1
|
Chaichim C, Cannings MJ, Dumlao G, Power JM. Long-term depression of excitatory transmission in the lateral septum. J Neurophysiol 2021; 125:1825-1832. [PMID: 33852819 DOI: 10.1152/jn.00657.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Madeleine J Cannings
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gadiel Dumlao
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Kheirbakhsh R, Haddadi M, Muhammadnejad A, Abdollahi A, Shahi F, Amanpour-Gharaei B, Abrahim-Habibi A, Barati T, Amanpour S. Long-term behavioral, histological, biochemical and hematological evaluations of amyloid beta-induced Alzheimer’s disease in rat. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Kheirbakhsh R, Chinisaz M, Khodayari S, Amanpour S, Dehpour AR, Muhammadnejad A, Larijani B, Ebrahim-Habibi A. Injection of insulin amyloid fibrils in the hippocampus of male Wistar rats: report on memory impairment and formation of amyloid plaques. Neurol Sci 2015; 36:1411-6. [PMID: 25787810 DOI: 10.1007/s10072-015-2169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Amyloid fibrils result from a particular type of protein aggregation, and have been linked with various disorders, including neurodegenerative ones. In the case of Alzheimer's disease, amyloid beta (abeta) fibrils are detected in patients' brain, in the amyloid plaques. These fibrils can be produced in vitro, and their injection into animals' brains generates an animal model of Alzheimer's disease. Based on the structural similarity of amyloid fibrils that are formed from different proteins, we hypothesized that injecting insulin amyloid fibrils into rats' brains could result in amyloid plaque formation. Fourteen male Wistar rats were divided into control and experimental groups (n = 7). The experimental group was bilaterally injected with insulin amyloid in the hippocampus. Seven days after injection, a shuttle box test was performed and the experimental group's memory was found to be impaired. Histological investigation of these rats' brain showed the formation of amyloid plaques in the hippocampus. A limited test has provided preliminary evidence for the stability of these plaques up to 35 days. Further complementary studies are required to fully validate the proposed procedure, which is simple and relatively low cost, and could be suggested as an alternative to models generated with abeta fibrils.
Collapse
Affiliation(s)
- Raheleh Kheirbakhsh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Avenue, 1411413137, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Mirrione MM, Schulz D, Lapidus KAB, Zhang S, Goodman W, Henn FA. Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front Hum Neurosci 2014; 8:29. [PMID: 24550809 PMCID: PMC3909949 DOI: 10.3389/fnhum.2014.00029] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/13/2014] [Indexed: 12/04/2022] Open
Abstract
Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula.
Collapse
Affiliation(s)
- Martine M. Mirrione
- Biomedical Sciences Department, Quinnipiac UniversityHamden, CT, USA
- Cold Spring Harbor Laboratory, NeuroscienceCold Spring Harbor, NY, USA
- Brookhaven National Laboratory, Medical DepartmentUpton, NY, USA
| | - Daniela Schulz
- Brookhaven National Laboratory, Medical DepartmentUpton, NY, USA
- Department of Neurobiology and Behavior, Stony Brook UniversityStony Brook, NY, USA
| | | | - Samuel Zhang
- Psychiatry Department, Icahn School of MedicineNew York, NY, USA
| | - Wayne Goodman
- Psychiatry Department, Icahn School of MedicineNew York, NY, USA
| | - Fritz A. Henn
- Cold Spring Harbor Laboratory, NeuroscienceCold Spring Harbor, NY, USA
- Brookhaven National Laboratory, Medical DepartmentUpton, NY, USA
- Psychiatry Department, Icahn School of MedicineNew York, NY, USA
| |
Collapse
|
5
|
Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat. Chem Biol Interact 2010; 184:484-91. [PMID: 20138853 DOI: 10.1016/j.cbi.2010.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/23/2022]
Abstract
Lead (Pb) is a known neurotoxicant in humans and experimental animals. Numerous studies have provided evidence that humans, especially young children, and animals chronically intoxicated with low levels of Pb show learning and memory impairments. Unfortunately, Pb-poisoning cases continue to occur in many countries. Because the current treatment options are very limited, there is a need for alternative methods to attenuate Pb toxicity. In this study, the weaning (postnatal day 21, PND21) rats were randomly divided into five groups: the control group (AIN-93G diet, de-ionized water), the lead acetate (PbAC) group (AIN-93G diet, 2g/L PbAC in de-ionized water), the lead acetate+WR group (white rice diet, 2g/L PbAC in de-ionized water; PbAC+WR), the lead acetate+BR group (brown rice diet, 2g/L PbAC in de-ionized water; PbAC+BR) and the lead acetate+PR group (pre-germinated brown rice diet, 2g/L PbAC in de-ionized water; PbAC+PR). The animals received the different diets until PND60, and then the experiments were terminated. The protective effects of pre-germinated brown rice (PR) on Pb-induced learning and memory impairment in weaning rats were assessed by the Morris water maze and one-trial-learning passive avoidance test. The anti-oxidative effects of feeding a PR diet to Pb-exposed rats were evaluated. The levels of reactive oxygen species (ROS) were determined by flow cytometry. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), gamma-aminobutyric acid (GABA) and glutamate were determined by HPLC. Our data showed that feeding a PR diet decreased the accumulation of lead and decreased Pb-induced learning and memory deficits in developing rats. The mechanisms might be related to the anti-oxidative effects and large amount of GABA in PR. Our study provides a regimen to reduce Pb-induced toxicity, especially future learning and memory deficits in the developing brain.
Collapse
|
6
|
Todorovic C, Jahn O, Tezval H, Hippel C, Spiess J. The role of CRF receptors in anxiety and depression: Implications of the novel CRF1 agonist cortagine. Neurosci Biobehav Rev 2005; 29:1323-33. [PMID: 16099044 DOI: 10.1016/j.neubiorev.2005.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/24/2022]
Abstract
Corticotropin-releasing factor (CRF), a 41 amino acid peptide exhibits its actions through two pharmacologically distinct CRF receptor subtypes CRF(1) and CRF(2). Regulation of the relative contribution of the two CRF receptors to central CRF activity may be essential in coordinating physiological responses to stress. To facilitate the analysis of their differential involvement, we recently developed a CRF(1)-selective agonist cortagine by synthesis of chimeric peptides derived from human/rat CRF, ovine CRF, and sauvagine. Cortagine was analyzed in behavioral experiments using male wild type and CRF(2)-deficient C57BL/6J mice for its action on anxiety- and depression-like behaviors. In contrast to the current hypothesis that increased CRF(1) activity facilitates the expression of anxiety- and depression-like behavior, cortagine combines anxiogenic properties with antidepressant effects. In this article, we show that antidepressant effects are partially mediated by CRF(1) of the dorsal hippocampus. Possible pathways responsible for the paradoxical antidepressant effects observed after CRF(1) activation are discussed.
Collapse
Affiliation(s)
- Cedomir Todorovic
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075 Goettingen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. ACTA ACUST UNITED AC 2004; 46:71-117. [PMID: 15297155 DOI: 10.1016/j.brainresrev.2004.04.009] [Citation(s) in RCA: 404] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
Substantial evidence indicates that the lateral septum (LS) plays a critical role in regulating processes related to mood and motivation. This review presents findings from the basic neuroscience literature and from some clinically oriented research, drawing from behavioral, neuroanatomical, electrophysiological, and molecular studies in support of such a role, and articulates models and hypotheses intended to advance our understanding of these functions. Neuroanatomically, the LS is connected with numerous regions known to regulate affect, such as the hippocampus, amygdala, and hypothalamus. Through its connections with the mesocorticolimbic dopamine system, the LS regulates motivation, both by stimulating the activity of midbrain dopamine neurons and regulating the consequences of this activity on the ventral striatum. Evidence that LS function could impact processes related to schizophrenia and other psychotic spectrum disorders, such as alterations in LS function following administration of antipsychotics and psychotomimetics in animals, will also be presented. The LS can also diminish or enable fear responding when its neural activity is stimulated or inhibited, respectively, perhaps through its projections to the hypothalamus. It also regulates behavioral manifestations of depression, with antidepressants stimulating the activity of LS neurons, and depression-like phenotypes corresponding to blunted activity of LS neurons; serotonin likely plays a key role in modulating these functions by influencing the responsiveness of the LS to hippocampal input. In conclusion, a better understanding of the LS may provide important and useful information in the pursuit of better treatments for a wide range of psychiatric conditions typified by disregulation of affective functions.
