1
|
Tarasenko VI, Katyshev AI, Kobzev VF, Konstantinov YM. Comparative analysis of nuclear and mitochondrial DNA topoisomerase I from Zea mays. Mol Biol 2008. [DOI: 10.1134/s0026893308010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Zhang H, Meng LH, Pommier Y. Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 2007; 89:474-81. [PMID: 17161897 DOI: 10.1016/j.biochi.2006.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022]
Abstract
Mitochondria are the only organelles containing metabolically active DNA besides nuclei. By analogy with the nuclear topoisomerases, mitochondrial topoisomerase activities are probably critical for maintaining the topology of mitochondrial DNA during replication, transcription, and repair. Mitochondrial diseases include a wide range of defects including neurodegeneracies, myopathies, metabolic abnormalities and premature aging. Vertebrates only have one known specific mitochondrial topoisomerase gene (TOP1mt), coding for a type IB topoisomerase. Like the mitochondrial DNA and RNA polymerase, the TOP1mt gene is encoded in the nuclear genome. The TOP1mt gene possesses the 13 exon Top1B signature motif and codes for a mitochondrial targeting signals at the N-terminus of the Top1mt polypeptide. This review summarizes our current knowledge of mitochondrial topoisomerases (type IA, IB and type II) in eukaryotes including budding and fission yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and protozoan parasites (kinetoplastidiae and plasmodium). It also includes new data showing alternative splice variants of human TOP1mt.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 37, Room 5068, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
3
|
Bannikova S, Zorov DB, Shoeman RL, Tolstonog GV, Traub P. Stability and Association with the Cytomatrix of Mitochondrial DNA in Spontaneously Immortalized Mouse Embryo Fibroblasts Containing or Lacking the Intermediate Filament Protein Vimentin. DNA Cell Biol 2005; 24:710-35. [PMID: 16274293 DOI: 10.1089/dna.2005.24.710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To extend previous observations demonstrating differences in number, morphology, and activity of mitochondria in spontaneously immortalized vim(+) and vim(-) fibroblasts derived from wild-type and vimentin knockout mice, some structural and functional aspects of mitochondrial genome performance and integrity in both types of cells were investigated. Primary Vim(+/+) and Vim(-/-) fibroblasts, which escaped terminal differentiation by immortalization were characterized by an almost twofold lower mtDNA content in comparison to that of their primary precursor cells, whereby the average mtDNA copy number in two clones of vim(+) cells was lower by a factor of 0.6 than that in four clones of vim(-) cells. However, during serial subcultivation up to high passage numbers, the vim(+) and vim() fibroblasts increased their mtDNA copy number 1.5- and 2.5-fold, respectively. While early-passage cells of the vim(+) and vim(-) fibroblast clones differed only slightly in the ratio between mtDNA content and mitochondrial mass represented by mtHSP70 protein, after ca. 300 population doublings the average mtDNA/mtmass ratio in the vim(+) and vim() cells was increased by a factor of 2 and 4.5, respectively. During subcultivation, both types of cells acquired the fully transformed phenotype. These findings suggest that cytoskeletal vimentin filaments exert a strong influence on the mechanisms controlling mtDNA copy number during serial subcultivation of immortalized mouse embryo fibroblasts, and that vimentin deficiency causes a disproportionately enhanced mtDNA content in high-passage vim(-) fibroblasts. Such a role of vimentin filaments was supported by the stronger retention potential for mtDNA and mtDNA polymerase (gamma) detected in vim(+) fibroblasts by Triton X-100 extraction of mitochondria and agaroseembedded cells. Moreover, although the vim(+) and vim(-) fibroblasts were equally active in generating free radicals, the vim(-) cells exhibited higher levels of immunologically detectable 8-oxoG and mismatch repair proteins MSH2 and MLH1 in their mitochondria. Because in vim(-) fibroblasts only one point mutation was detected in the mtDNA D-loop control region, these cells are apparently able to efficiently remove oxidatively damaged nucleobases. On the other hand, a number of large-scale mtDNA deletions were found in high-passage vim(-) fibroblasts, but not in low-passage vim(-) cells and vim(+) cells of both low and high passage. Large mtDNA deletions were also induced in young vim(-) fibroblasts by treatment with the DNA intercalator ethidium bromide, whereas no such deletions were found after treatment of vim(+) cells. These results indicate that in immortalized vim(-) fibroblasts the mitochondrial genome is prone to large-scale rearrangements, probably due to insufficient control of mtDNA repair and recombination processes in the absence of vimentin.
