1
|
Rodrigues PM, Macedo AL, Goodfellow BJ, Moura I, Moura JJG. Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster. J Biol Inorg Chem 2006; 11:307-15. [PMID: 16453120 DOI: 10.1007/s00775-005-0077-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
Desulfovibrio gigas ferredoxin II (DgFdII) is a small protein with a polypeptide chain composed of 58 amino acids, containing one Fe3S4 cluster per monomer. Upon studying the redox cycle of this protein, we detected a stable intermediate (FdIIint) with four 1H resonances at 24.1, 20.5, 20.8 and 13.7 ppm. The differences between FdIIox and FdIIint were attributed to conformational changes resulting from the breaking/formation of an internal disulfide bridge. The same 1H NMR methodology used to fully assign the three cysteinyl ligands of the [3Fe-4S] core in the oxidized state (DgFdIIox) was used here for the assignment of the same three ligands in the intermediate state (DgFdIIint). The spin-coupling model used for the oxidized form of DgFdII where magnetic exchange coupling constants of around 300 cm-1 and hyperfine coupling constants equal to 1 MHz for all the three iron centres were found, does not explain the isotropic shift temperature dependence for the three cysteinyl cluster ligands in DgFdIIint. This study, together with the spin delocalization mechanism proposed here for DgFdIIint, allows the detection of structural modifications at the [3Fe-4S] cluster in DgFdIIox and DgFdIIint.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- FCMA, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | | | | | | |
Collapse
|
2
|
Johnson MK, Duderstadt RE, Duin EC. Biological and Synthetic [Fe3S4] Clusters. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Sticht H, Rösch P. The structure of iron-sulfur proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 70:95-136. [PMID: 9785959 DOI: 10.1016/s0079-6107(98)00027-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferredoxins are a group of iron-sulfur proteins for which a wealth of structural and mutational data have recently become available. Previously unknown structures of ferredoxins which are adapted to halophilic, acidophilic or hyperthermophilic environments and new cysteine patterns for cluster ligation and non-cysteine cluster ligation have been described. Site-directed mutagenesis experiments have given insight into factors that influence the geometry, stability, redox potential, electronic properties and electron-transfer reactivity of iron-sulfur clusters.
Collapse
Affiliation(s)
- H Sticht
- Lehrstuhl für Struktur und Chemie der Biopolymere, Universität Bayreuth, Germany.
| | | |
Collapse
|
4
|
Ueda K, Hsheh CW, Tosaki T, Shinkawa H, Beppu T, Horinouchi S. Characterization of an A-factor-responsive repressor for amfR essential for onset of aerial mycelium formation in Streptomyces griseus. J Bacteriol 1998; 180:5085-93. [PMID: 9748440 PMCID: PMC107543 DOI: 10.1128/jb.180.19.5085-5093.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 08/06/1998] [Indexed: 11/20/2022] Open
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essential for the initiation of aerial mycelium formation in Streptomyces griseus. amfR is one of the genes which, when cloned on a low-copy-number plasmid, suppresses the aerial mycelium-negative phenotype of an A-factor-deficient mutant of S. griseus. Disruption of the chromosomal amfR gene resulted in complete abolition of aerial mycelium formation, indicating that amfR is essential for the onset of morphogenesis. Cloning and nucleotide sequencing of the region upstream of amfR predicted an operon consisting of orf5, orf4, and amfR. Consistent with this idea, Northern blotting and S1 mapping analyses suggested that these three genes were cotranscribed mainly by a promoter (PORF5) in front of orf5. Furthermore, PORF5 was active only in the presence of A-factor, indicating that it is A-factor dependent. Gel mobility shift assays showed the presence of a protein (AdpB) able to bind PORF5 in the cell extract from an A-factor-deficient mutant but not from the wild-type strain. AdpB was purified to homogeneity and found to bind specifically to the region from -72 to -44 bp with respect to the transcriptional start point. Runoff transcriptional analysis of PORF5 with purified AdpB and an RNA polymerase complex isolated from vegetative mycelium showed that AdpB repressed the transcription in a concentration-dependent manner. It is thus apparent that AmfR as a switch for aerial mycelium formation and AdpB as a repressor for amfR are members in the A-factor regulatory cascade, leading to morphogenesis.