Collapse
Affiliation(s)
- Teige P Sheehan
- Department of Psychology, Brown University, P.O. Box 1853, Providence, RI 02912, USA.
| | | | | |
Collapse
|
8
|
Desmedt A, Garcia R, Jaffard R. An 8-day extensive elemental, but not contextual, fear conditioning potentiates hippocampal-lateral septal synaptic efficacy in mice. Synapse 2003; 49:270-8. [PMID: 12827646 DOI: 10.1002/syn.10243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous findings have suggested a critical role for hippocampal-lateral septal (HPC-LS) synaptic transmission in the modulation of elemental vs. contextual fear conditioning. Pharmacologically- or electrophysiologically-induced increases in HPC-LS neurotransmission were shown to be associated with both an increase in elemental and a decrease in contextual fear conditioning. However, elemental conditioning, induced by an unconditional stimulus (US) that was explicitly paired with a simple conditional stimulus (CS), did not result in any change in this neurotransmission when two tone CS-footshock US pairings were provided. The present experiment was thus designed to investigate directly, in mice, whether extensive elemental conditioning (repeated CS-US pairings) could induce an increase in HPC-LS neurotransmission. For that purpose, over 8 days, an elemental conditioning group was repeatedly submitted to CS-US pairings in either one context (A) or another (B) depending on the training day. Hence, whichever the context, the tone CS was the relevant predictive stimulus for the occurrence of the footshock US. In contrast, a contextual conditioning group was submitted to the same regimen except that the US was delivered only in context A and was never paired with the CS, making, thereby, the context A the relevant predictor for the US regardless of the occurrence of the tone CS. Results show that during re-exposure of the animals to either context A or B, a significant increase in HPC-LS neurotransmission was selectively associated with the repeated elemental conditioning. This study supports the idea that changes in HPC-LS neurotransmission may modulate the strength of simple CS-US associations, and suggests that alterations of hippocampal functioning might be involved.
Collapse
Affiliation(s)
- Aline Desmedt
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Talence, France.
| | | | | |
Collapse
|
9
|
Sheehan TP, Neve RL, Duman RS, Russell DS. Antidepressant effect of the calcium-activated tyrosine kinase Pyk2 in the lateral septum. Biol Psychiatry 2003; 54:540-51. [PMID: 12946883 DOI: 10.1016/s0006-3223(02)01815-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating evidence indicates that neural activity in the lateral septum (LS) influences the pathophysiology of depression and therapeutic effectiveness of antidepressant drugs. For example, the development of behavioral deficits in animal screens for antidepressant drug activity corresponds with a blunting of LS activity, whereas chronic treatment with antidepressants enhances cell firing in the LS; however, the molecular mechanisms underlying such behavioral functions of the LS have not been determined. The nonreceptor tyrosine kinase Pyk2 is highly expressed in the LS and plays important roles in regulating cellular excitability and synaptic plasticity, making it an attractive candidate for regulating the effects of stress and antidepressants on LS functioning and behavior. We provide evidence that stress decreases Pyk2 phosphorylation in the LS, whereas enhancing Pyk2 expression in LS neurons has an antidepressant effect behaviorally.Pyk2 messenger ribonucleic acid (mRNA) expression in the rat forebrain was detected by in situ hybridization, and a brief description of the distribution of Pyk2 mRNA in selected areas is presented. Levels of total Pyk2 protein and phosphorylated Pyk2 were subsequently measured in the LS and hippocampus following stress exposure, as were levels of extracellular stimuli-regulated kinase (Erk) and phospho-Erk. Herpes simplex virus (HSV)-mediated gene transfer was then used to enhance Pyk2 expression in the LS, and the effect this had on behavior in the learned helplessness model of depression was evaluated. High levels of Pyk2 mRNA were detected in a number of forebrain regions, including the hippocampus and