1
|
Gervason S, Dutkiewicz R, Want K, Benazza R, Mor-Gautier R, Grabinska-Rogala A, Sizun C, Hernandez-Alba O, Cianferani S, Guigliarelli B, Burlat B, D'Autréaux B. The ISC machinery assembles [2Fe-2S] clusters by formation and fusion of [1Fe-1S] precursors. Nat Chem Biol 2025; 21:767-778. [PMID: 39870763 DOI: 10.1038/s41589-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU. Then, the persulfide is cleaved into sulfide by the ferredoxin Fdx, leading to a [1Fe-1S] precursor. IscU dissociates from IscS, dimerizes and generates a bridging [2Fe-2S] cluster by fusion of two [1Fe-1S] precursors. The IscU dimer ultimately dissociates into a monomer, ready to transfer its [2Fe-2S] cluster to acceptors. These data provide a comprehensive description of the [2Fe-2S] cluster assembly process by the ISC assembly machinery, highlighting the formation of key intermediates through a tightly concerted process.
Collapse
Affiliation(s)
- Sylvain Gervason
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Rémi Mor-Gautier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Aneta Grabinska-Rogala
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg, France
| | - Bruno Guigliarelli
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Bénédicte Burlat
- Aix Marseille University, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Xiao X, Latt KZ, Gong J, Kim T, Connell JG, Liu Y, Fry HC, Pearson JE, Wostoupal OS, Li M, Soldan C, Yang Z, Schaller RD, Diroll BT, Hla SW, Xu T. Light-induced Kondo-like exciton-spin interaction in neodymium(II) doped hybrid perovskite. Nat Commun 2024; 15:6084. [PMID: 39030160 PMCID: PMC11271502 DOI: 10.1038/s41467-024-50196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3 (MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+ is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3 without Nd2+ dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 f spins of the Nd2+ in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+ doping concentration that enhances the coupling between the exciton and Nd2+ 4 f spins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+ spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3.
Collapse
Affiliation(s)
- Xudong Xiao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Kyaw Zin Latt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
| | - Jue Gong
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Taewoo Kim
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Justin G Connell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
| | - John E Pearson
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
| | - Owen S Wostoupal
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Mengyuan Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Calvin Soldan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA.
| | - Saw Wai Hla
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois, USA.
| | - Tao Xu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA.
| |
Collapse
|
3
|
Dombrowski JP, Kalendra V, Ziegler MS, Lakshmi KV, Bell AT, Tilley TD. M-Ge-Si thermolytic molecular precursors and models for germanium-doped transition metal sites on silica. Dalton Trans 2024; 53:7340-7349. [PMID: 38602311 DOI: 10.1039/d4dt00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| |
Collapse
|
4
|
Srour B, Gervason S, Hoock MH, Monfort B, Want K, Larkem D, Trabelsi N, Landrot G, Zitolo A, Fonda E, Etienne E, Gerbaud G, Müller CS, Oltmanns J, Gordon JB, Yadav V, Kleczewska M, Jelen M, Toledano MB, Dutkiewicz R, Goldberg DP, Schünemann V, Guigliarelli B, Burlat B, Sizun C, D'Autréaux B. Iron Insertion at the Assembly Site of the ISCU Scaffold Protein Is a Conserved Process Initiating Fe-S Cluster Biosynthesis. J Am Chem Soc 2022; 144:17496-17515. [PMID: 36121382 PMCID: PMC10163866 DOI: 10.1021/jacs.2c06338] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups of proteins biosynthesized on scaffold proteins by highly conserved multi-protein machineries. Biosynthesis of Fe-S clusters into the ISCU scaffold protein is initiated by ferrous iron insertion, followed by sulfur acquisition, via a still elusive mechanism. Notably, whether iron initially binds to the ISCU cysteine-rich assembly site or to a cysteine-less auxiliary site via N/O ligands remains unclear. We show here by SEC, circular dichroism (CD), and Mössbauer spectroscopies that iron binds to the assembly site of the monomeric form of prokaryotic and eukaryotic ISCU proteins via either one or two cysteines, referred to the 1-Cys and 2-Cys forms, respectively. The latter predominated at pH 8.0 and correlated with the Fe-S cluster assembly activity, whereas the former increased at a more acidic pH, together with free iron, suggesting that it constitutes an intermediate of the iron insertion process. Iron not binding to the assembly site was non-specifically bound to the aggregated ISCU, ruling out the existence of a structurally defined auxiliary site in ISCU. Characterization of the 2-Cys form by site-directed mutagenesis, CD, NMR, X-ray absorption, Mössbauer, and electron paramagnetic resonance spectroscopies showed that the iron center is coordinated by four strictly conserved amino acids of the assembly site, Cys35, Asp37, Cys61, and His103, in a tetrahedral geometry. The sulfur receptor Cys104 was at a very close distance and apparently bound to the iron center when His103 was missing, which may enable iron-dependent sulfur acquisition. Altogether, these data provide the structural basis to elucidate the Fe-S cluster assembly process and establish that the initiation of Fe-S cluster biosynthesis by insertion of a ferrous iron in the assembly site of ISCU is a conserved mechanism.
Collapse
Affiliation(s)
- Batoul Srour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvain Gervason
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maren Hellen Hoock
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Beata Monfort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Djabir Larkem
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Nadine Trabelsi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gautier Landrot
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-Sur-Yvette, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Christina Sophia Müller
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Jonathan Oltmanns
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Malgorzata Kleczewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marcin Jelen
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Michel B Toledano
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Volker Schünemann
- Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Bénédicte Burlat
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, Avenue de La Terrasse, 91190 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Röhs FLB, Dammers S, Stammler A, Oldengott J, Bögge H, Bill E, Glaser T. Dinuclear Diferrous Complexes of a Bis(tetradentate) Dinucleating Ligand: Influence of the Exogenous Ligands on the Molecular and Electronic Structures. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Susanne Dammers
- Bielefeld University: Universitat Bielefeld Fakultät für Chemie GERMANY
| | - Anja Stammler
- Bielefeld University: Universitat Bielefeld Fakultät für Chemie GERMANY
| | - Jan Oldengott
- Bielefeld University: Universitat Bielefeld Fakultät für Chemie GERMANY
| | - Hartmut Bögge
- Bielefeld University: Universitat Bielefeld Fakultät für Chemie GERMANY
| | - Eckhard Bill
- Mulheimer Max-Planck-Institute: Max-Planck-Institut fur chemische Energiekonversion Max-Planck-Institut für Chemische Energiekonversion GERMANY
| | - Thorsten Glaser
- Bielefeld University: Universitat Bielefeld Department of Chemistry Universitätsstr. 24 33615 Bielefeld GERMANY
| |
Collapse
|
6
|
Stoian SA, Moshari M, Ferentinos E, Grigoropoulos A, Krzystek J, Telser J, Kyritsis P. Electronic Structure of Tetrahedral, S = 2, [Fe{(EP iPr 2) 2N} 2], E = S, Se, Complexes: Investigation by High-Frequency and -Field Electron Paramagnetic Resonance, 57Fe Mössbauer Spectroscopy, and Quantum Chemical Studies. Inorg Chem 2021; 60:10990-11005. [PMID: 34288665 DOI: 10.1021/acs.inorgchem.1c00670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we assessed the electronic structures of two pseudotetrahedral complexes of FeII, [Fe{(SPiPr2)2N}2] (1) and [Fe{(SePiPr2)2N}2] (2), using high-frequency and -field EPR (HFEPR) and field-dependent 57Fe Mössbauer spectroscopies. This investigation revealed S = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters D. The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of 1 and 2 have a predominant dx2-y2 character, which is admixed with dz2 (∼10%). Although replacing the S-containing ligands of 1 by their Se-containing analogues in 2 leads to a smaller |D| value, our theoretical analysis, which relied on extensive ab initio CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the dx2-y2β → dxyβ excitations yield a large negative contribution, which dominates the zfs of both 1 and 2, while the different energies of the dx2-y2β → dxzβ transitions are the predominant factor responsible for the difference in zfs between 1 and 2. The electronic structures of these compounds are contrasted with those of other [FeS4] sites, including reduced rubredoxin by considering a D2-type distortion of the [Fe(E-X)4] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of 1 and 2 are modulated by the magnitude of the D2 distortion, this structural change does not impact the contribution of the excited triplet states.