Collapse
Affiliation(s)
- K Ueda
- Department of Applied Biological Sciences, Nihon University, Fujisawa-shi, Kanagawa 252-8510, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Ishikawa Y, Yoch DC. Amino acid sequence of ferredoxin II from the phototroph Rhodospirillum rubrum: Characteristics of a 7Fe ferredoxin. PHOTOSYNTHESIS RESEARCH 1995; 46:371-376. [PMID: 24301605 DOI: 10.1007/bf00020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/1995] [Accepted: 05/25/1995] [Indexed: 06/02/2023]
Abstract
The complete sequence of amino acids of ferredoxin II (FdII) from Rhodospirillum rubrum was determined by repetitive Edman degradation using pyridylethylated-ferredoxin and oxidized, denatured ferredoxin. Peptides derived from trypsin, pepsin, Glu-C endoproteinase, Arg-C endoproteinase, tryptophan specific cleavage and partial acid hydrolysis and C-terminal sequence from carboxypeptidase digestion were used to construct the total sequence. RrFdII is a polypeptide of 104 amino acids having a calculated molecular weight of 11556 excluding the iron and sulfur atoms. The complete amino acid sequence was: PYVVTENCIKCKYQDCVEVCPVDCFYEGENFLVINPDECIDCGVCNPECPAEAIAGKWLEINRKFADLWPNITRKGPAL ADADDWKDKPDKTGLLSENPGKGTV. Sequence comparisons, EPR characteristics and iron analyses indicate that RrFdII has structural features in common with ferredoxins containing [3Fe-4S], [4Fe-4S] centers. Of 104 amino acids, 60 (58%) including all 9 cysteines, are found in identical locations in the 7Fe ferredoxin prototype, Azotobacter vinelandii FdI.
Collapse
Affiliation(s)
- Y Ishikawa
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA
| | | |
Collapse
|
6
|
Imai T, Urushiyama A, Saito H, Sakamoto Y, Ota K, Ohmori D. A novel 6Fe (2 x [3Fe-4S]) ferredoxin from Mycobacterium smegmatis. FEBS Lett 1995; 368:23-6. [PMID: 7615081 DOI: 10.1016/0014-5793(95)00601-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel ferredoxin was purified from Mycobacterium smegmatis by a series of hydrophobic chromatographies in the presence of high concentrations of ammonium sulfate and sodium chloride. The ferredoxin exhibited the same peptide map and N-terminal amino acid sequence as the known 7Fe ferredoxin from the same bacterium. On the other hand, this ferredoxin was found to contain approximately 6 Fe/mol ferredoxin and was also shown to contain only [3Fe-4S] clusters by resonance Raman spectroscopy, indicating that it is a novel 6Fe ferredoxin which contains two [3Fe-4S] clusters.
Collapse
Affiliation(s)
- T Imai
- Department of Chemistry, Rikkyo (St. Paul's) University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Iwasaki T, Wakagi T, Isogai Y, Tanaka K, Iizuka T, Oshima T. Functional and evolutionary implications of a [3Fe-4S] cluster of the dicluster-type ferredoxin from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43899-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Nixon PJ, Trost JT, Diner BA. Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 1992; 31:10859-71. [PMID: 1420199 DOI: 10.1021/bi00159a029] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The D1 polypeptide of the photosystem II (PSII) reaction center is synthesized as a precursor polypeptide which is posttranslationally processed at the carboxy terminus. It has been shown in spinach that such processing removes nine amino acids, leaving Ala344 as the C-terminal residue [Takahashi, M., Shiraishi, T., & Asada, K. (1988) FEBS Lett. 240, 6-8; Takahashi, Y., Nakane, H., Kojima, H., & Satoh, K. (1990) Plant Cell Physiol. 31, 273-280]. We show here that processing on the carboxy side of Ala344 also occurs in the cyanobacterium Synechocystis 6803, resulting in the removal of 16 amino acids. By constructing a deletion strain of Synechocystis 6803 that lacks the three copies of the psbA gene encoding D1, we have developed a system for generating psbA mutants. Using this system, we have constructed mutants of Synechocystis 6803 that are modified in the region of the C-terminus of the D1 polypeptide. Characterization of these mutants has revealed that (1) processing of the D1 polypeptide is blocked when the residue after the cleavage site is changed from serine to proline (mutant Ser345Pro) with the result that the manganese cluster is unable to assemble correctly; (2) the C-terminal extension of 16 amino acid residues can be deleted with little consequence either for insertion of D1 into the thylakoid membrane or for assembly of D1 into a fully active PSII complex; (3) removal of only one more residue (mutant Ala344stop) results in a loss of assembly of the manganese cluster; and (4) the ability of detergent-solubilized PSII core complexes (lacking the manganese cluster) to bind and oxidize exogenous Mn2+ by the secondary donor, Z+, is largely unaffected in the processing mutants (the Ser345Pro mutant of Synechocystis 6803 and the LF-1 mutant of Scenedesmus obliquus) and the truncation mutant Ala344stop. Our results are consistent with a role for processing in regulating the assembly of the photosynthetic manganese cluster and a role for the free carboxy terminus of the mature D1 polypeptide in the ligation of one or more manganese ions of the cluster.
