNS. Finally, evidence suggests that alterations in CRF-containing neurons and receptors are responsible for the widely held ob servation that early untoward life events increase an individual's vulnerability for affective disorders. These findings have a number of implications for treatment of the mood disorders, including the suggestion that the pharmacological manipulation of CRF receptors may provide a novel avenue for the treatment of de pression. NEUROSCIENTIST 3:186-194, 1997
Collapse
Affiliation(s)
- Stacey Heit
- Department of Psychiatry and Behavioral Sciences
| | | | - Paul Plotsky
- Department of Psychiatry and Behavioral Sciences, Department of Anatomy and Cell Biology Emory University
School of Medicine Atlanta, Georgia
| | | |
Collapse
|
20
|
Telegdy G, Kovács AK, Rákosi K, Zarándi M, Tóth GK. Antiamnesic properties of analogs and mimetics of the tripeptide human urocortin 3. Amino Acids 2016; 48:2261-6. [PMID: 27262310 DOI: 10.1007/s00726-016-2268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Amnesia is a deficit in memory caused by brain damage, disease, or trauma. Until now, there are no successful medications on the drug market available to treat amnesia. Short analogs and mimetics of human urocortin 3 (Ucn 3) tripeptide were synthetized and tested for their action against amnesia induced by eletroconvulsion in mice. Among the 16 investigated derivatives of Ucn 3 tripeptide, eight compounds displayed antiamnesic effect. Our results proved that the configuration of chiral center of glutamine does not affect the antiamnesic properties. Alkyl amide or isoleucyl amide at the C-terminus may lead to antiamnesic compounds. As concerned the N-terminus, acetyl, Boc, and alkyl ureido moieties were found among the active analogs, but the free amino function at the N-terminus usually led to an inactive derivatives. These observations may lead to the design and synthesis of small peptidomimetics and amino acid derivatives as antiamnesic drug candidates, although the elucidation of the mechanism of the action requires further investigations.
Collapse
Affiliation(s)
- Gyula Telegdy
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Semmelweis u. 1, Szeged, 6725, Hungary
| | - Anita Kármen Kovács
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| | - Kinga Rákosi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| | - Márta Zarándi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary.
| |
Collapse
|
21
|
Zitnik GA. Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Res 2016; 1641:338-50. [DOI: 10.1016/j.brainres.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
|
22
|
PSD-95 regulates CRFR1 localization, trafficking and β-arrestin2 recruitment. Cell Signal 2016; 28:531-540. [PMID: 26898829 DOI: 10.1016/j.cellsig.2016.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide commonly associated with the hypothalamic-pituitary adrenal axis stress response. Upon release, CRF activates two G protein-coupled receptors (GPCRs): CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2). Although both receptors contribute to mood regulation, CRFR1 antagonists have demonstrated anxiolytic and antidepressant-like properties that may be exploited in the generation of new pharmacological interventions for mental illnesses. Previous studies have demonstrated CRFR1 capable of heterologously sensitizing serotonin 2A receptor (5-HT2AR) signaling: another GPCR implicated in psychiatric disease. Interestingly, this phenomenon was dependent on Postsynaptic density 95 (PSD-95)/Disc Large/Zona Occludens (PDZ) interactions on the distal carboxyl termini of both receptors. In the current study, we demonstrate that endogenous PSD-95 can be co-immunoprecipitated with CRFR1 from cortical brain homogenate, and this interaction appears to be primarily via the PDZ-binding motif. Additionally, PSD-95 colocalizes with CRFR1 within the dendritic projections of cultured mouse neurons in a PDZ-binding motif-dependent manner. In HEK 293 cells, PSD-95 overexpression inhibited CRFR1 endocytosis, whereas PSD-95 shRNA knockdown enhanced CRFR1 endocytosis. Although PSD-95 does not appear to play a significant role in CRF-mediated cAMP or ERK1/2 signaling, PSD-95 was demonstrated to suppress β-arrestin2 recruitment: providing a potential mechanism for PSD-95's inhibition of endocytosis. In revisiting previously documented heterologous sensitization, PSD-95 shRNA knockdown did not prevent CRFR1-mediated enhancement of 5-HT2AR signaling. In conclusion, we have identified and characterized a novel functional relationship between CRFR1 and PSD-95 that may have implications in the design of new treatment strategies for mental illness.