Collapse
|
4
|
Taanman JW, Llewelyn Williams S. The Human Mitochondrial Genome. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028843.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Low RL, Orton S, Friedman DB. A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. ACTA ACUST UNITED AC 2003; 270:4173-86. [PMID: 14519130 DOI: 10.1046/j.1432-1033.2003.03814.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.
Collapse
Affiliation(s)
- Robert L Low
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
6
|
Zhang H, Barceló JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier Y. Human mitochondrial topoisomerase I. Proc Natl Acad Sci U S A 2001; 98:10608-13. [PMID: 11526219 PMCID: PMC58513 DOI: 10.1073/pnas.191321998] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Accepted: 07/16/2001] [Indexed: 11/18/2022] Open
Abstract
Tension generated in the circular mitochondrial genome during replication and transcription points to the need for mtDNA topoisomerase activity. Here we report a 601-aa polypeptide highly homologous to nuclear topoisomerase I. The N-terminal domain of this novel topoisomerase contains a mitochondrial localization sequence and lacks a nuclear localization signal. Therefore, we refer to this polypeptide as top1mt. The pattern of top1mt expression matches the requirement for high mitochondrial activity in specific tissues. top1mt is a type IB topoisomerase that requires divalent metal (Ca(2+) or Mg(2+)) and alkaline pH for optimum activity. The TOP1mt gene is highly homologous to the nuclear TOP1 gene and consists of 14 exons. It is localized on human chromosome 8q24.3.
Collapse
Affiliation(s)
- H Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A mitochondrial DNA topoisomerase (type I, ATP-independent) can be biochemically distinguished from the nuclear enzyme DNA topoisomerase I. This conclusion is based on the subcellular localization of the mitochondrial enzyme, its optimal reaction conditions and sensitivity to enzyme inhibitors. Unlike its nuclear counterpart, the mitochondrial DNA topoisomerase exhibits an absolute requirement for a divalent cation (Mg2+ and Ca2+ work equally well in vitro). In addition, it is slightly more sensitive to monovalent salts, with optimal activity obtained in 50-100 mM KCl. The mitochondrial enzyme is equally active at pH 7.5 or pH 9.5, but unlike its nuclear equivalent, is inactivated at higher pH values. The mitochondrial DNA topoisomerase is sensitive to coumermycin, berenil, camptothecin and 2,2,5,5-tetramethyl-4-imidazolidinone, a chemical that has no inhibitory effect on DNA topoisomerase I. Immunoblotting studies show that mitochondrial DNA topoisomerase activity is associated with a polypeptide (M(r) approximately 79,000) that cross-reacts with the antiserum against DNA topoisomerase I. Thus, the mitochondrial DNA topoisomerase may be derived by the differential expression of the DNA topoisomerase I gene or from the expression of a gene that is homologous to the DNA topoisomerase I gene.