Collapse
Affiliation(s)
- Sebastian A Stoian
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Mahsa Moshari
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| |
Collapse
|
7
|
Segawa TF, Shames AI. How to Identify, Attribute, and Quantify Triplet Defects in Ensembles of Small Nanoparticles. J Phys Chem Lett 2020; 11:7438-7442. [PMID: 32787299 DOI: 10.1021/acs.jpclett.0c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanodiamonds containing negatively charged triplet (having an electron spin S = 1) nitrogen-vacancy (NV-) centers are an extraordinary room-temperature quantum system, whose electron spins may be polarized and read out optically even in a single nanocrystal. In this Viewpoint we promote a simple but reliable method to identify, attribute, and quantify these triplet defects in a polycrystalline sample using electron paramagnetic resonance (EPR) spectroscopy. The characterization relies on a specific "forbidden" transition ("ΔMS = 2"), which appears at about half the central magnetic field and shows a remarkably small anisotropy. In particular, we emphasize that this method is by far not limited to NV- centers in diamond but could become an important characterization tool for novel triplet defects in various types of nanoparticles.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory for Solid State Physics, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
8
|
Kalyanaraman B, Cheng G, Zielonka J, Bennett B. Low-Temperature EPR Spectroscopy as a Probe-Free Technique for Monitoring Oxidants Formed in Tumor Cells and Tissues: Implications in Drug Resistance and OXPHOS-Targeted Therapies. Cell Biochem Biophys 2018; 77:89-98. [PMID: 30259334 DOI: 10.1007/s12013-018-0858-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Oxidants formed from oxidative and nitrative metabolism include reactive oxygen species (ROS) such as superoxide, hydrogen peroxide/lipid hydroperoxides and reactive nitrogen species (RNS) (e.g., peroxynitrite [ONOO-] and nitrogen dioxide), and reactive halogenated species (e.g., hypochlorous acid [HOCl]). Increasingly, ROS and RNS are implicated in tumorigenesis as well as tumor growth, progression, and metastasis. Recently, ROS were implicated in drug resistance, metabolic reprogramming, and T-cell metabolism in immunotherapy. Mostly, fluorescent probes have been used in cell culture systems. The identity of species is obtained by LC-MS analyses of diagnostic marker products. However, extrapolation of these assays to cancer xenografts is difficult if not impossible. Thus, development of a probe-free assay for monitoring and assessing oxidant formation in tumor cells and tumor xenografts is critical and timely. Here, we describe the use of ex vivo electron paramagnetic resonance (EPR) spectroscopy at cryogenic temperatures as a uniquely useful probe-free technique for assessing intracellular oxidation and oxidants via EPR signals from redox centers, particularly iron-sulfur clusters, in mitochondrial and cytosolic redox proteins. Examples of cancer cells subjected to inhibition of mitochondrial oxidative phosphorylation are presented. This ex vivo methodology can be readily extended to monitor oxidant formation in tumor tissues isolated from mice and humans.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian Bennett
- Department of Physics, Marquette University, 540 N. 15th St., Milwaukee, WI, 53233, USA.
| |
Collapse
|
9
|
Yamane T, Sugisaki K, Nakagawa T, Matsuoka H, Nishio T, Kinjyo S, Mori N, Yokoyama S, Kawashima C, Yokokura N, Sato K, Kanzaki Y, Shiomi D, Toyota K, Dolphin DH, Lin WC, McDowell CA, Tadokoro M, Takui T. Analyses of sizable ZFS and magnetic tensors of high spin metallocomplexes. Phys Chem Chem Phys 2018; 19:24769-24791. [PMID: 28868562 DOI: 10.1039/c7cp03850j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fictitious spin-1/2 Hamiltonian approach is the putative method to analyze the fine-structure/hyperfine ESR spectra of high spin metallocomplexes having sizable zerofield splitting (ZFS), thus giving salient principal g-values far from around g = 2 without explicitly providing their ZFS parameters in most cases. Indeed, the significant departure of the g-values from g = 2 is indicative of the occurrence of their high spin states, but naturally they never agree with true g-values acquired by quantum chemical calculations such as sophisticated DFT or ab initio MO calculations. In this work, we propose facile approaches to determine the magnetic tensors of high spin metallocomplexes having sizable ZFS, instead of performing advanced high-field/high-frequency ESR spectroscopy. We have revisited analytical expressions for the relationship between effective g-values and true principal g-values for high spins. The useful analytical formulas for the geff-gtrue relationships are given for S's up to 7/2. The genuine Zeeman perturbation formalism gives the exact solutions for S = 3/2, and for higher S's it is much more accurate than the pseudo-Zeeman perturbation approach documented so far (A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions, 1970; J. R. Pilbrow, J. Magn. Reson., 1978, 31, 479; F. Trandafir et al., Appl. Magn. Reson., 2007, 31, 553; M. Fittipaldi et al., J. Phys. Chem. B, 2008, 112, 3859), in which the E(Sx2 - Sy2) term is putatively treated to the second order. To show the usefulness of the present approach, we exploit FeIII(Cl)OEP (S = 5/2) (OEP: 2,3,7,8,12,13,17,18-octaethylporphyrin) and CoIIOEP (S = 3/2) well magnetically diluted in the diamagnetic host crystal lattice of NiIIOEP. The advantage of single-crystal ESR spectroscopy lies in the fact that the molecular information on the principal axes of the magnetic tensors is crucial in comparing with reliable theoretical results. In high spin states of metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR transitions for the principal z-axis orientation appear in the lower field far from g = 2 at the X-band, disagreeing with the putative intuitive picture obtained using relevant ESR spectroscopy. A ReIII,IV dinuclear complex in a mixed valence state exemplifies the cases, whose fine-structure/hyperfine ESR spectra of the neat crystals have been analyzed in their principal-axis system. The DFT-based/ab initio MO calculations of the magnetic tensors for all the high spin entities in this work were carried out.