Collapse
|
23
|
Hoffman JM, Baritaki S, Ruiz JJ, Sideri A, Pothoulakis C. Corticotropin-Releasing Hormone Receptor 2 Signaling Promotes Mucosal Repair Responses after Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:134-44. [PMID: 26597886 DOI: 10.1016/j.ajpath.2015.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/10/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023]
Abstract
The corticotropin-releasing hormone family mediates functional responses in many organs, including the intestine. Activation of corticotropin-releasing hormone receptor 2 (CRHR2) in the colonic mucosa promotes inflammation during acute colitis but inhibits inflammation during chronic colitis. We hypothesized that specific modulation of CRHR2 signaling in the colonic mucosa can promote restoration of the epithelium through stimulation of cell proliferative, migratory, and wound healing responses. Mucosal repair was assessed after dextran sodium sulfate (DSS)-induced colitis in mice receiving intracolonic injections of a CRHR2 antagonist or vehicle and in Crhr2(-/-) mice. Histologic damage, cytokine expression, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, and Ki-67 immunoreactivity were evaluated. Cell viability, proliferation, and migration were compared between parental and CRHR2-overexpressing colonic epithelial cells. Protein lysates were processed for phosphoprotein assays and a wound healing assay performed in vitro. Administration of a CRHR2 antagonist after DSS-induced colitis increased disease activity, delayed healing, and decreased epithelial cell proliferation in vivo. Colons from these mice also showed increased apoptosis and proinflammatory cytokine expression. Compared with controls, Crhr2(-/-) mice showed increased mortality in the DSS healing protocol. CRHR2-overexpressing cells had increased proliferation and migration compared with parental cells. Wound healing and signal transducer and activator of transcription 3 activity were elevated in CRHR2-overexpressing cells after urocortin 2 and IL-6 treatment, suggesting advanced healing progression. Our results suggest that selective CRHR2 activation may provide a targeted approach to enhance mucosal repair pathways after colitis.
Collapse
Affiliation(s)
- Jill M Hoffman
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stavroula Baritaki
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jonathan J Ruiz
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aristea Sideri
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
24
|
Hammad MM, Dunn HA, Walther C, Ferguson SSG. Role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in regulating the trafficking and signaling of corticotropin-releasing factor receptor 1. Cell Signal 2015; 27:2120-30. [PMID: 26115868 DOI: 10.1016/j.cellsig.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Corticotropin releasing factor (CRF) receptor1 (CRFR1) is associated with psychiatric illness and is a proposed target for the treatment of anxiety and depression. Like many G protein-coupled receptors (GPCRs), CRFR1 harbors a PDZ (PSD95/Disc Large/Zona Occludens 1)-binding motif at the end of its carboxyl terminal tail. The interactions of PDZ proteins with GPCRs are crucial for the regulation of their receptor function. In the present study, we characterize the interaction of the cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) with CRFR1. We show using co-immunoprecipitation that the two proteins interact in human embryonic kidney (HEK293) cells in a PDZ motif-dependent manner. We find that the interaction occurs at the Golgi apparatus and that overexpression of CAL retains a proportion of CRFR1 in the intracellular compartment and prevents trafficking to the cell surface. We also demonstrate a significant reduction in the levels of receptor at the plasma membrane upon CAL overexpression, as well as a reduction in internalization. We find that the overexpression of CAL in HEK293 cells resulted in a significant decrease in CRF-stimulated extracellular-regulated protein kinase 1/2 (ERK1/2) phosphorylation, but has no effect on cAMP signaling mediated by the receptor. This effect was dependent on an intact PDZ motif and knockdown of CAL expression using CAL siRNA results in a significant enhancement in ERK1/2 signaling. We show that CAL contributes to the regulation of CRFR1 glycosylation and utilize glycosylation-deficient CRFR1 mutants to further examine the role of glycosylation in the cell surface trafficking of CRFR1. We find that the mutation of Asn residues 90 and 98 results in a reduction in cell surface CRFR1 that is comparable to the effect of CAL overexpression and that these mutants are retained in the Golgi apparatus. Mutation of Asn residues 90 and 98 also results in a decrease in the efficacy for CRF-stimulated cAMP formation mediated by CRFR1. Taken together, our data suggest that CAL can regulate the anterograde trafficking, the internalization as well as the signaling of CRFR1 via modulating the post-translational modifications that the receptor undergoes at the Golgi apparatus.
Collapse
Affiliation(s)
- Maha M Hammad
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Henry A Dunn
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr. Ottawa, Ontario K1H 8M5, Canada
| | - Cornelia Walther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr. Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
25
|
Long J, Lee WS, Chough C, Bae IH, Kim BM. Synthesis toward CRHR1 Antagonists through 2,7-Dimethylpyrazolo[1,5-α][1,3,5]triazin-4(3H)-one C–H Arylation. J Org Chem 2015; 80:4716-21. [DOI: 10.1021/jo502894r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghai Long
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Woong-Sup Lee
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chieyeon Chough
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Il Hak Bae
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - B. Moon Kim
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
26
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
27
|
Walther C, Caetano FA, Dunn HA, Ferguson SSG. PDZK1/NHERF3 differentially regulates corticotropin-releasing factor receptor 1 and serotonin 2A receptor signaling and endocytosis. Cell Signal 2015; 27:519-31. [PMID: 25562428 DOI: 10.1016/j.cellsig.2014.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/18/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
The corticotropin-releasing factor receptor 1 (CRFR1) and serotonin 2A receptor (5-HT2AR) are linked to cellular mechanisms underlying stress anxiety and depression. Both receptors are members of the G protein-coupled receptor (GPCR) superfamily and encode class I PSD-95/DiscsLarge/Zona Occludens 1 (PDZ) binding motifs (-S/T-x-V/I/L) at the end of their carboxyl-terminal tails. We have identified PDZK1, also referred to as Na(+)/H(+) exchange regulatory cofactor 3 (NHERF3) as both a CRFR1- and 5-HT2AR-interacting protein. We have examined whether PDZK1 plays a role in regulating both CRFR1 and 5-HT2AR activity. We find that while PDZK1 interactions with CRFR1 are PDZ binding motif-dependent, PDZK1 associates with 5-HT2AR in a PDZ binding motif-independent manner and CRFR1 expression, but not 5-HT2AR expression, redistributes PDZK1 to the plasma membrane in PDZ binding motif-dependent manner. PDZK1, negatively regulates 5-HT2AR endocytosis and has no effect upon 5-HT2AR-mediated ERK1/2 phosphorylation. In contrast, PDZK1 overexpression does not affect CRFR1 endocytosis, but selectively increases CRFR1-stimulated ERK1/2 phosphorylation. Similar to what has been previously reported for PSD-95 and SAP97, PDZK1 positively influences 5-HT2AR-stimulated inositol phosphate formation, but does not contribute to the regulation of CRFR1-mediated cAMP signaling. Taken together, these results indicate that PDZK1 differentially regulates the signaling and trafficking of CRFR1 and 5-HT2AR via PDZ-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute
| | | | - Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute; Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr., London, Ontario, Canada, N6A5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute; Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr., London, Ontario, Canada, N6A5K8.