Collapse
Affiliation(s)
- A Tua
- Department of Chemistry, Auburn University, AL 36849-5312, USA
| | | | | | | |
Collapse
|
8
|
Topcu Z, Castora FJ. Mammalian mitochondrial DNA topoisomerase I preferentially relaxes supercoils in plasmids containing specific mitochondrial DNA sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:377-87. [PMID: 8547327 DOI: 10.1016/0167-4781(95)00180-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selected regions of mammalian mitochondrial DNA (mtDNA) were inserted into pGEM plasmid vectors and used as substrates in a kinetic analysis of the highly purified bovine mitochondrial type I topoisomerase. Recombinant plasmids containing the bovine mtDNA heavy and light strand origins of replication (pZT-Hori and pZT-Lori, respectively), a major transcription termination region (pZT-Term) and a portion of cytochrome b gene (pZT-Cytb) were prepared. Southern hybridization using probes specific for either control or mtDNA-containing plasmid indicated a relative preference by the mitochondrial topoisomerase I to relax supercoils in pZT-Hori and pZT-Term. Quantitative determination of kinetic parameters derived from double-reciprocal Lineweaver-Burk plots showed that recombinant plasmids containing the heavy and light strand origins and the transcription termination region were preferentially relaxed by the mitochondrial enzyme with Km values 2.3- to 3.3-fold lower than controls. The Km values for pZT-Hori, pZT-Lori and pZT-Term were 21.0 +/- 0.9 microM, 25.2 +/- 1.0 microM and 17.0 +/- 0.8 microM, respectively, while those for control plasmids were 57.5 +/- 2.1 microM and 56.3 +/- 2.3 microM. pZT-Cytb was not preferentially relaxed compared to the control plasmid (Km = 53.4 +/- 2.0 microM vs. 56.3 +/- 2.3 microM, respectively) indicating that mitochondrial topoisomerase I preferentially interacts with certain mtDNA sequences but not others. Identical experiments with the purified nuclear enzyme did not differentiate between control or mtDNA containing plasmids.
Collapse
Affiliation(s)
- Z Topcu
- Department of Biochemistry, Eastern Virginia Medical School, Norfolk 23507-1696, USA
| | | |
Collapse
|
9
|
Ezekiel UR, Towler EM, Wallis JW, Zassenhaus HP. Evidence for a nucleotide-dependent topoisomerase activity from yeast mitochondria. Curr Genet 1994; 27:31-7. [PMID: 7750144 DOI: 10.1007/bf00326576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Yeast mitochondria were found to contain a novel topoisomerase-like activity which required nucleoside di- or tri-phosphates as a cofactor. ADP supported activity as effectively as ATP and the optimal concentration for each was approximately 20 microM. None of the other standard ribo- or deoxyrib-onucleotides could fully substitute for either ADP or ATP. The non-hydrolyzable ATP analogs, adenosine-5'-0-(3-thiotriphosphate) (ATP-gamma-S), adenylyl (beta,gamma-methylene) (AMP-PCP), and andenyl-imidodiphosphate (AMP-PNP) also supported activity suggesting that the nucleotide cofactor regulated topoisomerase activity rather than serving as an energy donor in the reaction. The mitochondrial topoisomerase activity relaxed both positively and negatively supercoiled DNA. It was not inhibited by concentrations of ethidium bromide up to 2 micrograms/ml nor by either nalidixic or oxolinic acids; novobiocin, coumermycin, and berenil inhibited the activity. Genetic and biochemical analysis of the mitochondrial topoisomerase activity indicated that it was not encoded by the nuclear TOP1, TOP2, and TOP3 genes.
Collapse
Affiliation(s)
- U R Ezekiel
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
10
|
Turna J, Pudzisová A, Osuský M, Supeková L, Kuchta T. Characterization of mitochondrial DNA topoisomerase I from Neurospora crassa. Folia Microbiol (Praha) 1994; 39:105-11. [PMID: 7959426 DOI: 10.1007/bf02906803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA topoisomerase I isolated from the lower eukaryote Neurospora crassa mitochondria was characterized. Molar mass of the enzyme in the native state is 120 kDa and 60-65 kDa when denatured. The pH optimum of the enzyme is 7.8 and the KCl optimum concentration is 40 mmol/L. This topoisomerase is independent of ATP and Mg2+. N-Ethylmaleimide, 4-chloromercuribenzoate, SDS, guanidinium chloride, polyethylene glycol, heparin and ethidium bromide inhibit its activity, while novobiocin, nalidixic acid, Triton X-100 and chloroquine do not. Polyamines and histone H1 stimulate the topoisomerase activity. We classify this DNA topoisomerase as type I and eukaryotic. Conversion of the topoisomerase to a nonspecific endonuclease at increased temperature is proposed.
