1
|
Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol 2017; 595:3041-3051. [PMID: 28303572 PMCID: PMC5430224 DOI: 10.1113/jp272781] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3 Rs) are calcium (Ca2+ ) release channels on the endo/sarcoplasmic reticulum (ER/SR). Here we summarize the latest advances in the field, describing the recently discovered mechanistic roles of intracellular Ca2+ release channels in the regulation of mitochondrial fitness and endothelial function, providing novel therapeutic options for the treatment of heart failure, hypertension, and diabetes mellitus.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Ryutaro Nakashima
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Qi Yuan
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Andrew R. Marks
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| |
Collapse
|
2
|
Tovey SC, Dyer JL, Godfrey RE, Khan SZ, Bilmen JG, Mezna M, Michelangeli F. Subtype identification and functional properties of inositol 1,4, 5-trisphosphate receptors in heart and aorta. Pharmacol Res 2000; 42:581-90. [PMID: 11058412 DOI: 10.1006/phrs.2000.0733] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major mechanisms by which hormones elevate intracellular Ca(2+)levels is by generating the second messenger inositol 1,4, 5-trisphosphate (InsP(3)), which activates a Ca(2+)channel (InsP(3)receptor) located in the endoplasmic reticulum (ER). This study undertakes to identify the InsP(3)receptor subtypes (isoforms) in heart and aorta and to characterize their functional properties. The InsP(3)receptor isoforms were identified from rat heart and aorta tissues using both reverse-transcriptase polymerase chain reaction (RT-PCR) to assess the presence of mRNA for the different isoforms and immunochemistry using InsP(3)receptor isoform-specific antibodies. Functional studies included ligand binding experiments using [(3)H]InsP(3)and InsP(3)-induced Ca(2+)release studies using Fluo-3 as the Ca(2+)sensing dye. All three isoforms of the InsP(3)receptor were identified using RT-PCR and immunochemical analyses. [(3)H]InsP(3)binding studies using microsomes derived from these tissues showed that heart had a 3-fold lower abundance of InsP(3)receptors than aorta, while both have considerably lower abundance than the well characterized cerebellar microsomes. The affinity of the InsP(3)binding to the receptor was also different in the three tissues. In cerebellum the K(d)was 60 nM, while aorta had a much higher K(d)of 220 nM. Heart microsomes, appeared to show two classes of binding affinity with K(d)s of 150 nM and 60 nM. Furthermore, the effects of free [Ca(2+)] on [(3)H]InsP(3)binding levels were also different for the three tissues. InsP(3)binding to both cerebellar and aorta microsomes decreased by 90% and 60%, respectively, above 30 nM free [Ca(2+)], while InsP(3)binding to heart was relatively insensitive to changes in [Ca(2+)]. At maximal InsP(3)concentrations, aorta microsomes were able to release about 5% of the accumulated Ca(2+), compared to 25% by cerebellar microsomes. Heart microsomes, however, showed only very little InsP(3)-induced Ca(2+)release ( <0.5%). The EC(50)concentration for InsP(3)-induced Ca(2+)release was 1.2 micro M for aorta while that for cerebellum was 0.3 micro M. Known agonists of the cerebellar InsP(3)receptor such as 3-deoxy InsP(3)and adenophostin A were also able to mobilize Ca(2+)from aorta microsomes. In addition, the competitive antagonist heparin and the non-competitive antagonists of the cerebellar InsP(3)receptor, tetracaine and tetrahexylammonium chloride, were also able to block InsP(3)-induced Ca(2+)release from aorta microsomes.
Collapse
Affiliation(s)
- S C Tovey
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
3
|
McWhinney CD, Hansen C, Robishaw JD. Alpha-1 adrenergic signaling in a cardiac murine atrial myocyte (HL-1) cell line. Mol Cell Biochem 2000; 214:111-9. [PMID: 11195782 DOI: 10.1023/a:1007129723949] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activation of alpha-1 adrenergic receptors in the heart has been shown to result in increased contractile activity, cardiac fetal gene re-expression, and myocyte hypertrophy. Three alpha-1 adrenergic receptors have been identified through molecular cloning. Due to the limited selectivities of the currently available alpha-1 adrenergic receptor antagonists, the signaling pathways activated by specific subtypes in the heart remain unresolved. To resolve this dilemma, we have used a molecular approach to identify the signaling pathways and downstream genes that are engaged in response to activation of individual alpha-1 adrenergic subtypes in cardiac cells. We have transfected constitutively active alpha-1 adrenergic receptors (alpha1a-S290/293-AR [1] or the alpha1b-S288/294-AR [2]) subtypes into the cardiac murine myocyte cell line (HL-1) and studied the signal transduction pathway(s) and cardiac gene(s) activated by them. In this study, we demonstrate that the alpha1a-S290/293 -AR [1] subtype preferentially couples to cardiac-specific atrial natriuretic factor (ANF) gene expression, while the alpha1b-S288/294-AR preferentially couples to activation of mitogen-activated protein kinase (MAPK), Ets-like transcription factor-1 (Elk1) and serum response element (SRE) signaling pathways. Endogenous alpha-1 adrenergic receptors are expressed, and stimulate phosphatidylinositol-hydrolysis upon activation with the alpha-1 agonist, phenylephrine.