Collapse
Affiliation(s)
- Takeshi Yamane
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vertregt F, Torrelo G, Trunk S, Wiltsche H, Hagen WR, Hanefeld U, Steiner K. EPR Study of Substrate Binding to Mn(II) in Hydroxynitrile Lyase from Granulicella tundricola. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Femke Vertregt
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Guzman Torrelo
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Sarah Trunk
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, TU Graz, Stremayrgasse
9/III, 8010 Graz, Austria
| | - Wilfred R. Hagen
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Ulf Hanefeld
- Biokatalyse,
Afdeling Biotechnologie, Technische Universiteit Delft, van der Maasweg
9, 2629HZ Delft, The Netherlands
| | - Kerstin Steiner
- Austrian Centre
of Industrial Biotechnology GmbH, Petersgasse
14/4, 8010 Graz, Austria
| |
Collapse
|
11
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
12
|
Stathi P, Mitrikas G, Sanakis Y, Louloudi M, Deligiannakis Y. Back-clocking of Fe2+/Fe1+spin states in a H2-producing catalyst by advanced EPR. Mol Phys 2013. [DOI: 10.1080/00268976.2013.798045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Abstract
EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
14
|
Mathies G, Chatziefthimiou SD, Maganas D, Sanakis Y, Sottini S, Kyritsis P, Groenen EJJ. High-frequency EPR study of the high-spin FeII complex Fe[(SPPh2)2N]2. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 224:94-100. [PMID: 23064483 DOI: 10.1016/j.jmr.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
We report continuous-wave electron-paramagnetic-resonance (EPR) spectra of the high-spin Fe(II) complex Fe[(SPPh(2))(2)N](2) at 275.7 GHz, 94.1 GHz and 9.5 GHz. Combined analysis of these EPR spectra shows that the complex occurs in multiple conformations. For two main conformations the spin-Hamiltonian parameters, which reflect the electronic structure of the complex, are accurately determined: (1) D=9.17 cm(-1) (275 GHz), E/D=0.021 and (2) D=8.87 cm(-1) (266 GHz), E/D=0.052. The EPR spectra obtained at 275.7 GHz on single crystals of the complex are essential for the analysis and in addition they reveal that the two main conformations occur at two magnetically distinguishable sites.
Collapse
Affiliation(s)
- Guinevere Mathies
- Huygens Laboratory, Department of Molecular Physics, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Moula G, Bose M, Maiti BK, Sarkar S. Oxomolybdenum monodithiolene complexes linked with sulfur bridged iron: antiferromagnetically coupled Fe(iii)Mo(v) systems. Dalton Trans 2012; 41:12926-35. [DOI: 10.1039/c2dt31743e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Hans M, Buckel W, Bill E. Spectroscopic evidence for an all-ferrous [4Fe-4S]0 cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. J Biol Inorg Chem 2008; 13:563-74. [PMID: 18274792 PMCID: PMC2359827 DOI: 10.1007/s00775-008-0345-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/28/2008] [Indexed: 11/30/2022]
Abstract
The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutaryl-coenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe-4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe-4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters delta = 0.65 mm/s and deltaE(Q) = 1.51-2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin S(t) = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = -0.66 cm(-1) and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe-4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe-4S]0 cluster found in biology.
Collapse
Affiliation(s)
- Marcus Hans
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany
- DSM Anti-Infectives, Dep. DAI/INNO Genetics (624-0270), P.O. Box 425, 2600 AK Delft, The Netherlands
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34–36, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
17
|
Que L, True AE. Dinuclear Iron- and Manganese-Oxo Sites in Biology. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166390.ch3] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Abstract
Molecular paramagnetism pervades the bioinorganic chemistry of V, Mn, Fe, Co, Ni, Cu, Mo, W, and of a number of non-biological transition elements. To date we can look back at half a century of fruitful EPR studies on metalloproteins, and against this background evaluate the significance of modern EPR spectroscopy from the perspective of a biochemist, making a distinction between conventional continuous wave X-band spectroscopy as a reliable work horse with broad, established applicability even on crude preparations, vs. a diffuse set of "advanced EPR" technologies whose practical application typically calls for narrowly focused research hypotheses and very high quality samples. The type of knowledge on metalloproteins that is readily obtainable with EPR spectroscopy, is explained with illustrative examples, as is the relation between experimental complexity and the spin value of the system.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628, BC Delft, The Netherlands.
| |
Collapse
|
19
|
Del Río D, Sarangi R, Chufán EE, Karlin KD, Hedman B, Hodgson KO, Solomon EI. Geometric and Electronic Structure of the Heme−Peroxo−Copper Complex [(F8TPP)FeIII−(O22-)−CuII(TMPA)](ClO4). J Am Chem Soc 2005; 127:11969-78. [PMID: 16117536 DOI: 10.1021/ja043374r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.
Collapse
Affiliation(s)
- Diego Del Río
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cheesman MR, Oganesyan VS, Watmough NJ, Butler CS, Thomson AJ. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies. J Am Chem Soc 2004; 126:4157-66. [PMID: 15053605 DOI: 10.1021/ja038858m] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.
Collapse
Affiliation(s)
- Myles R Cheesman
- School of Chemical Sciences and Pharmacy, Centre for Metalloprotein Spectroscopy and Biology (CMSB), University of East Anglia, Norwich NR4 7TJ, U.K.