| |
Collapse
|
28
|
Moore CJ, Johnson ZP, Higgins M, Toufexis D, Wilson ME. Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment. J Neuroendocrinol 2015; 27:33-43. [PMID: 25674637 PMCID: PMC4309459 DOI: 10.1111/jne.12232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding.
Collapse
|
29
|
Lasheras MC, Laorden ML, Milanés MV, Núñez C. Corticotropin-releasing factor 1 receptor mediates the activity of the reward system evoked by morphine-induced conditioned place preference. Neuropharmacology 2014; 95:168-80. [PMID: 25556110 DOI: 10.1016/j.neuropharm.2014.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022]
Abstract
Different neurotransmitter systems are involved in behavioural and molecular responses to morphine. The brain stress system is activated by acute administration of drugs of abuse, being CRF the main neuropeptide of this circuitry. In this study we have studied the role of CRF1R in the rewarding effects of morphine using the CPP paradigm. For that, animals were treated with a CRF1R antagonist (CP-154,526) or vehicle during 6 days. Thirty min after receiving the antagonist, mice were injected with morphine on the same days that CP-154,526 was administered; another group received saline on the same days that vehicle was administered, and both groups were immediately conditioned. Control animals received vehicle and saline every day. On day 7, animals were tested for morphine-induced CPP. c-Fos, TH and OXA immunohistochemistry, NA turnover (HPLC), and corticosterone plasma concentration (RIA) were evaluated. Administration of a CRF1R antagonist CP-154,526 blocked the morphine-induced CPP and the increased NA turnover in the NAc in morphine-paired mice. CP-154-526 antagonised the enhancement in c-Fos expression evoked by morphine-induced CPP in the VTA and NAc, and the activation of the orexinergic neurons in the LLH. Present work demonstrates that morphine-induced CPP activates different brain areas involved in reward, and points out a critical role of CRF1R in molecular changes involved in morphine-conducted behaviours. Thus, our study supports a therapeutic potential of CRF1R antagonists in addictive disorders.
Collapse
Affiliation(s)
- M Carmen Lasheras
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - M Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain.
| |
Collapse
|
30
|
Xiao Yao San Improves Depressive-Like Behaviors in Rats with Chronic Immobilization Stress through Modulation of Locus Coeruleus-Norepinephrine System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:605914. [PMID: 25610478 PMCID: PMC4291141 DOI: 10.1155/2014/605914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022]
Abstract
Most research focuses on the hypothalamic-pituitary-adrenal (HPA) axis, hypothalamus-pituitary-thyroid (HPT) axis, and hypothalamus-pituitary-gonadal (HPGA) axis systems of abnormalities of emotions and behaviors induced by stress, while no studies of Chinese herbal medicine such as Xiao Yao San (XYS) on the mechanisms of locus coeruleus-norepinephrine (LC-NE) system have been reported. Therefore, experiments were carried out to observe mechanism of LC-NE system in response to chronic immobilization stress (CIS) and explore the antidepressant effect of XYS. Rat model was established by CIS. LC morphology in rat was conducted. The serum norepinephrine (NE) concentrations and NE biosynthesis such as tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), and corticotrophin-releasing-factor (CRF) in LC were determined. Results showed that there were no discernible alterations in LC in rats. The serum NE concentrations, positive neurons, mean optical density (MOD), and protein levels of TH, DBH, and CRF in model group were significantly increased compared to the control group. But XYS-treated group displayed a significantly decreased in NE levels and expressions of TH, DBH, and CRF compared to the model group. In conclusion, CIS can activate LC-NE system to release NE and then result in a significant decrease in rats. XYS treatment can effectively improve depressive-like behaviors in rats through inhibition of LC-NE neurons activity.