Collapse
Affiliation(s)
- C D McWhinney
- Oklahoma State University, College of Osteopathic Medicine, Department of Pharmacology and Physiology, Tulsa, OK 74107-1898, USA
| | | | | |
Collapse
|
4
|
Varma DR, Deng XF. Cardiovascular α1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α1-Adrenoceptors (α1AR) are G protein-coupled receptors and include α1A, α1B, and α1D subtypes corresponding to cloned α1a, α1b, and α1d, respectively. α1AR mediate several cardiovascular actions of sympathomimetic amines such as vasoconstriction and cardiac inotropy, hypertrophy, metabolism, and remodeling. α1AR subtypes are products of separate genes and differ in structure, G protein-coupling, tissue distribution, signaling, regulation, and functions. Both α1AAR and α1BAR mediate positive inotropic responses. On the other hand, cardiac hypertrophy is primarily mediated by α1AAR. The only demonstrated major function of α1DAR is vasoconstriction. α1AR are coupled to phospholipase C, phospholipase D, and phospholipase A2; they increase intracellular Ca2+ and myofibrillar sensitivity to Ca2+ and cause translocation of specific phosphokinase C isoforms to the particulate fraction. Cardiac hypertrophic responses to α1AR agonists might involve activation of phosphokinase C and mitogen-activated protein kinase via Gq. α1AR subtypes might interact with each other and with other receptors and signaling mechanisms.Key words: cardiac hypertrophy, inotropic responses, central α1-adrenoreceptors, arrythmias.
Collapse
|
5
|
McWhinney C, Wenham D, Kanwal S, Kalman V, Hansen C, Robishaw JD. Constitutively active mutants of the alpha(1a)- and the alpha(1b)-adrenergic receptor subtypes reveal coupling to different signaling pathways and physiological responses in rat cardiac myocytes. J Biol Chem 2000; 275:2087-97. [PMID: 10636913 DOI: 10.1074/jbc.275.3.2087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of alpha(1)-adrenergic receptors influences both the contractile activity and the growth potential of cardiac myocytes. However, the signaling pathways linking activation of specific alpha(1)-adrenergic receptor (AR) subtypes to these physiological responses remain controversial. In the present study, a molecular approach was used to identify conclusively the signaling pathways activated in response to the individual alpha(1A)- and alpha(1B)-AR subtypes in cardiac myocytes. For this purpose, a mutant alpha(1a)-AR subtype (alpha(1a)-S(290/293)-AR) was constructed based on analogy to the previously described constitutively active mutant alpha(1b)-AR subtype (alpha(1b)-S(288-294)-AR). The mutant alpha(1a)-S(290/293)-AR subtype displayed constitutive activity based on four criteria. To introduce the constitutively active alpha(1)-AR subtypes into cardiac myocytes, recombinant Sindbis viruses encoding either the alpha(1a)-S(290/293)-AR or alpha(1b)-S(288-294)-AR subtype were used to infect the whole cell population with >90% efficiency, thereby allowing the biochemical activities of the various signaling pathways to be measured. When expressed at comparable levels, the alpha(1a)-S(290/293)-AR subtype exhibited a significantly elevated basal level as well as agonist-stimulated level of inositol phosphate accumulation, coincident with activation of atrial natriuretic factor-luciferase gene expression. By contrast, the alpha(1b)-S(288-294)-AR subtype displayed a markedly increased serum response element-luciferase gene expression but no activation of atrial natriuretic factor-luciferase gene expression. Taken together, this study provides the first molecular evidence for coupling of the alpha(1a)-AR and the alpha(1b)-AR subtypes to different signaling pathways in cardiac myocytes.