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Eunsuk Kim
- Department of Chemistry, Johns Hopkins University, Charles and 34th Streets, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
22
|
Strand KR, Karlsen S, Andersson KK. Cobalt substitution of mouse R2 ribonucleotide reductase as a model for the reactive diferrous state: spectroscopic and structural evidence for a ferromagnetically coupled dinuclear cobalt cluster. J Biol Chem 2002; 277:34229-38. [PMID: 12087093 DOI: 10.1074/jbc.m203358200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2 dimer of mouse ribonucleotide reductase contains a dinuclear iron-oxygen cluster and tyrosyl radical/subunit. The dinuclear diferrous form reacts with dioxygen to generate the tyrosyl radical essential for the catalytic reaction that occurs at the R1 dimer. It is important to understand how the reactivity toward oxygen is related to the crystal structure of the dinuclear cluster. For the mouse R2 protein, no structure has been available with a fully occupied dinuclear metal ion site. A cobalt substitution of mouse R2 was performed to produce a good model for the very air-sensitive diferrous form of the enzyme. X-band EPR and light absorption studies (epsilon(550 nm) = 100 mm(-1) cm(-1)/Co(II)) revealed a strong cooperative binding of cobalt to the dinuclear site. In perpendicular mode EPR, the axial signal from mouse R2 incubated with Co(II) showed a typical S = 3/2 Co(II) signal, and its low intensity indicated that the majority of the Co(II) bound to R2 is magnetically coupled. In parallel mode EPR, a typical integer spin signal (M(s) = +/-3) with g approximately 12 is observed at 3.6 K and 10 K, showing that the two Co(II) ions (S = 3/2) in the dinuclear site are ferromagnetically coupled. We have solved the 2.4 A crystal structure of the Co(II)-substituted R2 with a fully occupied dinuclear cluster. The bridging Co(II) carboxylate ligand Glu-267 adopts an altered orientation compared with its counterpart Glu-238 in Escherichia coli R2. This might be important for proper O(2) activation of the more exposed native diferrous site in mouse R2 compared with E. coli R2.
Collapse
Affiliation(s)
- Kari R Strand
- Department of Biochemistry, University of Oslo, P. O. Box 1041, Blindern, Oslo N-0316, Norway
| | | | | |
Collapse
|
23
|
Hammarberg T, Kuprin S, Rådmark O, Holmgren A. EPR investigation of the active site of recombinant human 5-lipoxygenase: inhibition by selenide. Biochemistry 2001; 40:6371-8. [PMID: 11371199 DOI: 10.1021/bi001595d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoxygenases are a group of non-heme iron dioxygenases which catalyze the formation of lipid hydroperoxides from unsaturated fatty acids. 5-Lipoxygenase (5LO) is of particular interest for formation of leukotrienes and lipoxins, implicated in inflammatory processes. In this study, electron paramagnetic resonance (EPR) spectroscopy was used to investigate the active site iron of purified recombinant human 5-lipoxygenase (5LO), and to explore the action of selenide on 5LO. After oxidation by lipid hydroperoxides, 5LO exhibited axial EPR spectra typified by a signal at g = 6.2. However, removal of the lipid hydroperoxides, their metabolites, and the solvent ethanol from the samples resulted in a shift to more rhombic EPR spectra (g = 5.17 and g = 9.0). Thus, many features of 5LO and soybean lipoxygenase-1 EPR spectra were similar, indicating similar flexible iron ligand arrangements in these lipoxygenases. Selenide (1.5 microM) showed a strong inhibitory effect on the enzyme activity of 5LO. In EPR, selenide abolished the signal at g = 6.2, typical for enzymatically active 5LO. Lipid hydroperoxide added to selenide-treated 5LO could not reinstate the signal at g = 6.2, indicating an irreversible change of the coordination of the active site iron.
Collapse
Affiliation(s)
- T Hammarberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
24
|
Britt RD, Peloquin JM, Campbell KA. Pulsed and parallel-polarization EPR characterization of the photosystem II oxygen-evolving complex. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:463-95. [PMID: 10940256 DOI: 10.1146/annurev.biophys.29.1.463] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II uses visible light to drive the oxidation of water, resulting in bioactivated electrons and protons, with the production of molecular oxygen as a byproduct. This water-splitting reaction is carried out by a manganese cluster/tyrosine radial ensemble, the oxygen -evolving complex. Although conventional continuous-wave, perpendicular -polarization electron paramagnetic resonance (EPR) spectroscopy has significantly advanced our knowledge of the structure and function of the oxygen-evolving complex, significant additional information can be obtained with the application of additional EPR methodologies. Specifically, parallel-polarization EPR spectroscopy can be use to obtain highly resolved EPR spectra of integer spin Mn species, and pulsed EPR spectroscopy with electron spin echo-based sequences, such as electron spin echo envelope modulation and electron spin echo-electron nuclear double resonance, can be used to measure weak interactions obscured in continuous-wave spectroscopy by inhomogeneous broadening.
Collapse
Affiliation(s)
- R D Britt
- Department of Chemistry, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
25
|
Morgenstern-Badarau I, Lambert F, Philippe Renault J, Cesario M, Maréchal JD, Maseras F. Amine conformational change and spin conversion induced by metal-assisted ligand oxidation: from the seven-coordinate iron(II)–TPAA complex to the two oxidized iron(II)–(py)3tren isomers. Characterization, crystal structures, and density functional study. Inorganica Chim Acta 2000. [DOI: 10.1016/s0020-1693(99)00363-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Hunter DJ, Oganesyan VS, Salerno JC, Butler CS, Ingledew WJ, Thomson AJ. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Biophys J 2000; 78:439-50. [PMID: 10620307 PMCID: PMC1300651 DOI: 10.1016/s0006-3495(00)76606-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c oxidase catalyzes the reduction of oxygen to water with a concomitant conservation of energy in the form of a transmembrane proton gradient. The enzyme has a catalytic site consisting of a binuclear center of a copper ion and a heme group. The spectroscopic parameters of this center are unusual. The origin of broad electron paramagnetic resonance (EPR) signals in the oxidized state at rather low resonant field, the so-called g' = 12 signal, has been a matter of debate for over 30 years. We have studied the angular dependence of this resonance in both parallel and perpendicular mode X-band EPR in oriented multilayers containing cytochrome c oxidase to resolve the assignment. The "slow" form and compounds formed by the addition of formate and fluoride to the oxidized enzyme display these resonances, which result from transitions between states of an integer-spin multiplet arising from magnetic exchange coupling between the five unpaired electrons of high spin Fe(III) heme a(3) and the single unpaired electron of Cu(B). The first successful simulation of similar signals observed in both perpendicular and parallel mode X-band EPR spectra in frozen aqueous solution of the fluoride compound of the closely related enzyme, quinol oxidase or cytochrome bo(3), has been reported recently (Oganesyan et al., 1998, J. Am. Chem. Soc. 120:4232-4233). This suggested that the exchange interaction between the two metal ions of the binuclear center is very weak (|J| approximately 1 cm(-1)), with the axial zero-field splitting (D approximately 5 cm(-1)) of the high-spin heme dominating the form of the ground state. We show that this model accounts well for the angular dependences of the X-band EPR spectra in both perpendicular and parallel modes of oriented multilayers of cytochrome c oxidase derivatives and that the experimental results are inconsistent with earlier schemes that use exchange coupling parameters of several hundred wavenumbers.