Collapse
|
31
|
Reyes BAS, Bangasser DA, Valentino RJ, Van Bockstaele EJ. Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci 2014; 112:2-9. [PMID: 25058917 DOI: 10.1016/j.lfs.2014.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) is a critical determinant of cellular sensitivity of neurons. To understand how endogenous or exogenous ligands impact cell surface expression of GPCRs, it is essential to employ approaches that achieve superior anatomical resolution at the synaptic level. In situations in which light and fluorescence microscopy techniques may provide only limited resolution, electron microscopy provides enhanced subcellular precision. Dual labeling immunohistochemistry employing visually distinct immunoperoxidase and immunogold markers has been an effective approach for elucidating complex receptor profiles at the synapse and to definitively establish the localization of individual receptors and neuromodulators to common cellular profiles. The immuno-electron microscopy approach offers the potential for determining membrane versus intracellular protein localization, as well as the association with various identifiable cellular organelles. Corticotropin-releasing factor (CRF) is an important regulator of endocrine, autonomic, immunological, behavioral and cognitive limbs of the stress response. Dysfunction of this neuropeptide system has been associated with several psychiatric disorders. This review summarizes findings from neuroanatomical studies, with superior spatial resolution, that indicate that the distribution of CRF receptors is a highly dynamic process that, in addition to being sexually dimorphic, involves complex regulation of receptor trafficking within extrasynaptic sites that have significant consequences for adaptations to stress, particularly within the locus coeruleus (LC), the major brain norepinephrine-containing nucleus.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - D A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - R J Valentino
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
32
|
Lawson EA, Holsen LM, DeSanti R, Santin M, Meenaghan E, Herzog DB, Goldstein JM, Klibanski A. Increased hypothalamic-pituitary-adrenal drive is associated with decreased appetite and hypoactivation of food-motivation neurocircuitry in anorexia nervosa. Eur J Endocrinol 2013; 169:639-47. [PMID: 23946275 PMCID: PMC3807591 DOI: 10.1530/eje-13-0433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Corticotrophin-releasing hormone (CRH)-mediated hypercortisolemia has been demonstrated in anorexia nervosa (AN), a psychiatric disorder characterized by food restriction despite low body weight. While CRH is anorexigenic, downstream cortisol stimulates hunger. Using a food-related functional magnetic resonance imaging (fMRI) paradigm, we have demonstrated hypoactivation of brain regions involved in food motivation in women with AN, even after weight recovery. The relationship between hypothalamic-pituitary-adrenal (HPA) axis dysregulation and appetite and the association with food-motivation neurocircuitry hypoactivation are unknown in AN. We investigated the relationship between HPA activity, appetite, and food-motivation neurocircuitry hypoactivation in AN. DESIGN Cross-sectional study of 36 women (13 AN, ten weight-recovered AN (ANWR), and 13 healthy controls (HC)). METHODS Peripheral cortisol and ACTH levels were measured in a fasting state and 30, 60, and 120 min after a standardized mixed meal. The visual analog scale was used to assess homeostatic and hedonic appetite. fMRI was performed during visual processing of food and non-food stimuli to measure the brain activation pre- and post-meal. RESULTS In each group, serum cortisol levels decreased following the meal. Mean fasting, 120 min post-meal, and nadir cortisol levels were high in AN vs HC. Mean postprandial ACTH levels were high in ANWR compared with HC and AN subjects. Cortisol levels were associated with lower fasting homeostatic and hedonic appetite, independent of BMI and depressive symptoms. Cortisol levels were also associated with between-group variance in activation in the food-motivation brain regions (e.g. hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula). CONCLUSIONS HPA activation may contribute to the maintenance of AN by the suppression of appetitive drive.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Laura M. Holsen
- Division of Women’s Health, Department of Medicine, and Department of Psychiatry, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120
| | - Rebecca DeSanti
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - McKale Santin
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - David B. Herzog
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jill M. Goldstein
- Division of Women’s Health, Department of Medicine, and Department of Psychiatry, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02120
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
33
|
Wood SK, Zhang XY, Reyes BA, Lee CS, Van Bockstaele EJ, Valentino RJ. Cellular adaptations of dorsal raphe serotonin neurons associated with the development of active coping in response to social stress. Biol Psychiatry 2013; 73:1087-94. [PMID: 23452664 PMCID: PMC3648616 DOI: 10.1016/j.biopsych.2013.01.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Social stress is a risk factor for affective disorders for certain vulnerable individuals. Stress and depression are linked in part through regulation of the dorsal raphe (DR)-serotonin (5-HT) system by the stress-related neuropeptide, corticotropin-releasing factor (CRF). We used a rat social stress model that shows individual differences in coping strategies to determine whether differences in CRF-5-HT interactions underlie individual differences in the vulnerability to social stress. METHODS Rats were exposed to the resident-intruder model of social stress for 5 days. In vivo single-unit recordings assessed DR-5-HT neuronal responses to CRF and immunoelectron microscopy assessed CRF1 and CRF2 cellular localization 24 hours after the last stress. RESULTS Rats responded to social stress passively, assuming defeat with short latencies (48%), or actively, with proactive behaviors and longer defeat latencies (LL, 52%). Whereas CRF (30 ng, intra-DR) inhibited 5-HT neuronal activity of control and SL rats, it activated 5-HT neurons of LL rats, an effect that was CRF2-mediated. Consistent with this, social stress promoted CRF1 internalization together with CRF2 recruitment to the plasma membrane of DR neurons selectively in LL rats. CONCLUSIONS These data suggest that a proactive coping strategy toward social stress is associated with a redistribution of CRF1 and CRF2 in DR-5-HT neurons that primes the system to be activated by subsequent stress. The lack of this adaptation in passive coping rats may contribute to their depressive-like phenotype. These studies provide a cellular mechanism for individual differences in stress responses and consequences.