LS. Following acute stress exposure, subjects showed a decrease in phosphorylated Pyk2 and Erk in the LS but not in the hippocampus. Total levels of Pyk2 and Erk remained unchanged following stress. In the learned helplessness paradigm, injection of HSV-Pyk2 into the LS prevented the active avoidance deficit caused by exposure to inescapable shock, indicative of an antidepressant effect. These results indicate that following acute stress, Pyk2 and Erk activity in the LS are decreased, whereas experimentally increasing Pyk2 activity in LS neurons reverses the behavioral deficits of acute, inescapable stress. These findings establish a role for the tyrosine kinase Pyk2 in the biochemical and behavioral responses to stress and suggest a possible role in the pathophysiology of depression, particularly notable considering Pyk2's role in promoting synaptic plasticity.
Collapse
Affiliation(s)
- Teige P Sheehan
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut 06508, USA
| | | | | | | |
Collapse
|
10
|
Evidence that brain-derived neurotrophic factor from presynaptic nerve terminals regulates the phenotype of calbindin-containing neurons in the lateral septum. J Neurosci 2000. [PMID: 10627605 DOI: 10.1523/jneurosci.20-01-00274.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is transported anterogradely in neurons of the CNS and can be released by activity-dependent mechanisms to regulate synaptic plasticity. However, few neural networks have been identified in which the production, transport, and effects of BDNF on postsynaptic neurons can be analyzed in detail. In this study, we have identified such a network. BDNF has been colocalized by immunocytochemistry with tyrosine hydroxylase (TH) in nerve fibers and nerve terminals within the lateral septum of rats. BDNF-containing nerve fibers terminate on a population of calbindin-containing neurons in lateral septum that contain TrkB, the high-affinity receptor for BDNF. Overexpression of BDNF in noradrenergic neurons increased levels of calbindin in septum, as well as in whole-brain lysates. Septal levels of calbindin and BDNF partially decreased after unilateral lesions of the medial forebrain bundle (MFB), induced with 6-hydroxydopamine, a treatment that abolished TH staining. These data suggest that BDNF is anterogradely transported within the MFB in catecholaminergic neurons arising from brainstem nuclei. To determine whether BDNF affects the production of calbindin in lateral septal neurons directly, we tested the effects of BDNF on cultures of septal neurons from embryonic day 16-17 rats. BDNF promoted the expression of calbindin, as well as the arborization of calbindin-containing neurons, but BDNF had no effect on cell division or survival. Together, these results suggest that BDNF, anterogradely transported in catecholaminergic neurons, regulates calbindin expression within the lateral septum.
Collapse
|
11
|
Desmedt A, Garcia R, Jaffard R. Vasopressin in the lateral septum promotes elemental conditioning to the detriment of contextual fear conditioning in mice. Eur J Neurosci 1999; 11:3913-21. [PMID: 10583480 DOI: 10.1046/j.1460-9568.1999.00815.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous experiments using a classical fear conditioning paradigm have provided evidence that the processing of contextual conditional stimuli (CSs) by the hippocampus would be controlled by the amygdala through a modulation of hippocampal-lateral septal (H-LS) excitability. More specifically, our suggestion was that vasopressin release into the LS would occur in an elemental conditioning case [pairing CS-US (unconditional stimulus) procedure] and would result in less hippocampal-dependent contextual stimuli processing (i.e. overshadowing of CSs by the simple CS). Conversely, when an unpairing CS-US procedure is used, this would result in more contextual stimuli processing through a decrease in vasopressin release into the LS. The aim of the present experiment was to test this hypothesis using intraseptal injection of vasopressin or its V1/V2 antagonist. In agreement with this hypothesis, results suggest that vasopressin release into the LS would constitute a device by which priority is given to the more salient simple stimulus to the detriment of contextual information.