Collapse
Affiliation(s)
- D J Hunter
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews, Fife KY16 9AL, Scotland
| | | | | | | | | | | |
Collapse
|
27
|
Petasis DT, Hendrich MP. A new Q-band EPR probe for quantitative studies of even electron metalloproteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1999; 136:200-206. [PMID: 9986761 DOI: 10.1006/jmre.1998.1657] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Existing Q-band (35 GHz) EPR spectrometers employ cylindrical cavities for more intense microwave magnetic fields B1, but are so constructed that only one orientation between the external field B and B1 is allowed, namely the B perpendicular B1 orientation, thus limiting the use of the spectrometer to measurements on Kramers spin systems (odd electron systems). We have designed and built a Q-band microwave probe to detect EPR signals in even electron systems, which operates in the range 2 K </= T </= 300 K for studies of metalloprotein samples. The cylindrical microwave cavity operates in the TE011 mode with cylindrical wall coupling to the waveguide, thus allowing all orientations of the external magnetic field B relative to the microwave field B1. Such orientations allow observation of EPR transitions in non-Kramers ions (even electron) which are either forbidden or significantly weaker for B perpendicular B1. Rotation of the external magnetic field also permits easy differentiation between spin systems from even and odd electron oxidation states. The cavity consists of a metallic helix and thin metallic end walls mounted on epoxy supports, which allows efficient penetration of the modulation field. The first quantitative EPR measurements from a metalloprotein (Hemerythrin) at 35 GHz with B1 || B are presented.
Collapse
Affiliation(s)
- D T Petasis
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | | |
Collapse
|
28
|
Oganesyan VS, Butler CS, Watmough NJ, Greenwood C, Thomson AJ, Cheesman MR. Nature of the Coupling between the High-Spin Fe(III) Heme and CuB(II) in the Active Site of Terminal Oxidases: Dual-Mode EPR Spectra of Fluoride Cytochrome bo3. J Am Chem Soc 1998. [DOI: 10.1021/ja974050o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vasily S. Oganesyan
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| | - Clive S. Butler
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| | - Nicholas J. Watmough
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| | - Colin Greenwood
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| | - Andrew J. Thomson
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| | - Myles R. Cheesman
- Centre for Metalloprotein Spectroscopy and Biology School of Chemical Sciences School of Biological Sciences University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
29
|
Hunter DJ, Salerno JC, Ingledew WJ. Angular dependence of electron paramagnetic resonances of an azide-NO complex of cytochrome c oxidase: orientation of the haem-copper axis in cytochrome aa3 from ox heart. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:55-62. [PMID: 9554953 DOI: 10.1016/s0005-2728(98)00006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The orientation dependence of the EPR signals arising from the azide-nitric oxide complex of cytochrome oxidase was investigated using oriented multilayers of mitochondrial membranes from ox heart. Variations in line shape of the DeltaMS=1 signal of the triplet state were apparent, whilst the DeltaMS=2 transitions between g=4.7 and 3.9 varied in intensity as the angle of the applied magnetic field was varied. These half-field signals were maximal with the field parallel to the membrane plane. A model of the bi-liganded azide-nitric oxide complex has been constructed, in which the nitric oxide is bound to the high-spin haem in a bent configuration, with the Fe-N=O plane at 60-90 degrees to the membrane plane and the azide bound to the copper, distal from the haem. In addition, angular variations of the signals at g'=11 and g' around 3.5, derived from an integer-spin complex, were also observed.
Collapse
Affiliation(s)
- D J Hunter
- School of Biological and Medical Sciences, University of St. Andrews, St. Andrews, Fife, Scotland, KY16 9AL, UK
| | | | | |
Collapse
|
30
|
Campbell KA, Gregor W, Pham DP, Peloquin JM, Debus RJ, Britt RD. The 23 and 17 kDa extrinsic proteins of photosystem II modulate the magnetic properties of the S1-state manganese cluster. Biochemistry 1998; 37:5039-45. [PMID: 9548734 DOI: 10.1021/bi9800552] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An S1-state parallel polarization "multiline" EPR signal arising from the oxygen-evolving complex has been detected in spinach (PSII) membrane and core preparations depleted of the 23 and 17 kDa extrinsic polypeptides, but retaining the 33 kDa extrinsic protein. This S1-state multiline signal, with an effective g value of 12 and at least 18 hyperfine lines, has previously been detected only in PSII preparations from the cyanobacterium sp. Synechocystis sp. PCC6803 [Campbell, K. A., Peloquin, J. M., Pham, D. P., Debus, R. J., and Britt, R. D. (1998) J. Am. Chem. Soc. 120, 447-448]. It is absent in PSII spinach membrane and core preparations that either fully retain or completely lack the 33, 23, and 17 kDa extrinsic proteins. The S1-state multiline signal detected in spinach PSII cores and membranes has the same effective g value and hyperfine spacing as the signal detected in Synechocystis PSII particles. This signal provides direct evidence for the influence of the extrinsic PSII proteins on the magnetic properties of the Mn cluster.
Collapse
Affiliation(s)
- K A Campbell
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
31
|
Klaassen AAK, Reijerse EJ, Hagen WR. Application of High Frequency EPR to Integer Spin Systems: Unusual Behavior of the Double-Quantum Line. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 130:140-144. [PMID: 9469910 DOI: 10.1006/jmre.1997.1293] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A high-frequency EPR study is presented of the integer spin system Ni(II) in the host of Zn-tris(ethylenediamine) dinitrate. This complex shows a broad structureless line at X band. At D band (130 GHz) however, a standard triplet powder spectrum is observed. Superimposed on this spectrum is a "double-quantum" line at the expected position. The microwave power dependency of this line is found to be in contradiction with existing theory on multiple-quantum transitions. The line in our spectra shows a single quantum line behavior in intensity and linewidth as a function of the microwave frequency from 35 to 130 GHz. A literature survey leads to the conclusion that most double-quantum features in high-spin systems do not follow the P3/2 power dependency predicted by second-order perturbation theory. In our case the double-quantum line is assigned to an enhancement effect due to the simultaneous excitation of two single-quantum transitions. Copyright 1998 Academic Press. Copyright 1998 Academic Press
Collapse
|
32
|
Staples CR, Dhawan IK, Finnegan MG, Dwinell DA, Zhou ZH, Huang H, Verhagen MFJM, Adams MWW, Johnson MK. Electronic, Magnetic, and Redox Properties of [MFe(3)S(4)] Clusters (M = Cd, Cu, Cr) in Pyrococcus furiosus Ferredoxin. Inorg Chem 1997; 36:5740-5749. [PMID: 11670195 DOI: 10.1021/ic970200k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ground- and excited-state properties of heterometallic [CuFe(3)S(4)](2+,+), [CdFe(3)S(4)](2+,+), and [CrFe(3)S(4)](2+,+) cubane clusters assembled in Pyrococcus furiosus ferredoxin have been investigated by the combination of EPR and variable-temperature/variable-field magnetic circular dichroism (MCD) studies. The results indicate Cd(2+) incorporation into [Fe(3)S(4)](0,-) cluster fragments to yield S = 2 [CdFe(3)S(4)](2+) and S = (5)/(2) [CdFe(3)S(4)](+) clusters and Cu(+) incorporation into [Fe(3)S(4)](+,0) cluster fragments to yield S = (1)/(2) [CuFe(3)S(4)](2+) and S = 2 [CuFe(3)S(4)](+) clusters. This is the first report of the preparation of cubane type [CrFe(3)S(4)](2+,+) clusters, and the combination of EPR and MCD results indicates S = 0 and S = (3)/(2) ground states for the oxidized and reduced forms, respectively. Midpoint potentials for the [CdFe(3)S(4)](2+,+), [CrFe(3)S(4)](2+,+), and [CuFe(3)S(4)](2+,+) couples, E(m) = -470 +/- 15, -440 +/- 10, and +190 +/- 10 mV (vs NHE), respectively, were determined by EPR-monitored redox titrations or direct electrochemistry at a glassy carbon electrode. The trends in redox potential, ground-state spin, and electron delocalization of [MFe(3)S(4)](2+,+) clusters in P. furiosus ferredoxin are discussed as a function of heterometal (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Tl).