Collapse
Affiliation(s)
- Susan K. Wood
- Department of Anesthesia and Critical Care Medicine, Division of Stress Neurobiology, The Children’s Hospital of Philadelphia, Civic Center Blvd., Philadelphia, PA 19104
| | - Xiao-Yan Zhang
- Department of Anesthesia and Critical Care Medicine, Division of Stress Neurobiology, The Children’s Hospital of Philadelphia, Civic Center Blvd., Philadelphia, PA 19104
| | - Beverly A.S. Reyes
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, PA 19107
| | - Catherine S. Lee
- Department of Anesthesia and Critical Care Medicine, Division of Stress Neurobiology, The Children’s Hospital of Philadelphia, Civic Center Blvd., Philadelphia, PA 19104
| | - Elisabeth J. Van Bockstaele
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, PA 19107
| | - Rita J. Valentino
- Department of Anesthesia and Critical Care Medicine, Division of Stress Neurobiology, The Children’s Hospital of Philadelphia, Civic Center Blvd., Philadelphia, PA 19104
| |
Collapse
|
34
|
Dunn HA, Walther C, Godin CM, Hall RA, Ferguson SSG. Role of SAP97 protein in the regulation of corticotropin-releasing factor receptor 1 endocytosis and extracellular signal-regulated kinase 1/2 signaling. J Biol Chem 2013; 288:15023-34. [PMID: 23576434 DOI: 10.1074/jbc.m113.473660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The corticotropin-releasing factor (CRF) receptor 1 (CRFR1) is a target for the treatment of psychiatric diseases such as depression, schizophrenia, anxiety disorder, and bipolar disorder. The carboxyl-terminal tail of the CRFR1 terminates in a PDZ-binding motif that provides a potential site for the interaction of PSD-95/Discs Large/Zona Occludens 1 (PDZ) domain-containing proteins. In this study, we found that CRFR1 interacts with synapse-associated protein 97 (SAP97; also known as DLG1) by co-immunoprecipitation in human embryonic 293 (HEK 293) cells and cortical brain lysates and that this interaction is dependent upon an intact PDZ-binding motif at the end of the CRFR1 carboxyl-terminal tail. Similarly, we demonstrated that SAP97 is recruited to the plasma membrane in HEK 293 cells expressing CRFR1 and that mutation of the CRFR1 PDZ-binding motif results in the redistribution of SAP97 into the cytoplasm. Overexpression of SAP97 antagonized agonist-stimulated CRFR1 internalization, whereas single hairpin (shRNA) knockdown of endogenous SAP97 in HEK 293 cells resulted in increased agonist-stimulated CRFR1 endocytosis. CRFR1 was internalized as a complex with SAP97 resulting in the redistribution of SAP97 to endocytic vesicles. Overexpression or shRNA knockdown of SAP97 did not significantly affect CRFR1-mediated cAMP formation, but SAP97 knockdown did significantly attenuate CRFR1-stimulated ERK1/2 phosphorylation in a PDZ interaction-independent manner. Taken together, our studies show that SAP97 interactions with CRFR1 attenuate CRFR1 endocytosis and that SAP97 is involved in coupling G protein-coupled receptors to the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Henry A Dunn
- J Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
35
|
Valentino RJ, Bangasser D, Van Bockstaele EJ. Sex-biased stress signaling: the corticotropin-releasing factor receptor as a model. Mol Pharmacol 2013; 83:737-45. [PMID: 23239826 PMCID: PMC3608440 DOI: 10.1124/mol.112.083550] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022] Open
Abstract
Sex differences in the prevalence or severity of many diseases and in the response to pharmacological agents are well recognized. Elucidating the biologic bases of these differences can advance our understanding of the pathophysiology of disease and facilitate the development of treatments. Despite the importance to medicine, this has been an area of limited research. Here, we review physiologic, cellular, and molecular findings supporting the idea that there are sex differences in receptor signaling and trafficking that can be determinants of pathology. The focus is on the receptor for corticotropin-releasing factor (CRF), the orchestrator of the stress response, which has been implicated in diverse stress-related diseases that show a female prevalence. Data are reviewed that show sex differences in the association of the CRF receptor (CRF1) with the Gs protein and β-arrestin 2 that would render females more responsive to acute stress and less able to adapt to chronic stress as a result of compromised CRF1 internalization. Because β-arrestin 2 serves to link CRF1 to Gs-independent signaling pathways, this sex-biased signaling is proposed to result in distinct cellular responses to stress that are translated to different physiologic and behavioral coping mechanisms and that can have different pathologic consequences. Because stress has been implicated in diverse medical and psychiatric diseases, these sex differences in CRF1 signaling could explain sex differences in a multitude of disorders. The possibility that analogous sex differences may occur with other G-protein-coupled receptors underscores the impact of this effect and is discussed.