Collapse
Affiliation(s)
- J Turna
- Department of Molecular Biology, Faculty of Science, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
11
|
Kosovsky MJ, Soslau G. Immunological identification of human platelet mitochondrial DNA topoisomerase I. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1164:101-7. [PMID: 8390858 DOI: 10.1016/0167-4838(93)90117-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A nuclear human blood platelets have been used to study mitochondrial topoisomerase activity in the absence of nuclear contamination. Previous work utilizing this novel system demonstrated that platelet mitochondria contain type-I topoisomerase (Kosovsky, M.J. and Soslau, G. (1991) Biochim. Biophys. Acta 1078, 56-62). The present work has demonstrated that mitochondrial topoisomerase activity was inhibited by the specific topoisomerase-I inhibitor, topotecan, yet was not affected by a specific topoisomerase-II inhibitor, VM-26. These results confirm that platelet mitochondria contain topoisomerase I, yet do not contain a detectable level of topoisomerase-II activity. It has been demonstrated for the first time that antibodies directed against nuclear topo I cross-react with mitochondria topo I. Furthermore, immunoblot analysis of platelet mitochondrial proteins, in conjunction with renaturation studies, has led to the identification of a catalytically active 60-kDa form of mitochondrial topoisomerase I.
Collapse
Affiliation(s)
- M J Kosovsky
- Department of Biological Chemistry, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
12
|
D'Agostino MA, Nass MM. A new chick mitochondrial DNA-binding protein exhibits sequence-specific interaction near heavy-strand replication origin: cleavage activity, stimulation of mtDNA synthesis, and enhancement in transformed fibroblasts. Exp Cell Res 1992; 199:191-205. [PMID: 1312005 DOI: 10.1016/0014-4827(92)90424-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have identified a new, double-strand-dependent, mtDNA-binding protein in chick embryo fibroblast (CEF) mitochondria (and inner-membrane-matrix preparations) which demonstrates both an exclusive specific affinity for the displacement loop (D-loop) control region of chick mtDNA and intramitochondrial levels that reflect corresponding changes in mtDNA replication activity both in vivo and in vitro. This approximately 36 kDa protein (designated aMDP1, avian mitochondrial DNA-binding protein 1) was identified by elution and renaturation following SDS-polyacrylamide gel electrophoresis and by direct isolation from specific mtDNA-protein complexes excised from mobility shift gels. Analysis of the entire 16.7-kb mt genome determined that a MDP1 mediates cleavage of chick mtDNA in vitro at three H- and two L-strand sequence-specific target sites located within a 90-bp A + T-rich genomic tract, theoretically capable of forming stable secondary structures, approximately 200 bases upstream from the H-strand origin (OH) of replication. Furthermore, gel-isolated aMDP1 relaxes supercoiled mtDNA, and exogenous addition of the protein, in a permeabilized in vitro system, preferentially stimulates the synthesis of H-strand sequences which hybridize to OH-containing fragments. Oncogenic transformation of CEF by Rous sarcoma viruses results in a threefold elevated level of aMDP1, directly correlating with a similarly increased level of mtDNA replication in vivo. Heterologous chick-human cross-competition experiments showed that aMDP1 also selectively interacts with human (HeLa) D-loop region mtDNA, possibly reflective of an evolutionary importance for aMDP1 interaction in the region. Functionally, we hypothesize that aMDP1 may operate in conjunction with other mtDNA-binding proteins, important in replication and transcription, by potentiating duplex unwinding either prior to or during an initial stage of H-strand synthesis. Together, these results suggest that aMDP1 is a good potential candidate for a nucleus-encoded regulatory protein which communicates with the mt genome during the replication process.
Collapse
Affiliation(s)
- M A D'Agostino
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|
13
|
Abstract
Neuromuscular disorders due to abnormalities of mitochondrial energy supply have become an important area of human pathology. In particular, lesions of the mitochondrial genome (mtDNA), a small extra-nuclear chromosome which encodes 13 subunits of the respiratory chain complexes, are responsible for a steadily increasing number of neuromuscular syndromes. In addition to sporadic or maternally-inherited mutations, either qualitative or quantitative abnormalities of mtDNA can be transmitted as Mendelian traits, leading to well-defined mitochondrial encephalomyopathies. The latter are presumably caused by mutations in still unknown nucleus-encoded genes which deleteriously interact with the mitochondrial genome. These observations are of importance from both clinical and theoretical points of view, because they are the first examples of diseases produced by abnormalities of the nuclear control over mitochondrial biogenesis.