Collapse
Affiliation(s)
- Christopher R. Staples
- Departments of Chemistry and Biochemistry & Molecular Biology and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
van Dam PJ, Reijerse EJ, Hagen WR. Identification of a putative histidine base and of a non-protein nitrogen ligand in the active site of Fe-hydrogenases by one-dimensional and two-dimensional electron spin-echo envelope-modulation spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:355-61. [PMID: 9346288 DOI: 10.1111/j.1432-1033.1997.00355.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The active H-cluster of the Fe-hydrogenases from Megasphaera elsdenii and Desulfovibrio vulgaris (strain Hildenborough) has been investigated with one- and two-dimensional pulsed EPR spectroscopy. In both complexes the coordination of a nitrogen-containing ligand was found. The unusual quadrupole interaction parameters (D. vulgaris: quadrupole coupling constant, K = 1.20 MHz, asymmetry parameter eta = 0.32, M. elsdenii: K = 1.23 MHz, eta = 0.25) indicate a non-protein type of nitrogen and are consistent with cyanide as ligand to the H-cluster. The additional interactions measured on the EPR signal of the inactivated H-cluster in D. vulgaris hydrogenase are consistent with an imidazole interaction similar to that found in Rieske-type iron-sulfur clusters. Since a His residue near the putative H-cluster binding motif of Cys residues, His371, is the only conserved His in Fe-hydrogenases, it is a likely candidate for the base that accepts the proton in the heterolytic cleavage of molecular hydrogen. The inactivation of the enzyme is accompanied by direct binding of the imidazole ring to the H-cluster.
Collapse
Affiliation(s)
- P J van Dam
- Department of Molecular Spectroscopy, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Koehler BP, Mukund S, Conover RC, Dhawan IK, Roy R, Adams MWW, Johnson MK. Spectroscopic Characterization of the Tungsten and Iron Centers in Aldehyde Ferredoxin Oxidoreductases from Two Hyperthermophilic Archaea. J Am Chem Soc 1996. [DOI: 10.1021/ja962197u] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian P. Koehler
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Swarnalatha Mukund
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Richard C. Conover
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Ish K. Dhawan
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Roopali Roy
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Michael W. W. Adams
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Michael K. Johnson
- Contribution from the Departments of Chemistry and Biochemistry and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
36
|
Moody AJ. 'As prepared' forms of fully oxidised haem/Cu terminal oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:6-20. [PMID: 8764888 DOI: 10.1016/0005-2728(96)00035-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A J Moody
- Glynn Research Foundation, Cornwall, UK.
| |
Collapse
|
37
|
Zahn JA, DiSpirito AA. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 1996; 178:1018-29. [PMID: 8576034 PMCID: PMC177761 DOI: 10.1128/jb.178.4.1018-1029.1996] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An active preparation of the membrane-associated methane monooxygenase (pMMO) from Methylococcus capsulatus Bath was isolated by ion-exchange and hydrophobic interaction chromatography using dodecyl beta-D-maltoside as the detergent. The active preparation consisted of three major polypeptides with molecular masses of 47,000, 27,000, and 25,000 Da. Two of the three polypeptides (those with molecular masses of 47,000 and 27,000 Da) were identified as the polypeptides induced when cells expressing the soluble MMO are switched to culture medium in which the pMMO is expressed. The 27,000-Da polypeptide was identified as the acetylene-binding protein. The active enzyme complex contained 2.5 iron atoms and 14.5 copper atoms per 99,000 Da. The electron paramagnetic resonance spectrum of the enzyme showed evidence for a type 2 copper center (g perpendicular = 2.057, g parallel = 2.24, and magnitude of A parallel = 172 G), a weak high-spin iron signal (g = 6.0), and a broad low-field (g = 12.5) signal. Treatment of the pMMO with nitric oxide produced the ferrous-nitric oxide derivative observed in the membrane fraction of cells expressing the pMMO. When duroquinol was used as a reductant, the specific activity of the purified enzyme was 11.1 nmol of propylene oxidized.min-1.mg of protein-1, which accounted for approximately 30% of the cell-free propylene oxidation activity. The activity was stimulated by ferric and cupric metal ions in addition to the cytochrome b-specific inhibitors myxothiazol and 2-heptyl-4-hydroxyquinoline-N-oxide.
Collapse
Affiliation(s)
- J A Zahn
- Department of Microbiology, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
38
|
Meier AE, Whittaker MM, Whittaker JW. EPR polarization studies on Mn catalase from Lactobacillus plantarum. Biochemistry 1996; 35:348-60. [PMID: 8555195 DOI: 10.1021/bi952126s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The binuclear manganese active site of Mn catalase catalyzes redox disproportionation of hydrogen peroxide, forming dioxygen and water. We report here multifrequency EPR and microwave polarization studies of the catalytically active homovalent Mn2+ complex of Lactobacillus plantarum Mn catalase, resolving spectra from each of the thermally accessible multiplet states of the coupled complex by multivariate methods. The experimental spectra have been simulated using computational approaches for the binuclear cluster to predict both intensity and polarization for arbitrary values of the ground state parameters. These two spectroscopic properties define the nature of the ground state wavefunctions and so serve as a sensitive and quantitative measure of the inter-ion interactions in the reduced complex. Interpretation of the spectra in terms of a pair Hamiltonian that includes Heisenberg exchange, dipolar, single site zero field splitting, and Zeeman perturbations leads to the most complete ground state description of the active site metal centers. The results of this spectroscopic analysis support a picture of two high spin ions weakly coupled by exchange interactions (J = 40 cm-1) with relatively small dipole-dipole coupling and single site zero field splittings for the ligand-free reduced enzyme. The coupling between fluoride binding and protonation of the complex has been demonstrated by proton uptake studies. The binding of two fluoride ions in the active site dramatically changes the pair spectra, reflecting a substantially reduced J-coupling (J = 10.5 cm-1) that must be a consequence of perturbation of the bridging ligands. Anion binding to the binuclear Mn complex appears to result in poisoning of the active site by protons, possibly associated with insertion of fluoride into bridging positions of the dimanganese core.