Collapse
Affiliation(s)
- Rita J Valentino
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
36
|
Janssen D, Kozicz T. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front Endocrinol (Lausanne) 2013; 4:28. [PMID: 23487366 PMCID: PMC3594922 DOI: 10.3389/fendo.2013.00028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/22/2013] [Indexed: 11/13/2022] Open
Abstract
Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing factor (CRF) and CRF related neuropeptides, including urocortins 1, 2, and 3. They mediate their actions by binding to CRF receptors (CRFR) 1 and 2, which are located in several stress-related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly) opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate.
Collapse
Affiliation(s)
- Donny Janssen
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Department of Anatomy, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Human Genetics Center, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
37
|
Zhou F, He MM, Liu ZF, Zhang L, Gao BX, Wang XD. Expression of corticotrophin-releasing hormone and its receptor in patients with intrahepatic cholestasis of pregnancy. Placenta 2013; 34:401-6. [PMID: 23478074 DOI: 10.1016/j.placenta.2013.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disorders. Although various biological effects of corticotrophin-releasing hormone (CRH) has in pregnancy have been reported, its activities in patients with ICP are lacking. Here we evaluated CRH and its receptor (CRH-R1) expression in placenta and serum in control and ICP patients, to assess their potential activities in the ICP pathogenesis. METHODS AND MATERIALS Placental tissues were obtained from the control and ICP patients (10 cases for each group) between 37 and 39 gestational weeks. Immunohistochemistry, Western Blotting and real-time PCR analysis were used to detect the CRH and CRH-R1 expression in placenta. Meanwhile, maternal serums were analyzed for detecting CRH in the control and ICP patients (80 cases for each group) in 34-37 gestational weeks. All data were observed and recorded for comparing and analyzing in control and ICP patients. RESULTS CRH staining was found in syncytiotrophoblast and feto-placental vascular endothelium cells of placenta, whereas CRH-R1 staining was found in syncytiotrophoblast by using immunohistochemical analysis. The CRH expression level in ICP placenta was significantly lower than those results in controls (P < 0.01). For CRH-R1, CRH mRNA and CRH-R1 mRNA expressions, no statistical differences were found between control and ICP groups (all P > 0.05). Serum CRH levels increased in both control and ICP groups, but the growth rate was limited in ICP group, especially in late pregnancy (P < 0.05). CONCLUSIONS The down-regulation of CRH in ICP placentas and the limited growth rate of CRH in the maternal serum of ICP patients might impair the blood flow regulation of the utero-placental-fetal unit, which might result in poor fetoplacental vascular perfusion and adverse pregnancy outcomes. CRH might play a significant role in the pathogenesis of ICP and provide a new approach to further investigate the etiology of ICP.
Collapse
Affiliation(s)
- F Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan 610041, China
| | | | | | | | | | | |
Collapse
|
38
|
Synthesis and structure-activity relationships of 8-substituted-2-aryl-5-alkylaminoquinolines: Potent, orally active corticotropin-releasing factor-1 receptor antagonists. Bioorg Med Chem 2012; 20:6559-78. [PMID: 23062820 DOI: 10.1016/j.bmc.2012.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 11/20/2022]
Abstract
We previously reported a series of 8-methyl-2-aryl-5-alkylaminoquinolines as a novel class of corticotropin-releasing factor-1 (CRF(1)) receptor antagonists. A critical issue encountered for this series of compounds was low aqueous solubility at physiological pH (pH 7.4). To address this issue, derivatization at key sites (R(2), R(3), R(5), R(5'), and R(8)) was performed and the relationships between structure and solubility were examined. As a result, it was revealed that introduction of a methoxy substituent at the C(8) position had a positive impact on the solubility of the derivatives. Consequently, through in vivo and in vitro biological studies, compound 21d was identified as a potent, orally active CRF(1) receptor antagonist with improved physicochemical properties.
