1
|
Ali M, Khan T, Fatima K, Ali QUA, Ovais M, Khalil AT, Ullah I, Raza A, Shinwari ZK, Idrees M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother Res 2017; 32:199-215. [PMID: 29047177 PMCID: PMC7167792 DOI: 10.1002/ptr.5957] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
Insight into the hepatoprotective effects of medicinally important plants is important, both for physicians and researchers. Main reasons for the use of herbal medicine include their lesser cost compared with conventional drugs, lesser undesirable drug reactions and thus high safety, and reduced side effects. The present review focuses on the composition, pharmacology, and results of experimental trials of selected medicinal plants: Silybum marianum (L.) Gaertn., Glycyrrhiza glabra, Phyllanthus amarus Schumach. & Thonn., Salvia miltiorrhiza Bunge., Astragalus membranaceus (Fisch.) Bunge, Capparis spinosa (L.), Cichorium intybus (L.), Solanum nigrum (L.), Sapindus mukorossi Gaertn., Ginkgo biloba (L.), Woodfordia fruticosa (L.) Kurz, Vitex trifolia (L.), Schisandra chinensis (Turcz.) Baill., Cuscuta chinensis (Lam.), Lycium barbarum, Angelica sinensis (Oliv.) Diels, and Litsea coreana (H. Lev.). The probable modes of action of these plants include immunomodulation, stimulation of hepatic DNA synthesis, simulation of superoxide dismutase and glutathione reductase to inhibit oxidation in hepatocytes, reduction of intracellular reactive oxygen species by enhancing levels of antioxidants, suppression of ethanol-induced lipid accumulation, inhibition of nucleic acid polymerases to downregulate viral mRNA transcription and translation, free radical scavenging and reduction of hepatic fibrosis by decreasing the levels of transforming growth factor beta-1, and collagen synthesis in hepatic cells. However, further research is needed to identify, characterize, and standardize the active ingredients, useful compounds, and their preparations for the treatment of liver diseases.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.,Department of Biotechnology, University of Malakand Chakdara Dir (L)-18000, Khyber Pakhtunkhwa, Pakistan
| | - Kaneez Fatima
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Qurat Ul Ain Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Ikram Ullah
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Abida Raza
- National Institute of Laser and Optronics, Nilore, 45650, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Muhammad Idrees
- Hazara University Mansehra, Khyber Pakhtunkhwa, 21120, Pakistan.,Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
2
|
Shahabadi N, Mirzaei kalar Z, Moghadam NH. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:723-728. [PMID: 22885086 DOI: 10.1016/j.saa.2012.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/08/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH<0) and entropy (ΔS>0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran.
| | | | | |
Collapse
|