Collapse
Affiliation(s)
- A E Meier
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
39
|
|
40
|
Solomon EI, Pavel EG, Loeb KE, Campochiaro C. Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord Chem Rev 1995. [DOI: 10.1016/0010-8545(95)01150-n] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
|
42
|
Moody AJ, Cooper CE, Gennis RB, Rumbley JN, Rich PR. Interconversion of fast and slow forms of cytochrome bo from Escherichia coli. Biochemistry 1995; 34:6838-46. [PMID: 7756314 DOI: 10.1021/bi00020a030] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fully oxidized fast form of cytochrome bo from Escherichia coli is shown to convert spontaneously to a slow form when stored at -20 degrees C in 50 mM potassium borate, pH 8.5, containing 0.5 mM potassium EDTA. Evidence for the conversion, and that the form produced is analogous to the slow form of bovine heart cytochrome c oxidase, comes from (a) decreases in the extents of fast (k = 1-2 x 10(3) M-1 s-1) H2O2 binding and fast (k = 20-30 M-1 s-1) cyanide binding; (b) changes in the optical spectrum that are like those induced by formate, i.e., a blue shift in the Soret absorption band, loss of absorbance in the alpha and beta bands, and a red shift in the "630 nm" charge-transfer band; (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 8.6 and g = 3.71, and appearance of signals at g approximately 13, g = 3.14, and g = 2.58; and (d) appearance of a slow phase of reduction of heme o by dithionite. The mutant enzyme E286Q also converts to a slow form under the same conditions, as shown by (a) a decrease in the extent of fast H2O2 binding; (b) changes in the optical spectrum like those seen with wild-type enzyme; and (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 7.3 and g = 3.6 and appearance of signals at g approximately 13, g = 3.18, and g = 2.59.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Moody
- Glynn Research Institute, Bodmin, Cornwall, U.K
| | | | | | | | | |
Collapse
|
43
|
van den Berg WA, Stevens AA, Verhagen MF, van Dongen WM, Hagen WR. Overproduction of the prismane protein from Desulfovibrio desulfuricans ATCC 27774 in Desulfovibrio vulgaris (Hildenborough) and EPR spectroscopy of the [6Fe-6S] cluster in different redox states. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1206:240-6. [PMID: 8003528 DOI: 10.1016/0167-4838(94)90214-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Desulfovibrio desulfuricans ATCC 27774 prismane protein was isolated from a Desulfovibrio vulgaris (Hildenborough) strain that contained the gene for this protein in expression vector pSUP104. A redox titration demonstrated that the [Fe-S] cluster in this protein may attain four different redox states, indicated as +3, +4, +5 and +6, with midpoint potentials for the transitions of approx. -220, +50/-25 and +370 mV, respectively. EPR spectra of the protein in the various redox states are reminiscent of those of the D. vulgaris prismane protein (Pierik et al. (1992) Eur. J. Biochem. 206, 705-719), but differ in details. In the +5-state, virtually all the iron is in a S = 9/2 spin state, indicative for a cluster that is more complex than common [4Fe-4S] or [2Fe-2S] clusters. Similarity of the EPR spectrum of the protein in the +3-state with those of inorganic [6Fe-6S] model compounds suggests that the cluster in the protein is also [6Fe-6S]. In the +4-state of the protein a broad signal due to an integer-spin system can be detected with normal-mode EPR. A dramatic sharpening-up and increase of intensity of this band (g = 14.7) is observed with parallel-mode EPR. In accordance with the chemically determined iron content of the protein (6.0 +/- 0.45 moles of iron/mole of protein), the spectroscopic data indicate one [6Fe-6S] cluster in this protein. We did not find evidence for a previous claim (Moura et al. (1992) J. Biol. Chem. 267, 4489-4496) that the D. desulfuricans protein contains two [6Fe-6S] clusters.
Collapse
Affiliation(s)
- W A van den Berg
- Department of Biochemistry, Wageningen Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Ferryl iron and protein free radicals. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Verhagen MF, Voorhorst WG, Kolkman JA, Wolbert RB, Hagen WR. On the two iron centers of desulfoferrodoxin. FEBS Lett 1993; 336:13-8. [PMID: 8262195 DOI: 10.1016/0014-5793(93)81599-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Desulfoferrodoxin from Desulfovibrio vulgaris, strain Hildenborough, is a homodimer of 28 kDa; it contains two Fe atoms per 14.0 kDa subunit. The N-terminal amino-acid sequence is homogeneous and corresponds to the previously described Rho gene, which encodes a highly charged 14 kDa polypeptide without a leader sequence. Although one of the two iron centers, FeA, has previously been described as a 'strained rubredoxin-like' site, EPR of the ferric form proves very similar to that of the pentagonal bipyramidally coordinated iron in ferric complexes of DTPA, diethylenetriaminepentaacetic acid: both systems have spin S = 5/2 and rhombicity E/D = 0.08. Unlike the Fe site in rubredoxin the FeA site in desulfoferrodoxin has a pH dependent midpoint potential with pKox = 9.2 and pKred = 5.3. Upon reduction (Em,7.5 = +2 mV) FeA exhibits an unusually sharp S = 2 resonance in parallel-mode EPR. The second iron, FeB, has S = 5/2 and E/D = 0.33; upon reduction (Em,7.5 = +90 mV) FeB turns EPR-silent.
Collapse
Affiliation(s)
- M F Verhagen
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Cooper CE, Jünemann S, Ioannidis N, Wrigglesworth JM. Slow ('resting') forms of mitochondrial cytochrome c oxidase consist of two kinetically distinct conformations of the binuclear CuB/a3 centre--relevance to the mechanism of proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:149-60. [PMID: 8396442 DOI: 10.1016/0005-2728(93)90167-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have purified slow ('resting') cytochrome oxidase from bovine heart, free of contamination with fast ('pulsed') enzyme. This form of the enzyme shows two kinetic phases of reduction of haem a3 by dithionite (k = 0.020 +/- 0.005 s-1 and k = 0.005 +/- 0.002 s-1). The presence of ligands that bind to the oxidized or reduced binuclear centre (formate or carbon monoxide respectively) has no effect on these rates. Varying the dithionite concentration also has no effect on either phase, although at low dithionite concentrations a lag phase is observed as the rate of haem a reduction is slower. The results are consistent with a model for reduction of the slow enzyme where the rate of electron transfer to the binuclear centre is the limiting step, rather than an equilibrium model where the haem a3 redox potential is low. Increasing the pH decreases the rate of the slower phase of dithionite reduction, but has no effect on the faster phase. EPR studies show that the slow phase (only) correlates with the disappearance of the g' = 12/g' = 2.95 signals, with the same pH dependence; again the presence of formate has no effect on these results. Deconvolution of the oxidized optical spectra shows that the enzyme reduced in the slow phase has a blue-shifted Soret band, relative to that reduced in the faster phase. Incubation of the oxidized enzyme at high pH causes a line-broadening of both the g' = 12 and g' = 2.95 EPR signals with no obvious effect on the amount of signal. The results are interpreted in a model where the presence of a carboxylate bridge between haem a3 and CuB defines the slow enzyme. It is suggested that the two rates of dithionite reduction are the result of different ligation to CuB--where water is the ligand the binuclear centre is FeIV/CuI (EPR-silent) and where hydroxide is the ligand the binuclear centre is FeIII/CuII (g' = 12/g' = 2.95 EPR signals).