Collapse
|
39
|
Takeda K, Terauchi T, Hashizume M, Shin K, Ino M, Shibata H, Yonaga M. Design, synthesis, and structure–activity relationships of a series of 2-Ar-8-methyl-5-alkylaminoquinolines as novel CRF1 receptor antagonists. Bioorg Med Chem Lett 2012; 22:5372-8. [DOI: 10.1016/j.bmcl.2012.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 01/03/2023]
|
40
|
Takeda K, Terauchi T, Shin K, Ino M, Shibata H, Yonaga M. Design, synthesis and structure–activity relationships of 5-alkylaminolquinolines as a novel series of CRF1 receptor antagonists. Bioorg Med Chem Lett 2012; 22:4756-61. [DOI: 10.1016/j.bmcl.2012.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 01/02/2023]
|
41
|
Tran L, Wiskur B, Greenwood-Van Meerveld B. The role of the anteriolateral bed nucleus of the stria terminalis in stress-induced nociception. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1301-9. [PMID: 22492693 DOI: 10.1152/ajpgi.00501.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of the central amygdala (CeA) by corticosterone (CORT) induces somatic and colonic hypersensitivity through corticotrophin-releasing factor (CRF)-dependent mechanisms. However, the importance of the bed nucleus of the stria terminalis (BNST), part of the extended amygdala, on nociception remains unexplored. In the present study, we test the hypothesis that stimulation of the CeA by CORT induces somatic and colonic hypersensitivity through activation of the anteriolateral BNST (BNST(AL)). Animals were implanted with micropellets of CORT or cholesterol (CHOL) onto the CeA or the BNST(AL). Mechanical sensitivity was quantified using electronic von Frey filaments, and colonic nociception was measured by quantifying a visceromotor response to graded colorectal distension. In situ hybridization was used to determine mRNA levels for CRF, CRF(1), and CRF(2) receptors in the BNST(AL). In a second group, animals were implanted bilaterally with 1) CORT or CHOL micropellets onto the CeA; and 2) cannulas localized to the BNST(AL) to administer a CRF(1) receptor antagonist (CP376395). Animals implanted with CORT onto the CeA, but not the BNST(AL), exhibited increased expression of CRF mRNA and increased CRF(1)-to-CRF(2) receptor ratio in the BNST, as well as somatic and colonic hypersensitivity compared with CHOL controls. Infusion of CP376395 into the BNST(AL) inhibited somatic and colonic hypersensitivity in response to elevated amygdala CORT. Somatic and colonic hypersensitivity induced by elevated amygdala CORT is mediated via a CRF(1) receptor-dependent mechanism in the BNST(AL). The CeA through a descending pathway involving the BNST(AL) plays a pivotal role in somatic and colonic nociception.
Collapse
Affiliation(s)
- Lee Tran
- VA Medical Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
42
|
Bruijnzeel AW. Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 2012; 36:1418-41. [PMID: 22405889 PMCID: PMC3340450 DOI: 10.1016/j.neubiorev.2012.02.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 S. Newell Dr., Gainesville, FL 32611, USA.
| |
Collapse
|
43
|
Gragnoli C. Depression and type 2 diabetes: cortisol pathway implication and investigational needs. J Cell Physiol 2012; 227:2318-22. [PMID: 21898408 DOI: 10.1002/jcp.23012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Depression and type 2 diabetes (T2D) are clinically associated and the causes of the association are still under investigation. We aimed at identifying what is known about the stress response and cortisol pathway and the clinical association of depression and T2D, and at hypothesizing the link of the association. In this review, we report independent studies on stress response, cortisol pathway, depression, T2D, and independent studies on stress and cortisol pathway in depression, and in T2D. We focus and integrate the stress and cortisol pathway hypothesis to explain the clinical association of depression and T2D. We hypothesize that the corticotropin-releasing hormone receptors are one of the missing linking factor of the cortisol pathway underlying the clinical association of depression and T2D. We state what studies are still needed to confirm or rule out our hypothesis.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Laboratory of Molecular Genetics of Complex and Monogenic Disorders, Department of Medicine and Cellular and Molecular Physiology and Biostatistics, Penn State University, M. S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
44
|
Ramsey SJ, Attkins NJ, Fish R, van der Graaf PH. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo. Br J Pharmacol 2012; 164:992-1007. [PMID: 21449919 DOI: 10.1111/j.1476-5381.2011.01390.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF(1)) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF(1) antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic-pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF(1) receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF(1) receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF(1) receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF(1) receptor antagonists in an efficient manner in a drug discovery setting.
Collapse
|
45
|
Nawata Y, Kitaichi K, Yamamoto T. Increases of CRF in the amygdala are responsible for reinstatement of methamphetamine-seeking behavior induced by footshock. Pharmacol Biochem Behav 2012; 101:297-302. [PMID: 22252103 DOI: 10.1016/j.pbb.2012.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
Recent evidence suggests the involvement of corticotropin-releasing factor (CRF) in drug abuse. Here, we evaluated whether CRF modulates the reinstatement of methamphetamine (METH)-seeking behavior induced by stress using a drug-self administration paradigm in rats. Rats were trained to lever-press for intravenous METH (0.02 mg/infusion) accompanied by light and tone (drug-associated cues) and then underwent extinction training (saline substituted for METH without cues). Under the extinction condition, the inhibitory effects of a CRF receptor antagonist on the stress-induced reinstatement of METH-seeking behavior were assessed. Anxiety-like behaviors during METH withdrawal in METH self-administered rats were also evaluated. The non-selective CRF receptor antagonist α-helical CRF(9-41) attenuated METH-seeking behavior induced by footshock stress. CRF levels both in the amygdala and in plasma were significantly increased on day 10 of withdrawal after METH self-administration. However, plasma corticosterone concentrations were unchanged during the withdrawal. In addition, METH-seeking behavior was not affected by an inhibitor of corticosterone synthesis, metyrapone. In the elevated plus maze test, METH self-administered rats showed a decrease in the duration of time spent in the open arms on day 10 of withdrawal. The increased CRF levels in the amygdala may, at least in part, contribute to the footshock-induced reinstatement of METH-seeking behavior and the increase in anxiety-like behavior. The present findings indicate that CRF receptor antagonists would be useful as a therapeutic agent for METH-dependence.