Collapse
Affiliation(s)
- P J Nixon
- Central Research and Development Department, E.I. Du Pont de Nemours & Company, Wilmington, Delaware 19880-0173
| | | | | |
Collapse
|
9
|
Jouanneau Y, Duport C, Meyer C, Gaillard J. Expression in Escherichia coli and characterization of a recombinant 7Fe ferredoxin of Rhodobacter capsulatus. Biochem J 1992; 286 ( Pt 1):269-73. [PMID: 1325780 PMCID: PMC1133050 DOI: 10.1042/bj2860269] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 7Fe ferredoxin of Rhodobacter capsulatus (FdII) could be expressed in Escherichia coli by cloning the fdxA gene coding for FdII downstream from the lac promoter. The expressed recombinant ferredoxin appeared as a brown protein which was specifically recognized in E. coli cell-free extracts by anti-FdII serum. The purified recombinant ferredoxin was indistinguishable from R. capsulatus FdII on the basis of its molecular, redox and spectroscopic properties. These results indicate that the [3Fe-4S] and [4Fe-4S] clusters were correctly inserted into the recombinant ferredoxin.
Collapse
Affiliation(s)
- Y Jouanneau
- Laboratorie de Biochimie Microbienne/DBMS, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
10
|
Trower MK, Lenstra R, Omer C, Buchholz SE, Sariaslani FS. Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus. Mol Microbiol 1992; 6:2125-34. [PMID: 1406253 DOI: 10.1111/j.1365-2958.1992.tb01386.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xenobiotic transformation by Streptomyces griseus (ATCC13273) is catalysed by a cytochrome P-450, designated cytochrome P-450soy. A DNA segment carrying the structural gene encoding P-450soy (soyC) was cloned using an oligonucleotide probe constructed from the protein sequence of a tryptic peptide. Following DNA sequencing the deduced amino acid sequence of P-450soy was compared with that for P-450cam, revealing conservation of important structural components including the haem pocket. Expression of the cloned soyC gene product was demonstrated in Streptomyces lividans by reduced CO:difference spectral analysis and Western blotting. Downstream of soyC, a gene encoding a putative [3Fe-4S] ferredoxin (soyB), named ferredoxinsoy, was identified.
Collapse
Affiliation(s)
- M K Trower
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880-0228
| | | | | | | | | |
Collapse
|
11
|
Matsubara H, Saeki K. Structural and Functional Diversity of Ferredoxins and Related Proteins. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Ramachandra M, Seetharam R, Emptage MH, Sariaslani FS. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus. J Bacteriol 1991; 173:7106-12. [PMID: 1938912 PMCID: PMC209216 DOI: 10.1128/jb.173.22.7106-7112.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin.