Collapse
Affiliation(s)
- M Zeviani
- Istituto Nazionale Neurologico C Besta, Divisione di Biochimica e Genetica, Milano, Italy
| |
Collapse
|
14
|
Kosovsky MJ, Soslau G. Mitochondrial DNA topoisomerase I from human platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1078:56-62. [PMID: 1646636 DOI: 10.1016/0167-4838(91)90092-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An anucleated cell system has been used for the first time to study mitochondrial topoisomerase activity. Mitochondrial extracts from human blood platelets contained type I topoisomerase. The type I classification was based on ATP-independent activity, inhibition by ATP or camptothecin, and the lack of inhibition by novobiocin. Platelet mitochondrial topoisomerase I relaxation activity was inhibited linearly by increasing concentrations of EGTA. Topoisomerase activity greater than 90% inhibited by 175 microM EGTA was partially restored to 16 and 50% of the initial level of activity by the subsequent addition of 50 and 100 microM Ca2+, respectively. Additionally, results from studies of partially purified platelet mitochondrial topoisomerase I were consistent with the crude extract data. This work supports the hypothesis that platelet mitochondria contain a type I topoisomerase that is biochemically distinct from that previously isolated and characterized from cell nuclei.
Collapse
Affiliation(s)
- M J Kosovsky
- Department of Biological Chemistry, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
15
|
Riesbeck K, Bredberg A, Forsgren A. Ciprofloxacin does not inhibit mitochondrial functions but other antibiotics do. Antimicrob Agents Chemother 1990; 34:167-9. [PMID: 2327755 PMCID: PMC171543 DOI: 10.1128/aac.34.1.167] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At clinical concentrations, ciprofloxacin did not inhibit mitochondrial DNA replication, oxidative phosphorylation, protein synthesis, or mitochondrial mass (transmembrane potential). No difference in supercoiled forms of DNA was observed. The tetracyclines and chloramphenicol inhibited protein synthesis at clinically achievable concentrations, while rifampin, fusidic acid, and clindamycin did not.
Collapse
Affiliation(s)
- K Riesbeck
- Department of Medical Microbiology, University of Lund, Malmö General Hospital, Sweden
| | | | | |
Collapse
|
16
|
Welter C, Dooley S, Zang KD, Blin N. DNA curvature in front of the human mitochondrial L-strand replication origin with specific protein binding. Nucleic Acids Res 1989; 17:6077-86. [PMID: 2475854 PMCID: PMC318262 DOI: 10.1093/nar/17.15.6077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA bending has been suggested to play a role in the regulation of gene expression, initiation of DNA-replication, site specific recombination, and DNA packaging. In the human mitochondrial DNA we have found a DNA curvature structure within the 3'-region of ther URF2 sequence in front of the L-strand origin of replication. This structure interacts specifically with a protein factor isolated from mitochondria. Based on the localization of this DNA curvature structure and the known function of such structures the data suggest a model in which this DNA signal sequence and its specific protein binding is involved in the regulatory initiation event of L-strand replication.
Collapse
Affiliation(s)
- C Welter
- Institute of Human Genetics, Medical School, University of Saar, FRG
| | | | | | | |
Collapse
|
17
|
Abstract
DNA topoisomerases are complex and unique enzymes which alter the topological state of DNA without changing its chemical structure. Between the type I and II enzymes, topoisomerases carry out a multitude of reactions, including DNA binding, site specific DNA cleavage/religation, relaxation, catenation/decatenation, and knotting/unknotting of nucleic acid substrates, DNA strand transfer, and ATP hydrolysis. In vivo, topoisomerases are involved in many aspects of nucleic acid metabolism and play critical roles in maintaining chromosome and nuclear structure. Finally, these enzymes are of clinical relevance, as they appear to be the primary cellular targets for many varied classes of antineoplastic agents. Considering the importance of the topoisomerases, it is distressing that we know so little about their enzymatic mechanisms. Many major questions remain. Just a few include, "How do topoisomerases recognize their nucleic acid interaction sites?"; "What amino acid residues comprise the enzymes' active sites?"; "What are the conformational changes that accompany DNA strand passage?"; "How does phosphorylation stimulate enzyme activity?"; "How does topoisomerase function when it is part of an immobilized structure such as the nuclear matrix or the mitotic chromosome scaffold?"; and "How do antineoplastic agents interact with their topoisomerase targets and stabilize covalent enzyme.DNA cleavage products?" Clearly, before the physiological functions of the topoisomerases can be fully described, these and similar issues will have to be addressed. Hopefully, the next several years will produce answers for at least some of these important questions.