Collapse
Affiliation(s)
- Yoko Nawata
- Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch Sasebo, Nagasaki 859-3298, Japan
| | | | | |
Collapse
|
46
|
Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:21-33. [PMID: 21185371 PMCID: PMC3318920 DOI: 10.1016/j.bbadis.2010.12.014] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/05/2010] [Accepted: 12/16/2010] [Indexed: 12/28/2022]
Abstract
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Effects of acute stress on acquisition of nicotine conditioned place preference in adolescent rats: a role for corticotropin-releasing factor 1 receptors. Psychopharmacology (Berl) 2012; 219:73-82. [PMID: 21720754 DOI: 10.1007/s00213-011-2378-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Studies indicate that adolescence is a time of increased sensitivity to the rewarding effects of nicotine, and that stress is associated with an increased risk for smoking initiation in this age group. It is possible that stress leads to increased nicotine use in adolescence by augmenting its rewarding properties. Corticotropin-releasing factor type 1 receptors (CRF-R1) mediate physiological and behavioral stress responses. They may also mediate stress-induced potentiation of activity in multiple neural substrates implicated in nicotine reward. OBJECTIVES The aim of the present study was to determine the effect of acute stressor exposure on single trial nicotine conditioned place preference (CPP) in adolescent male rats using a biased CPP procedure and the role of CRF-R1 in this effect. RESULTS A single episode of intermittent footshock administered 24 h before the start of place conditioning dose-dependently facilitated acquisition of CPP to nicotine (0.2, 0.4, and 0.6 mg/kg). Pretreatment with CP-154,526 (20 mg/kg), a selective CRF-R1 antagonist, 30 min before footshock exposure significantly attenuated the effect of prior stress to facilitate nicotine CPP acquisition. CP-154,526 pretreatment had no effect in animals conditioned with a nicotine dose that produced CPP under non-stress conditions, suggesting a specific role for CRF-R1 following stress. CONCLUSIONS Taken together, the results suggest that during adolescence, nicotine reward is enhanced by recent stressor exposure in a manner that involves signaling at CRF-R1. Information from studies such as this may be used to inform efforts to prevent and treat adolescent nicotine dependence.
Collapse
|
48
|
Interaction between CRHR1 and BDNF genes increases the risk of recurrent major depressive disorder in Chinese population. PLoS One 2011; 6:e28733. [PMID: 22194899 PMCID: PMC3237493 DOI: 10.1371/journal.pone.0028733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
Background An important etiological hypothesis about depression is stress has neurotoxic effects that damage the hippocampal cells. Corticotropin-releasing hormone (CRH) regulates brain-derived neurotrophic factor (BDNF) expression through influencing cAMP and Ca2+ signaling pathways during the course. The aim of this study is to examine the single and combined effects of CRH receptor 1 (CRHR1) and BDNF genes in recurrent major depressive disorder (MDD). Methodology/Principal Finding The sample consists of 181 patients with recurrent MDD and 186 healthy controls. Whether genetic variations interaction between CRHR1 and BDNF genes might be associated with increased susceptibility to recurrent MDD was studied by using a gene-based association analysis of single-nucleotide polymorphisms (SNPs). CRHR1 gene (rs1876828, rs242939 and rs242941) and BDNF gene (rs6265) were identified in the samples of patients diagnosed with recurrent MDD and matched controls. Allelic association between CRHR1 rs242939 and recurrent MDD was found in our sample (allelic: p = 0.018, genotypic: p = 0.022) with an Odds Ratio 0.454 (95% CI 0.266–0.775). A global test of these four haplotypes showed a significant difference between recurrent MDD group and control group (chi-2 = 13.117, df = 3, P = 0.016. Furthermore, BDNF and CRHR1 interactions were found in the significant 2-locus, gene–gene interaction models (p = 0.05) using a generalized multifactor dimensionality reduction (GMDR) method. Conclusion Our results suggest that an interaction between CRHR1 and BDNF genes constitutes susceptibility to recurrent MDD.
Collapse
|
49
|
Katugampola S, Fish R, Wood C, Young K, Da Costa Mathews C. Automated blood sampling to identify pharmacodynamics biomarkers of corticotrophin releasing factor receptor 1 antagonism. J Pharmacol Toxicol Methods 2011; 64:158-63. [DOI: 10.1016/j.vascn.2011.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/01/2022]
|
50
|
Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF₁) receptor antagonists. Bioorg Med Chem 2011; 19:5955-66. [PMID: 21930387 DOI: 10.1016/j.bmc.2011.08.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
To identify structurally novel CRF1 receptor antagonists, a series of bicyclic core antagonists, pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines, imidazo[1,2-a]pyrimidines and pyrazolo[1,5-a][1,3,5]triazines were designed, synthesized and evaluated as CRF1 receptor antagonists. Compounds 2-27 showed binding affinity (IC(50)=4.2-418 nM) and antagonist activity (EC(50)=4.0-889 nM). Compound 5 was found to show oral efficacy in an Elevated Plus Maze test in rats. Further chemical modification of them led us to discovery of the tricyclic core antagonists pyrazolo[1,5-a]pyrrolo[3,2-e]pyrimidines. The discovery process of these compounds is presented, as is the study of the structure-activity relationship.
Collapse
|