Collapse
Affiliation(s)
- C McWhinney
- Henry Hood Research Program, Pennsylvania State College of Medicine, Danville, Pennsylvania 17822-2614, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Ivanova-Nikolova TT, Nikolov EN, Hansen C, Robishaw JD. Muscarinic K+ channel in the heart. Modal regulation by G protein beta gamma subunits. J Gen Physiol 1998; 112:199-210. [PMID: 9689027 PMCID: PMC2525744 DOI: 10.1085/jgp.112.2.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 06/11/1998] [Indexed: 11/20/2022] Open
Abstract
The membrane-delimited activation of muscarinic K+ channels by G protein beta gamma subunits plays a prominent role in the inhibitory synaptic transmission in the heart. These channels are thought to be heterotetramers comprised of two homologous subunits, GIRK1 and CIR, both members of the family of inwardly rectifying K+ channels. Here, we demonstrate that muscarinic K+ channels in neonatal rat atrial myocytes exhibit four distinct gating modes. In intact myocytes, after muscarinic receptor activation, the different gating modes were distinguished by differences in both the frequency of channel opening and the mean open time of the channel, which accounted for a 76-fold increase in channel open probability from mode 1 to mode 4. Because of the tetrameric architecture of the channel, the hypothesis that each of the four gating modes reflects binding of a different number of Gbeta gamma subunits to the channel was tested, using recombinant Gbeta1 gamma5. Gbeta1 gamma5 was able to control the equilibrium between the four gating modes of the channel in a manner consistent with binding of Gbeta gamma to four equivalent and independent sites in the protein complex. Surprisingly, however, Gbeta1 gamma5 lacked the ability to stabilize the long open state of the channel that is responsible for the augmentation of the mean open time in modes 3 and 4 after muscarinic receptor stimulation. The modal regulation of muscarinic K+ channel gating by Gbeta gamma provides the atrial cells with at least two major advantages: the ability to filter out small inputs from multiple membrane receptors and yet the ability to create the gradients of information necessary to control the heart rate with great precision.
Collapse
Affiliation(s)
- T T Ivanova-Nikolova
- Henry Hood MD Research Program, Department of Cellular and Molecular Physiology, Penn State College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | |
Collapse
|
8
|
Wenham D, Rahmatullah RJ, Rahmatullah M, Hansen CA, Robishaw JD. Differential coupling of alpha1-adrenoreceptor subtypes to phospholipase C and mitogen activated protein kinase in neonatal rat cardiac myocytes. Eur J Pharmacol 1997; 339:77-86. [PMID: 9450619 DOI: 10.1016/s0014-2999(97)01359-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of cardiac alpha1-adrenoreceptors has a number of physiological effects. Ascribing these effects to a specific alpha1-adrenoreceptor subtype first requires the elucidation of the subtypes that are present in the tissue of interest. In the present study, mRNA transcripts for the alpha1A, alpha1B and alpha1D-adrenoreceptor subtypes were detected in cultured neonatal rat cardiac myocytes, using reverse transcriptase-polymerase chain reaction analysis. However, binding sites for only the alpha1A and alpha1B-adrenoreceptor subtypes were detected in cultured neonatal rat cardiac myocytes, using competition binding analysis with a variety of alpha1 selective receptor antagonists. Phenylephrine-stimulated phosphatidylinositol hydrolysis was inhibited by alpha1 selective receptor antagonists with affinities consistent with the alpha1A-adrenoreceptor subtype, whereas phenylephrine-induced activation of the mitogen activated protein kinase cascade was inhibited by these same antagonists with affinities more closely resembling the alpha1B-adrenoreceptor subtype. In the case of both signaling pathways, the alpha1D selective receptor antagonist, BMY 7378, exhibited affinities suggestive of the relative absence of a alpha1D-adrenoreceptor subtype. Thus, despite the presence of mRNA transcripts for all three alpha1-adrenoreceptor subtypes, only the alpha1A and alpha1B-adrenoreceptor subtypes were expressed and functionally coupled at detectable levels in neonatal rat cardiac myocytes. Of particular interest, phenylephrine-induced activation of the mitogen activated protein kinase cascade appears to be mediated by a subtype resembling most closely the pharmacological profile of the alpha1B-adrenoreceptor subtype.