Collapse
Affiliation(s)
- M Ramachandra
- Central Research & Development, E.I. du Pont de Nemours & Company, Wilmington, Delaware
| | | | | | | |
Collapse
|
13
|
Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I. Changes in [4Fe-4S] cluster reduction potential and reactivity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54675-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Park J, Fan C, Hoffman B, Adams M. Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55004-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Thomson AJ. Does ferredoxin I (Azotobacter) represent a novel class of DNA-binding proteins that regulate gene expression in response to cellular iron(II)? FEBS Lett 1991; 285:230-6. [PMID: 1855590 DOI: 10.1016/0014-5793(91)80807-f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azotobacter vinelandii (Av) and chroococcum (Ac) ferredoxin I contain [3Fe-4S]1 + 0 and [4Fe-4S]2+1+ clusters, when isolated aerobically, which undergo one-electron redox cycles at potentials of -460 +/- 10 mV (vs SHE) at pH 8.3 and -645 +/- 10 mV, respectively. The X-ray structure of Fd I (Av) reveals that the N-terminal half of the polypeptide folds as a sandwich of beta-strands which enclose the iron-sulphur clusters. The C-terminal sequence contains an amphiphilic alpha-helix of four turns which lies on the surface of the beta-barrel. Fd I (Av) controls expression of an unknown protein of Mr approximately 18,000. Fd I (Ac) will complex iron(II) avidly above pH approximately 8.0 only when the [3Fe-4S] cluster is reduced and provided that cellular nucleic acid is bound. Fd I (Ac) rigorously purified from nucleic acid does not undergo iron(II) uptake. These facts, together with recent evidence that the interconversion process [3Fe-4S]0 + Fe2+----[4Fe-4S]2+ in the iron-responsive element binding protein (IRE-BP) of eukaryotic cells is controlling protein expression at the level of mRNA [1991, Cell 64, 4771; 1991, Nucleic Acid Res. 19, 1739] leads to the following hypothesis. Fd I is a DNA-binding protein which interacts by single alpha-helix binding in the wide groove of DNA. The binding is regulated by iron(II) levels in the cell. The 7Fe form binds to DNA and represses gene expression. Only the DNA-bound form of the 7Fe Fd I will take up iron(II), not the form free in solution. Iron(II) becomes bound when the [3Fe-4S] cluster is reduced. The 8Fe Fd I thus generated no longer binds DNA and the gene is de-repressed. Sequence comparisons and the crystal structure suggests that the two central turns of the alpha-helix are important elements of the DNA-recognition process and that residues Gln69 and Glu73, which lie on the outer surface of the helix, hydrogen-bond with specific base pairs.
Collapse
Affiliation(s)
- A J Thomson
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
16
|
Sariaslani FS. Microbial cytochromes P-450 and xenobiotic metabolism. ADVANCES IN APPLIED MICROBIOLOGY 1991; 36:133-78. [PMID: 1877380 DOI: 10.1016/s0065-2164(08)70453-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F S Sariaslani
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Wilmington, Delaware 19880
| |
Collapse
|
17
|
Trower MK, Emptage MH, Sariaslani FS. Purification and characterization of a 7Fe ferredoxin from Streptomyces griseus. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:281-9. [PMID: 2155656 DOI: 10.1016/0167-4838(90)90026-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A ferredoxin has been purified from Streptomyces griseus grown in soybean flour-containing medium. The homogeneous protein has a molecular weight near 14,000 as determined by both PAGE and size exclusion chromatography. The iron and labile sulfide content is 6-7 atoms/mole protein. EPR spectroscopy of native S. griseus ferredoxin shows an isotropic signal at g = 2.01 which is typical of [3Fe-4S]1+ clusters and which quantitates to 0.9 spin/mole. Reduction of the ferredoxin by excess dithionite at pH 8.0 produces an EPR silent state with a small amount of a g = 1.95 type signal. Photoreduction in the presence of deazaflavin generates a signal typical of [4Fe-4S]1+ clusters at much higher yields (0.4-0.5 spin/mole) with major features at g-values of 2.06, 1.94, 1.90 and 1.88. This latter EPR signal is most similar to that seen for reduced 7Fe ferredoxins, which contain both a [3Fe-4S] and [4Fe-4S] cluster. In vitro reconstitution experiments demonstrate the ability of the S. griseus ferredoxin to couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation. This represents a possible physiological function for the S. griseus ferredoxin, which if true, would be the first functional role demonstrated for a 7Fe ferredoxin.
Collapse
Affiliation(s)
- M K Trower
- E.I. du Pont de Nemours & Company Inc., Central Research and Development Department, Wilmington, DE 19880-0228
| | | | | |
Collapse
|