Collapse
Affiliation(s)
- A Desmedt
- Laboratoire de Neurosciences Comportementales et Cognitives, CNRS UMR 5807, Ave des Facultés, 33405 Talence, France.
| | | | | |
Collapse
|
12
|
Vouimba RM, Garcia R, Jaffard R. Pretraining tetanic fimbrial stimulation impairs the expression but not the acquisition of contextual fear conditioning in mice. Neuroscience 1999; 93:869-76. [PMID: 10473252 DOI: 10.1016/s0306-4522(99)00272-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that the pretraining induction of long-term potentiation in the lateral septum by fimbrial tetanic stimulation altered contextual fear conditioning in mice. The aim of the present study was to examine at which stage of fear conditioning (i.e. either acquisition or expression) this impairment takes place. Mice implanted with stimulating electrodes in the fimbria and recording electrodes in the lateral septal were conditioned to acquire fear towards a novel context using a footshock procedure. Twenty-four hours after conditioning, animals were re-exposed to the conditioning environment and the level of freezing behavior served as the measure of conditioned fear. The level of fimbrial-lateral septal synaptic neurotransmission was manipulated using either fimbrial tetanic stimulation (which induced septal long-term potentiation) alone, or followed by fimbrial low-frequency stimulation producing depotentiation of the previously established long-term potentiation. The results showed that (i) septal long-term potentiation induced either prior to acquisition or only prior to retention testing impaired conditioned freezing; and (ii) the impairing effect of pretraining induction of long-term potentiation on conditioned freezing was not only abolished by fimbrial low-frequency stimulation administered prior to retention testing but actually produced enhanced conditioned freezing with respect to controls. These data suggest that the level of fimbrial-lateral septal synaptic neurotransmission may influence the expression, but not the acquisition, of contextual fear conditioning.
Collapse
Affiliation(s)
- R M Vouimba
- Laboratoire de Neurosciences Comportementales et Cognitives, CNRS UMR 5807, Université de Bordeaux I, Talence, France
| | | | | |
Collapse
|
13
|
Nail-Boucherie K, Garcia R, Jaffard R. Influences of the bed nucleus of the stria terminalis and of the paraventricular nucleus of the hypothalamus on the excitability of hippocampal-lateral septal synapses in mice. Neurosci Lett 1998; 246:112-6. [PMID: 9627193 DOI: 10.1016/s0304-3940(98)00230-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous experiments have shown that conditioning in aversive situations is associated with specific changes in excitability of hippocampal-septal synaptic transmission and that these changes might be related to a modulation of this synaptic transmission by afferents originating from the bed nucleus of the stria terminalis (BNST) and from the paraventricular nucleus (PVN) of the hypothalamus. Accordingly, the aim of the present experiment was to assess changes in excitability of hippocampal-septal synapses by varying the interval between the application of a conditioning pulse in either the BNST or the PVN, and a test pulse in fimbria fibers (FF). Electrical stimulation of FF, induces in the lateral septum (LS) a field potential characterized by two negative waves (N2 and N3) the magnitude of which is an index of excitability of two populations of target cells located in the ventral and dorsal lateral septum, respectively. Results showed that prestimulation of both the BNST and the PVN produced an increase in the amplitude of the N3 wave, although the optimal interpulse interval required for producing maximal increase was different as a function of the two structures. Only prestimulation of the BNST induced a significant increase in the amplitude of the N2 wave. These results suggest that the PVN projects mainly to the dorsal aspect of the LS, while the BNST projects to both dorsal and ventral parts of the LS. Together with results from previous experiments conducted in behaving mice exposed to conditioned aversive stimuli, it is concluded that these projections might play a role in the relief of contextual conditioned fear.