Collapse
Affiliation(s)
- C E Cooper
- Department of Paediatrics, University College London School of Medicine, Rayne Institute, UK
| | | | | | | |
Collapse
|
47
|
Tsubaki M, Mogi T, Anraku Y, Hori H. Structure of the heme-copper binuclear center of the cytochrome bo complex of Escherichia coli: EPR and Fourier transform infrared spectroscopic studies. Biochemistry 1993; 32:6065-72. [PMID: 8389588 DOI: 10.1021/bi00074a018] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cytochrome bo complex is a terminal quinol oxidase in the aerobic respiratory chain of Escherichia coli and functions as a redox-coupled proton pump. To clarify the structural differences of the binuclear reaction center between the cytochrome bo complex and the mitochondrial cytochrome c oxidase, a combined study using EPR and Fourier transform infrared spectroscopies was carried out. The EPR spectrum of the highly purified cytochrome bo complex in the air-oxidized state showed a broad EPR signal (peak g* = 3.7) from an integer spin system. This confirms the existence of the spin-spin exchange-coupled binuclear site, in which the Feo3+ and CuB2+ centers were bridged by an unknown ligand (X). Binding of azide at the binuclear site as an ionic modulator weakened the strength of the spin-spin exchange coupling and thus caused a narrowing of the broad EPR signal. Binding of another modulator, formate, at the binuclear site caused the formation of EPR signals at g' = 12 and 2.7, which are very similar to those observed for cytochrome c oxidase. Cyanide replaced the bridging ligand (X) to form an Feo(3+)-C-N-CuB2+ structure in which strong spin-spin exchange coupling is expected, leading to a complete EPR-invisible state. Infrared evidence (a 2146 cm-1 C-N stretching band for the cyanide complex and a 2041 cm-1 azide antisymmetric stretching band for the azide complex) supported the theory that these ligands form bridging structures at the binuclear center, as previously observed for cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Tsubaki
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | |
Collapse
|
48
|
Watmough NJ, Cheesman MR, Gennis RB, Greenwood C, Thomson AJ. Distinct forms of the haem o-Cu binuclear site of oxidised cytochrome bo from Escherichia coli. Evidence from optical and EPR spectroscopy. FEBS Lett 1993; 319:151-4. [PMID: 8384121 DOI: 10.1016/0014-5793(93)80056-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oxidised, formate-bound and fluoride-bound forms of E. coli cytochrome bo give rise to an electronic absorption band near 630 nm, diagnostic of high-spin ferric haem o, whose position is sensitive to the nature of the bound anion. In all three forms, haem o remains spin-coupled to Cu(B)(II), resulting in distinct broad X-band EPR signals. Those of formate-bound cytochrome bo are similar to the signals seen in slow cytochrome aa3 but cannot be induced by incubation at acid pH suggesting that the endogenous carboxylate believed to be important in slow cytochrome aa3 is not present in cytochrome bo. The oxidised form gives rise to novel EPR signals at g = 3.74 and g = 3.08 which have not been detected in cytochrome aa3 and may arise from a weak magnetic coupling between high-spin haem o, S = 5/2, and Cu(B)(II), S = 1/2.
Collapse
Affiliation(s)
- N J Watmough
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
49
|
Pierik AJ, Wassink H, Haaker H, Hagen WR. Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:51-61. [PMID: 8383042 DOI: 10.1111/j.1432-1033.1993.tb17632.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In Azotobacter vinelandii MoFe protein the oxidation of the P clusters to the S = 7/2 state is associated with a redox reaction with Em,7.5 = +90 +/- 10 mV (vs the normal hydrogen electrode), n = 1. A concomitant redox process is observed for a rhombic S = 1/2 EPR signal with g = 1.97, 1.88 and 1.68. This indicates that both S = 1/2 and S = 7/2 signals are associated with oxidized P clusters occurring as a physical mixture of spin states. The maximal intensity of the S = 1/2 and S = 7/2 signals in the mediated equilibrium redox titration is similar if not identical to that of solid-thionine-treated samples. Summation of the spin concentration of the S = 1/2 spin state (0.25 +/- 0.03 spin/alpha 2 beta 2) and the S = 7/2 spin state (1.3 +/- 0.2 spin/alpha 2 beta 2) confirms that the MoFe protein has absolutely no more than two P clusters. In spectra of enzyme fixed at potentials around -100 mV a very low-intensity g = 12 EPR signal was discovered. In parallel-mode EPR the signal sharpened and increased > 10-fold in intensity which allowed us to assign the g = 12 signal to a non-Kramers system (presumably S = 3). In contrast with the non-Kramers EPR signals of various metalloproteins and inorganic compounds, the sharp absorption-shaped g = 12 signal is not significantly broadened into zero field, implying that the zero field splitting of the non-Kramers doublet is smaller than the X-band microwave quantum. The temperature dependence of this g = 12 EPR signal indicates that it is from an excited state within the integer spin multiplet. A bell-shaped titration curve with Em,7.5 = -307 +/- 30 mV and +81 +/- 30 mV midpoint potentials is found for the g = 12 EPR signal. We propose that this signal represents an intermediate redox state of the P clusters between the diamagnetic, dithionite-reduced and the fully oxidized S = 7/2 and S = 1/2 state. Redox transitions of two electrons (-307 +/- 30 mV) and one electron (+90 +/- 10 mV) link the sequence S = 0<-->S = 3<-->(S = 7/2 and S = 1/2). We propose to name the latter paramagnetic oxidation states of the P clusters in nitrogenase POX1 and POX2, and to retain PN for the diamagnetic native redox state.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A J Pierik
- Department of Biochemistry, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
50
|
Cammack R, Cooper CE. Electron paramagnetic resonance spectroscopy of iron complexes and iron-containing proteins. Methods Enzymol 1993; 227:353-84. [PMID: 8255229 DOI: 10.1016/0076-6879(93)27014-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R Cammack
- Metals in Biology and Medicine Centre, King's College, London, United Kingdom
| | | |
Collapse
|