Collapse
Affiliation(s)
- N Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
18
|
Mignotte B, Marsault J, Barat-Gueride M. Effects of the Xenopus laevis mitochondrial single-stranded DNA-binding protein on the activity of DNA polymerase gamma. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:479-84. [PMID: 3391165 DOI: 10.1111/j.1432-1033.1988.tb14123.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The single-stranded DNA-binding protein from Xenopus laevis oocyte mitochondria, which has been found associated with the D loop, binds to ssDNA in stoichiometric amounts and can under certain conditions stimulate the activity of the DNA polymerase gamma. Its properties suggest that it is involved in strand displacement during the replication of the mitochondrial genome.
Collapse
Affiliation(s)
- B Mignotte
- Laboratoire de Biologie Générale, Université de Paris-Sud, Orsay, France
| | | | | |
Collapse
|
19
|
Dunon-Bluteau D, Cordonnier A, Brun G. DNA synthesis in a mitochondrial lysate of Xenopus laevis oocytes. H strand replication in vitro. J Mol Biol 1987; 197:175-85. [PMID: 3119861 DOI: 10.1016/0022-2836(87)90116-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conditions for efficient replication in vitro of mitochondrial DNA L strand into H strand products have been established. Gel electrophoresis and hybridization analyses of the products show that neosynthesized H strands are progressively elongated from the D-loop region, and some of them are synthesized as full-length molecules. Evidence for initiation of these H strands de novo is presented. In contrast, there is no detectable L strand synthesis in vitro in this system. This may prove useful for analyzing the distinct molecular mechanisms operating at OH and OL. Use of specific inhibitors indicates that DNA synthesis in the mitochondrial lysate in vitro requires DNA polymerase gamma. These observations support the conclusion that replication in vitro in this system closely resembles the first steps of mitochondrial DNA replication in vivo.
Collapse
|
20
|
Ishii K, Futaki S, Uchiyama H, Nagasawa K, Andoh T. Mechanism of inhibition of mammalian DNA topoisomerase I by heparin. Biochem J 1987; 241:111-9. [PMID: 3032152 PMCID: PMC1147532 DOI: 10.1042/bj2410111] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that heparin is a potent inhibitor of a mammalian DNA topoisomerase I. We have now investigated the mechanism of its inhibition. This was carried out first by scrutinizing the structural features of heparin molecules responsible for the inhibition. Commercial heparin preparation was fractionated by antithrombin III-Sepharose into non-adsorbed, low-affinity and high-affinity fractions, of which only the high-affinity fraction of heparin is known to contain a specific oligosaccharide sequence responsible for the binding to antithrombin III. These fractions all exhibited essentially similar inhibitory activities. Furthermore, when chemically sulphated to an extent comparable with or higher than heparin, otherwise inactive glycosaminoglycans such as heparan sulphate, chondroitin 4-sulphate, dermatan sulphate and neutral polysaccharides such as dextran and amylose were converted into potent inhibitors. Sulphated dermatan sulphate, one of the model compounds, was further shown to bind competitively to the same sites on the enzyme as heparin. These observations strongly suggested that topoisomerase inhibition by heparin is attributable primarily, if not entirely, to the highly sulphated polyanionic nature of the molecules. In a second series of experiments we examined whether heparin inhibits only one or both of the topoisomerase reactions, i.e. nicking and re-joining. It was demonstrated that both reactions were inhibited by heparin, but the nicking reaction was more severely affected than was the re-joining reaction.
Collapse
|
21
|
Gallagher M, Weinberg R, Simpson MV. Effect of the bacterial DNA gyrase inhibitors, novobiocin, nalidixic acid, and oxolinic acid, on oxidative phosphorylation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84422-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|