Collapse
Affiliation(s)
- K Nail-Boucherie
- Laboratoire de Neurosciences Comportementales et Cognitives, CNRS UMR 5807, Université de Bordeaux I, Talence, France
| | | | | |
Collapse
|
14
|
Garcia R, Vouimba RM, Jaffard R. Contextual conditioned fear blocks the induction but not the maintenance of lateral septal LTP in behaving mice. J Neurophysiol 1997; 78:76-81. [PMID: 9242262 DOI: 10.1152/jn.1997.78.1.76] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High-frequency stimulation (HFS) of the fimbria induces long-term potentiation (LTP) in the lateral septum. This study was aimed at investigating the effect of contextual fear conditioning on septal LTP with the use of behaving C57 BL/6 mice as subjects. For the acquisition of contextual fear conditioning, animals were placed in a conditioning chamber, where they were subjected to footshocks (FSs, 0.6 mA); the following day (retention), animals were reexposed to the chamber. Animals from the first group received HFS in their home cages before being submitted to conditioning; animals from the second group were first submitted to conditioning before receiving HFS during reexposure to the conditioning chamber; animals from the third group were submitted to the same regimen as those from the second group, except that no FS was delivered in the conditioning chamber; and animals from the fourth group received FS in the conditioning chamber but were maintained in their home cages the day after for LTP induction. Before conditioning, animals from the first group, placed in a familiar context (home cage), displayed an LTP of the N3 wave of septal field potential. After conditioning, reexposure of these animals to the conditioning chamber produced a transient decrease in the amplitude of N3 but did not interfere with the duration of maintenance of LTP. Conversely, in animals from the second group, when HFS was applied during reexposure to the conditioning chamber the induction of LTP was totally blocked. However, mice from the two other groups (3rd and 4th) displayed normal levels of LTP. Taken together with previous findings, these data suggest that contextual conditioned fear may interfere with certain forms of learning via blockade of hippocampal-septal LTP.
Collapse
Affiliation(s)
- R Garcia
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 339, Université de Bordeaux I, Talence, France
| | | | | |
Collapse
|
15
|
Garcia R, Tocco G, Baudry M, Thompson R. Polysynaptic potentiation in the lateral septum following stimulation of the fimbria in anesthetized rats. Brain Res 1996; 737:169-74. [PMID: 8930363 DOI: 10.1016/0006-8993(96)00725-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In anesthetized rats, electrical stimulation of fimbria fibers evoked, in the ipsilateral lateral septum (LS), a field potential consisting of two negative components: an initial negativity (N2-3 complex wave) of high amplitude at 6.7 ms (+/- 0.8 ms; peak latency) and a slow negative wave (N4 wave) of small amplitude at 14.4 ms (+/- 2.4 ms). The N2-3 complex wave represents the monosynaptic activation of LS neurons while the N4 wave corresponds to polysynaptic activation of neurons in the mediolateral part of the LS. In this study, we investigated the effects of high-frequency stimulation of fimbria fibers on LS field potentials and compared them with those observed in the CA3 area. Tetanic stimulation of the fimbria did not change the characteristics of the N2-3 wave but induced a long-lasting increase in amplitude and slope of the N4 wave. A positive correlation was found between the magnitude of CA3 LTP and lateral septal polysynaptic potentiation of the N4 component. These results indicate that patterns of stimulation delivered to the same input fibers (fimbria fibers) produce similar changes in a polysynaptic input to the LS and in a monosynaptic input to the CA3 and emphasize the complexity of signal processing in serial networks.
Collapse
Affiliation(s)
- R Garcia
- Laboratoire de Neurosciences Comportementales et Cognitives, CNRS URA 339, Université de Bordeaux I, Talence, France.
| | | | | | | |
Collapse
|