Collapse
Affiliation(s)
- D Wenham
- Henry Hood MD Research Program, Pennsylvania State University College of Medicine, Danville 17822, USA
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- E A Woodcock
- Cellular Biochemistry Laboratory, Baker Medical Research Institute, Victoria, Australia.
| |
Collapse
|
10
|
Hanem S, Enger M, Skomedal T, Osnes JB. Inositol-1,4,5-trisphosphate mass content in isolated perfused rat heart during alpha-1-adrenoceptor stimulation. Mol Cell Biochem 1996; 163-164:167-72. [PMID: 8974053 DOI: 10.1007/bf00408654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inositol-1,4,5-trisphosphate (IP3) has been proposed to be a second messenger in response to alpha-1-adrenoceptor stimulation also in myocardial cells. We studied the effect of alpha-1-adrenoceptor stimulation (5 x 10(-5) mol/l phenylephrine or 5 x 10(-5) mol/l noradrenaline both in the presence of 10(-6) mol/l timolol) on IP3 mass content in isolated perfused rat hearts. IP3 content was determined by a specific receptor-binding assay-kit (TRK 1000, Amersham) after validating the method. For comparison also the effect of muscarinic stimulation (10(-4) mol/l carbachol in the presence of 10(-6) mol/l timolol) on IP3 content was measured in corresponding preparations. A basal IP3 level of about 75 pmol/mg protein was found. There were no prominent effects of alpha-1-adrenoceptor stimulation on total IP3 content in isolated perfused rat hearts. Phenylephrine gave a statistically significant increase of about 40% at 1/4 min and a statistically significant decrease of about 25% at 4 min after start of exposure. Noradrenaline, however, gave no statistically significant change of IP3 at the time-points studied. Muscarinic stimulation caused a slight, statistically insignificant, increase of IP3 at 1/4 min. The results are compatible with an assumption that agonist stimulation evokes a localized increase of IP3 which may be masked by a relatively high total IP3 mass content. The IP3 peak after phenylephrine coincided with the early positive inotropic phase of the response reported earlier in perfused rat hearts for alpha-1-adrenoceptor stimulation by phenylephrine. Although this might be compatible with a role for IP3 in this early and transient phase, a mediator function of IP3 in the inotropic response is not established.
Collapse
Affiliation(s)
- S Hanem
- Department of Pharmacology, University of Oslo, Norway
| | | | | | | |
Collapse
|
11
|
De Jonge HW, Atsma DE, van der Valk-Kokshoorn EJ, van Heugten HA, van der Laarse A, Lamers JM. Alpha-adrenergic agonist and endothelin-1 induced intracellular Ca2+ response in the presence of a Ca2+ entry blocker in cultured rat ventricular myocytes. Cell Calcium 1995; 18:515-25. [PMID: 8746950 DOI: 10.1016/0143-4160(95)90014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previously we demonstrated that stimulation of cultured neonatal rat ventricular myocytes by either alpha 1-adrenergic agonist or endothelin-1 resulted in a rapid formation of total inositolphosphates, although the levels of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate did not rise significantly. The aim of this study was to examine whether stimulation by alpha 1-adrenergic agonist and endothelin-1 could still elicit phosphatidylinositol cycle mediated intracellular Ca2+ mobilization in these cells. The intracellular free Ca2+ concentration ([Ca2+]i) was measured by single cell imaging dual wavelength fluorescence microscopy in Fura-2-loaded cardiomyocytes. The interference of agonist induced [Ca2+]i responses by the beat to beat variation of [Ca2+]i was prevented by arresting the cells with the Ca2+ entry blocker diltiazem (10 microM). The [Ca2+]i response (expressed as % of baseline ratio of fluorescence intensities of Fura-2 at 340 nm and 380 nm excitation wavelength), induced by phenylephrine (10(-4) M) and endothelin-1 (10(-8) M) was small, up to 20% of baseline after 9-20 min. In contrast, Ca(2+)-influx induced by incubation in Na(+)-free buffer caused a steep increase of [Ca2+]i up to 150% of baseline after 30 s. Analysis of single cells following stimulation with phenylephrine or endothelin-1 showed heterogeneity with respect to a rise in [Ca2+]i. However, if rapid Ca(2+)-influx was induced by incubation in Na(+)-free buffer, [Ca2+]i responses in individual myocytes occurred homogeneously. It is concluded that the alpha 1-adrenergic agonist and endothelin-1 induced [Ca2+]i responses are delayed in time, small and quite heterogeneous among cells. The findings are in agreement with earlier observations which revealed no detectable overall increase of the Ca2+ releasing inositolphosphates under these conditions and suggest that other second messengers, such as 1,2-diacylglycerol, are involved in the agonist mediated Ca2+ signals.
Collapse
Affiliation(s)
- H W De Jonge
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|